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In recent years, malware has experienced explosive growth and has become one of the most severe security threats. However,
feature engineering easily restricts the traditional machine learning methods-based malware classifcation and is hard to deal with
massive malware. At the same time, the dynamic analysis methods have the problems of complex operation and high cost, which
are not suitable for efciently classifying large quantities of malware. Terefore, we propose a novel static malware detection
method based on this study’s AlexNet convolutional neural network (CNN). Unlike existing solutions, we convert all malware
bytes into color images, propose an improved AlexNet architecture, and solve the unbalanced datasets with the data enhancement
method. Extensive experiments are performed using the Microsoft malware dataset and the Google Code Jam (GCJ) dataset. Te
experimental results show that the accuracy of theMicrosoft malware dataset reaches 99.99%, and the GCJ dataset reaches 99.38%.
We also verify that our method can better extract the texture features of malware and improve the accuracy and detection
efciency.

1. Introduction

Malware software can infect computers or devices without
the consent of users. Trough these loopholes, criminals
carry out various illegal and criminal acts, infringing on the
country’s and nation’s legitimate rights and interests.
According to the “China Network Security Report 2021,”
a total of 119 million virus samples were intercepted by
Rising’s “Cloud Security” system, with 259 million virus
infections found, and the overall number of viruses declined
relative to 2020. However, ransomware and mining viruses
are still not to be underestimated. At the same time, Trojan
viruses have become the most signifcant number, followed
by worm viruses, accounting for more than 80% [1, 2].
Although large numbers of malicious samples can be pro-
cessed using machine learning methods, it takes many
human and material resources to identify and classify
malware by feature engineering. We must face the challenge

of reducing network security risk, rapid and accurate clas-
sifcation, and malware detection.

Traditional malware classifcation methods can be di-
vided into two categories: static analysis (Gibert et al. [3], Seo
et al. [4], Jeon and Moon [5], Shalaginov et al. [6], and Zhao
et al. [7]) and dynamic analysis (Lin et al.[8], Sun et al. [9],
Htun et al. [10], Bidoki et al. [11], and Kim et al. [12]). In
general, static analysis methods do not require running
malware binary samples and helpful information can be
obtained directly through disassembly, such as functions,
string lists, and hash values. With short consumption time,
the static analysis methods have the advantages of simple
operation and a high accuracy rate. However, static analysis
methods can only analyze malware binary samples from the
surface, easily afected by confusion techniques such as
deformation. It is also difcult to detect and classify un-
known malware. Dynamic analysis methods can run in
a virtual environment and are not afected by obfuscation
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techniques. It can observe the dynamic changes of the
malware binary samples in time and can identify new
malware samples. However, it is a very time-consuming and
complex operation.

Malware classifcation methods based on machine
learning (Gibert et al.[13], Woźniak et al. [14], Li et al. [15],
Ucci et al. [16], and Liu et al. [17]) must extract features
artifcially and then select the appropriate classifcation
model. It is suitable for smaller datasets, relatively simple to
operate, and can be run on low-end machines. With the
increasing numbers and types of malware, machine learning
methods have gradually exposed some weaknesses, such as
being susceptible to feature engineering and difculty
dealing with large amounts of malware. To solve the above
problems, malware classifcation methods based on deep
learning (Amer and El-Sappagh [18], Zhao et al. [19], Kalash
et al. [20], Wang and Wang [21], and Vasan et al. [22]) are
widely used. It changes traditional machine learning that
relies on hand-crafted features. Tese features must be based
on expert knowledge and experience to construct a repre-
sentation of malware behavior and then classify malware,
which is time-consuming and may not be well generalized to
new malware. However, deep learning solves the problems
of the complicated construction of features and manual
participation.

Recently, researchers have studied classifcationmethods
based on malware visualization (Vinayakumar et al. [23],
Vasan et al. [24], Naeem et al. [25], and Zhao et al. [26]),
malware classifcation based on images, and deep learning
has become an efective solution. By generating images, we
can observe malware more intuitively without requiring
knowledge of the related felds. Most visualization methods
require images to be uniformly sized and then fed into the
neural network model. Nataraj et al. [27] applied the vi-
sualizationmethod to malware for the frst time. Firstly, read
the unsigned integer vector of the binary fle, and then every
8 bits were a unit and converted it into a decimal value
between 0–255. Finally, the width is fxed and the height is
set according to the fle size to generate grayscale images.
Although there is much research on malware visualization,
there are still many problems to be solved, such as re-
dundancy or loss of information, low classifcation accuracy,
and difculty detecting new malware variants.

Te Markov model (Alipour and Ansari [28] and Yuan
et al. [29]) has also made some achievements in image
processing. According to previous studies, the malware
method based on theMarkovmodel has better detection and
classifcation efects. Our solution uses the Markov model to
generate the transition probability matrix. Ultimately,
malware images of fxed size can be generated directly,
reducing the loss of information. Te approach based on
a combination of deep learning and malware visualization
avoids the high overhead of manual feature extraction,
improving malware feature extraction capability and model
classifcation performance.

Tis study proposes a framework combining images with
deep convolutional neural networks (CNNs) for malware
classifcation, which can efectively and efciently solve the
problem of malware detection and variant recognition. First,

this method uses the Markov model and z-score stan-
dardization method to visualize malware as images. Ten, it
uses colormap to mark images to generate color images.
Finally, the malware colormap images are learnt and clas-
sifed using an improved convolutional neural network
model. We compare the performance of the proposed
method on two benchmark datasets, and the experimental
results show that the classifcation performance results of the
method are signifcantly improved.

Te main contributions of this study are summarized as
follows:

(i) A novel malware image generation method is
proposed, which can efectively retain the relevant
information of the binary fles and reduce the re-
dundancy and loss of information, and the image
generation does not require the execution or dis-
assembly of any malware code.

(ii) We combine batch normalization and the improved
CNN, which enhances the model’s generalization
ability and improves the accuracy of malware
classifcation. Te parameter tuning process is
simplifed, and the initialization requirements are
reduced.

(iii) An improved CNN is introduced with fewer fully
connected layers and lower output dimensions. Te
training time is signifcantly decreased, and the
classifcation speed is improved.

(iv) Tis experiment is conducted on two unbalanced
benchmark datasets to evaluate the model frame-
work proposed in this article. Te experimental
results show that the proposed model framework
achieves excellent classifcation performance. Te
data enhancement method used can efectively solve
problems such as too few samples or poor quality to
prevent overftting.

Te rest of the study is organized as follows: Section 2
presents related research on malware detection and classi-
fcation. Section 3 details a novel framework for image-based
malware classifcation with the AlexNet CNN model. Te
experimental results are presented in Section 4. Finally,
Section 5 summarizes the study and future prospectives.

2. Related Work

Traditional malware classifcation methods were mainly
based on static or dynamic analysis to obtain features,
and then machine learning algorithms were used for
classifcation. With the increasing types, quantity, and
detection difculty of malware, some drawbacks are
gradually exposed. Researchers began to study the
combination of visualization and deep learning of
malware to improve the efciency and accuracy of
malware detection. Terefore, this study mainly in-
troduces the following aspects of related technologies:
static analysis methods, dynamic analysis methods, and
analysis methods based on malware images and deep
learning.
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2.1. Malware Analysis Method Based on Static Analysis.
Te static analysis method does not need to execute malware
and usually analyzes the frequency distribution of opcodes,
byte sequences, etc. It has the characteristics of high accuracy
and high speed. Santos et al. [30] used the n-grammethod to
detect unknown malware samples. Due to the large dataset,
1000 malware and 1000 benign software samples were se-
lected separately for the experiment. Using the k-nearest
neighbor algorithm, a fnal detection rate of 91.25% was
obtained. Ahmadi et al. [31] proposed a malware classif-
cation method based on static learning, which classifes
malware by extracting PE structure information. Features
can be extracted directly without unpacking.

Naeem et al. [32] conducted experiments using three
publicly available datasets of Windows systems, combining
the extracted attribute features by capturing the local and
global attributes of the gray-scale images. Finally, a machine
learning approach was used to classify the malware samples.
Liu et al. [33] proposed a method for malware visualization
to classify malware binary fles. Tis method was tested on
three datasets, and the local features of malware samples
were extracted through the bag of the visual words (BOVM)
model. Compared with the global feature, the feature is more
fexible, and the classifcation accuracy is signifcantly im-
proved. However, the scheme is susceptible to obfuscation
techniques and is computationally expensive. Naeem et al.
[34] also visualized the malware binary fle as an image, then
used local and global information to extract features, and
used four public malware datasets for experiments. Al-
though the dimensionality of the two models has been re-
duced to reduce the computation time, the running time is
still slightly longer compared to the other models. Li et al.
[35] used static and statistical analysis to extract multidi-
mensional features. Multidimensional text feature vectors
were extracted by the n-gram and term frequency-inverse
document frequency (TF-IDF); then, the best features were
selected by a classifer. Finally, the best feature vectors were
fused with other features for training using a machine
learning framework.

2.2. Malware Analysis Method Based on Dynamic Analysis.
Although the static analysis method consumes less time and
is easy to operate, it is easily afected by obfuscation tech-
nology, and it is easy to judge malware in the form of de-
formation, packaging, and other ways as benign software.
Te dynamic analysis method is not afected by obfuscation
technology and can trace the actual running path of mal-
ware, making up for the insufciency of static analysis. Nair
et al. [36] proposed a malware classifcation method based
on dynamic analysis, which can compensate for the short-
comings of static analysis techniques. In the process of
propagation, the structure of deformedmalware will change,
but its essential function is unchanged. Terefore, the
corresponding features are obtained by dynamically tracking
API calls issued by deformed malware.

Lim et al. [37] classifed malware through network be-
havior. Tis scheme frst clustered the extracted trafc
characteristics through the K-means algorithm, compared

the similarity of the sequences generated by clustering, and
organized the malware behavior through the unifed algo-
rithm. Kim et al. [38] used the malware API call sequence
and multiple sequence alignment (MSA) algorithm. By
comparing the test API call sequence with the behavior
sequence of malware samples, the malware samples were
classifed and detected by the dynamic analysis method. Xu
et al. [39] detected malicious Windows software through the
pretraining model, extracted the application programming
interface (API) sequence of malware samples by combining
natural language processing (NLP) with the dynamic
analysis method, and then conducted experiments on two
diferent datasets through the fne-tuning method.

2.3. Analysis Method Based on Malware Image and Deep
Learning. Recently, there have been an increasing number
of studies combining visualization techniques with deep
learning, with most research scholars converting malware
into gray-scale images. Ni et al. [40] used SimHash and CNN
to classify malware and generate SimHash-based grayscale
images by extracting opcode sequences from malware.
Further, CNNs were used to train images and identify
malware families. Xue et al. [41] obtained grayscale images
through static analysis and used the CNN model with the
spatial pyramid pooling (SPP) layer for classifcation. Ten,
the API call sequence is analyzed by dynamic analysis
methods using variable N-grams and machine learning.
Finally, static analysis and dynamic analysis are connected
through probability scoring. Te experiments used 63
malware families, and the results show that the pre-
processing and testing time is signifcantly reduced, while
the method’s accuracy is as high as 98.82%.

With the increasing research on visualization tech-
niques, research scholars have found that a single low-
order feature representation may not be conducive to
discovering hidden features in malware families. Terefore,
research into multichannel based malware image classif-
cation methods has begun. Pinhero et al. [42] compared
three diferent malware images (grayscale, RGB, and
Markov) and applied them with a Gabor flter to extract
relevant features. Te experiment uses 12971 benign
samples and two malware datasets and designs four dif-
ferent sizes (32 × 32, 64 × 64, 128 × 128, and 256 × 256) into
12 diferent CNN model architectures for training. Te
experimental results show that a 99.97 F-measure is fnally
produced. Yadav et al. [43] extracted the byte code of the
dex fle from left to right in the sequential order, every six
digits as a group, forming three or 2 digits, which were then
converted into decimal values. Finally, they were mapped
into R, G, and B sequentially to form a color map. Training
with EfcientNet-B4 CNN achieved 98.8% accuracy in
separating malware from benign software images.

Most of the above deep learning-based visualization
techniques generally convert malware binaries into gray-scale
images. When using the depth neural network model to train
the generated gray image, it is necessary to unify the size of the
image. During the conversion process, it is easy to cause
redundancy or loss of information. At the same time, the
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training models used by most methods have problems, such
as a large number of parameters and a long training time,
which afect the performance of classifcation detection.

3. The Proposed Method

We proposed a malware classifcation method based on
image and deep learning, consisting of feature extraction,
image generation, and CNN classifcation.Te framework of
our method is shown in Figure 1. Firstly, the malware is read
in binary mode and traversed all the bytes. Te information
from the malware binary fle is extracted, and the transition
probability matrix is obtained. Te value of the transition
probability matrix is the transition probability of each byte
to other bytes. Ten, the transition probability matrix is
standardized, and the color map is applied to the transfer
probability matrix to visualize the malware as color images.
Finally, the malware is classifed through an improved CNN.
Diferent evaluation indexes often have diferent di-
mensions. If not processed, the diferences in numerical
values may be signifcant, afecting the data analysis results.
To eliminate the infuence of dimension and value range
diferences between indicators, we must carry out stan-
dardization processing and scale them in proportion to
make them fall into a specifc area for us to conduct the
comprehensive analysis.

3.1. ImageRepresentation ofMalware. Te grayscale image is
also called the gray level image. In most current image-based
malware classifcation methods, the width of the generated
grayscale image is generally fxed, and the height is set
according to the fle size.Ten, the grayscale image is directly
cropped or rescaled to a uniform size and put into the model
for training. However, such malware image generation is
often associated with information missing or redundant
problems, resulting in high error rates and low accuracy in
the fnal classifcation. Terefore, we propose a simple and
efective scheme to visualize the original malware binary fle
as color images to solve such a problem. No feature engi-
neering is required, and the malware information can be
efectively retained. Te process of the proposed method is
shown in Figure 2.

We read the malware fle in the binary mode. In this way,
each binary malware can be regarded as a byte stream
B � b1, b2, . . . , bN , where n represents the number of bytes
in the malware. Since the value of each byte ranges from 0 to
255, the byte stream is equivalent to a decimal integer stream
B′ � . . . , k, m, . . .{ }n, where 0≤ k, m≤ 255. Here, we call two
adjacent bytes the byte pair and denote f(k,m) as the number
of byte pair (k, m) in B′. Ten, each malware can be con-
verted to a transition probability matrix, with a size of
256 × 256, denoted by the P � Pkm 256×256. Pkm refers to the
value of the kth row and mth column of P, which is given by

Pkm �
f(k, m)


255
m�0f(k, m)

. (1)

Matrix P contains the byte information of the malware
while ignoring the frequency diference between diferent

columns. Te z-score can be applied to numerical data, and
the calculation is simple. It can convert data of diferent
magnitudes to the same extent so that the data are com-
parable and used to generate z-score standardized images.
Terefore, the normalized transition probability matrix can
be obtained.

Te data are normalized by the column to process the
transition probability matrix, where the byte sequence X �

x1, x2, . . . , xn  of a particular column; the normalized
values yij in the ith row and jth column are shown in the
following equation:

P
′
km �

Pkm − X

std(X)
, (2)

where the mean value X � 1/256
255
m�0Pkm and the standard

deviation std(X) �

������������������

1/256
255
m�0(Pkm − X)2



.
Te colormap is a three-dimensional real numbermatrix.

Te color map represents a mapping (color mapping), which
is not a continuous function type mapping but a matrix with
three columns representing the color’s R, G, and B com-
ponents. Te color map matrix can be generated manually or
defned by calling the functions provided by MATLAB. By
customizing the color arrangement order, after several sets of
experiments, determine the appropriate color order. Finally,
we apply color map to the generated standardized image and
visualize it as malicious sample color images.

3.2. Data Augmentation. In the process of deep learning,
when we train the model, if the number of samples is too
small or the quality of examples is not good, it is prone to
overftting. In general, the more the number of samples, the
better the efect of the trained model. By increasing the
number of samples or improving the quality, the problem of
sample imbalance can be solved, and the dependence of the
model on some characteristic attributes can be reduced to
improve the model’s generalization ability. However, if the
number of our samples is too small or the quality is not good,
it can be processed by data enhancement technology, which
improves the robustness of the model.

Data enhancement is a technology to expand the number
of samples. Te existing data becomes rich and diverse by
increasing the number of instances. Data enhancement
techniques can be divided into two categories: ofine data
enhancement and online data enhancement.Te ofine data
enhancement method is suitable for the case of small
datasets and directly processes the datasets. When the
dataset is large, the ofine data enhancement method will
consume much space, so this study uses the online data
enhancement method. Before each epoch, the original data
image will be transformed. Each method contains random
factors, so the data used for model training difers each time.
Tat is to say, how many epochs have been experienced and
how many times the data have expanded.

In general, we entirely use the limited data through
geometric and color transformations of the original image.
Te data enhancement methods used in our experiments are
shown in Table 1:
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3.3. Batch Normalization. With the deepening of the neural
network, in the training process, the change of the parameters
of the previous layer constantly infuences changes in the
input distribution of the next layer. As the input of each layer
is no longer independent and identically distributed, the
upper network needs to adapt to these distribution changes
constantly, and training becomes increasingly complex. Te
convergence rate will gradually become slow, resulting in the
internal covariate shift problem.

Malware binary file
001010100110… Binary to 8 bit vector Convert to 1D vector of

decimal values

Statistic the frequencies of two
adjacent bytes in turn

Generate 2D transition
probability matrix

Normalize processing
& applied Colormap

Figure 2: Malware image generation process.
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Figure 1: Te proposed program framework.

Table 1: Te setting of the data enhancement method.

Transform methods Parameter setting
Width shift 0.0
Height shift 0.0
Fill mode None
Rotation range 0.0
Zoom_range 0.0
Image transformation Contrast, saturation
Data standardization Normalize
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In the neural network, each layer of network M can
perform two operations of the linear transformation YM �

WM · X + bM and nonlinear transformation FM � GM(YM),
where WM represents the weight of theM layer in the neural
network, bM represents the ofset vector of each neuron on
theM layer, and GM represents the activation function of the
M layer. In the process of reverse propagation, according to
the gradient descent method to update the WM and bM of
each layer, the distribution of YM will change and the
distribution of FM will also change. However FM is used as
input to the next layer (M+ 1), which makes the neurons in
the next layer also need to constantly adapt to such changes,
which reduces the speed of convergence of the whole net-
work. It becomes more severe as the number of network
layers deepens.

To reduce the internal covariate shift problem in neural
networks, we introduced the batch normalization algorithm
in model training, which was proposed by Iofe and Szegedy
[44] in 2015. Trough this method, each dimension in the
feature map corresponding to each batch of data is stan-
dardized in the output of each layer to accelerate the net-
work’s convergence and improve its accuracy. Tis method
normalizes the output at the network’s each layer for each
dimension of the featuremap corresponding to each batch of
data, accelerating the convergence of the network and im-
proving the accuracy. By calculating the mean and variance
of all data for the same channel in each batch, the nor-
malization method requires the results to be subtracted from
the mean and divided by the standard deviation before the
linear calculation is fed into the activation function. Te
input of each layer of the neural network is guaranteed to
conform to the standardized normal distribution with the
mean μ of 0 and the variance σ2 of 1 to reduce the diference
of samples. Te standardized normal distribution formula is
shown in equation (3). Backpropagation learning is obtained
by batch normalization to ensure the ability of nonlinear
expression, scale parameters, and shift parameters. Two
parameters are added to each neuron. Te scale and shift
change operations were performed on x that satisfes the
normalized normal distribution after the transformation, as
shown in equation (4).

P(x) �
1
���
2π

√
σ

e
− (x+μ)2/2σ2( )⟶ P(x) �

1
���
2π

√
σ

e
− x2/2( ),

(3)

BNscale,shift(x) � scale · x + shift. (4)

By using batch normalization, the parameter adjustment
process is simplifed and the requirement for initialization is
reduced. Te larger the learning rate, the larger is the step
size of the parameter update, which is prone to oscillation
and nonconvergence. Te batch normalization layer is
generally placed between the convolutional layer and the
ReLU layer. Using this algorithm will make the network not
afected by the parameter values, and the network training is
more stable. Even if the network uses a higher learning rate,
it will not cause the problem of disappearance and explosion
of the gradient. Using the batch normalization algorithm, we

can remove dropout and L2 regularization parameter se-
lection problems and make each layer’s normalized mean
and variance diferent, increasing the model’s robustness
and resisting overftting. Te ability to generalize the net-
work is improved, while the constant adjustment of pa-
rameters can be reduced. Trough standardization and
linear transformation, batch normalization makes data
maintain the identical distribution in the training process
while achieving decoupling between the various layers in the
network.Te network of each layer can learn independently,
which is conducive to accelerating the training and con-
vergence speed of the model. Each layer of the network can
learn independently, which is conducive to accelerating the
training and convergence of the model.

3.4. Classifcation ofMalware Images. In recent years, CNNs
have developed rapidly and have achieved signifcant
breakthroughs in computer vision, speech recognition, face
recognition, and natural language processing. CNNs are
a deep learning method that Yann LeCun frst proposed.
Tis study designs a CNN architecture based on the AlexNet
network, as shown in Figure 3. Te network was frst
proposed by Krizhevsky et al. [45] in 2012.Te AlexNet deep
convolution network structure was frst applied to large-
scale image datasets in the ImageNet 2012 competition. Te
graphics processing unit (GPU) was introduced to speed up
model training. Te ReLU activation function and local
response normalization (LRN) were used.

We put 256 × 256 malware images into the model for
training. Te CNN designed in this study has fve convo-
lution layers and three pooling layers, similar to the AlexNet
network architecture. Te diference is that the PReLU
activation function is used in each convolutional layer, and
the use of local response normalization is eliminated. We set
the number of convolution kernels in the model to half the
original number, and the proposed model architecture
consists of two fully connected layers. Te last full con-
nection layer is directly connected to the output layer and
the category classifcation by the softmax function. A new
deep CNNmodel is constructed using the PyTorch library to
write the model code and add a batch normalization layer to
the model.

Te network model is trained in the training phase using
a cross-entropy loss function, essentially a log-likelihood
function. Te learning model parameters of the Adam op-
timizer are used to train the network model. Te deep CNN
architecture for malware image classifcation has enhanced
model generalization ability, lowered output dimensions,
and reduced model parameters compared with the original
AlexNet architecture. Compared with other traditional
neural networks, efective features can be extracted with
a smaller amount of parameters. At the same time, much
time can be saved and space consumption is also reduced.

4. Experiments and Analysis

4.1. Dataset and Experimental Settings. Tis experiment is
conducted on the two datasets, the Microsoft dataset and
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Google Code Jam (GCJ) dataset. For the Microsoft Malware
Classifcation Challenge (BIG 2015) dataset, we use 10,868
labeled malware samples from 9 families. Generally, the
assembly code of the malware binary fle is obtained by
decompilation, while the Microsoft dataset has been pro-
cessed in advance and can be used directly. Te malware
distribution is shown in Table 2. GCJ is hosted by Google
and is an international programming competition. Partici-
pants in the competition can use any programming language
but are required to solve algorithmic problems within
a specifed time frame.We collected programming languages
from ten years of GCJ projects from 2010 to 2019 and an-
alyzed 1600 authors, with the number of codes per year
shown in Figure 4.

Te experimental program was written in python, using
Keras 2.4.3 and PyTorch 1.4.0 as the backend. Hardware
environment includes processor: R7-5800H; 8 cores 16
threads; core graphics card: core AMD RadeonTM Graphics;
discrete graphics card: GTX1650; and video memory: 4G.
We divide the dataset into training and test sets, in which the
training set accounts for 90% and the test set accounts for
10%. Te generated malware sample images are 256 × 256
and then input into the designed networkmodel for training.
According to diferent malware samples, diferent batch
sizes, training cycles, and learning rates are set. In this
experiment, the batch size is set to 128, the training period is
set to 50, and the learning rate is set to 1e− 4.

4.2. Evaluation Indicators. Te experiment uses accuracy, F-
measure, precision, and recall as evaluation metrics. Ac-
curacy is the total percentage of samples predicted to be
correct, precision is the proportion of samples predicted to
be positive to those actually positive, recall is the proportion
of samples actually positive to those predicted to be positive,
and F-measure is the harmonic average of accuracy and
recall. If the malware samples are successfully classifed as
malware, they are called true positive (TP); if misclassifed as
benign software, it is called false negative (FN). If the benign
software samples are successfully classifed as harmless
software, they are called true negative (TN); if misclassifed
into malware, it is called false positive (FP). Te formula is
shown as follows:

accuary(A) �
TP + TN

TP + TN + FP + FN
,

precision(P) �
TP

TP + FP
,

recall(R) �
TP

TP + FN
,

F − measure(F) �
P × R

P + R
× 2.

(5)

4.3. Experimental Results

4.3.1. Te Infuence of Image Generation Methods on Clas-
sifcation Accuracy. Tis experiment compares standardized
images, Markov images, and the method proposed in this
study to generate images. Te variation of the accuracy with
epochs for the training set and the test set is shown in
Figure 5. Te abscissa represents the training period, which
we set to 50, and the ordinate represents the training set’s or
test set’s accuracy. We fnd that with the increase of epochs,
the accuracy keeps increasing, and when the training reaches
a certain level, it gradually stabilizes. By observation, the
proposed method for generating malware images out-
performs the other two methods. When tending to stabilize,
the accuracy fuctuates between 99% and 100%. Figure 6
shows the change of the loss value of the training set and the

31*31*48 15*15*128 15*15*192 15*15*192 6*6*128
4608 2048

Convolution

Max pooling
BN

Fully connected
Softmax

Figure 3: Proposed neural network architecture.

Table 2: Number of samples for each malware family in the
Microsoft dataset.

ClassID Families Samples
1 Ramnit 1541
2 Lollipop 2478
3 Kelihos_Ver3 2942
4 Vundo 475
5 Simda 42
6 Tracur 751
7 Kelihos_Ver1 398
8 Obfuscator.ACY 1228
9 Gatak 1013

10868
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test set with epochs, where the abscissa represents the
training period, which is still set to 50. Te ordinate rep-
resents the loss value of the training set or the test set. As the
number of iterations increases, the loss value converges
rapidly, gradually decreases, and stabilizes. It can be seen
from the observation that the loss efect of the method
proposed in this study is better than the other two methods,
and the convergence speed is also faster. By comparing the
accuracy and loss values of the datasets, it is found that the
efect of the test set is better than that of the training set
because of the use of regularization and data augmentation
methods.

Te confusion matrix can be seen as an n × n table. Te
actual malware category is located in each row, and the
malware prediction category is found in each column, which
can measure the efectiveness of our model. Te confusion

matrix of the malware sample is shown in Figures 7, and
Figures 7(a)–7(c) represent the confusion matrix of the
Markov images, standardized images, and images generated
by the proposed method, respectively. Trough comparison,
it is found that the method of generating images presented in
this study has a good performance in each category and can
achieve a performance of 94.23% even in a few categories.

4.3.2. Performance Comparison with Unimproved Model and
Data Augmentation. In this experiment, the CNN model
designed in this study is compared with the CNN model
before improvement and the method without data en-
hancement, as shown in Figure 8. Trough a comparative
analysis of each family’s accuracy, recall, precision, and F-
score, we found that compared with the other two methods,
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Figure 4: Details of the GCJ dataset used in the experiment.
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Figure 5: Te changing trend of accuracy with training epochs on the Microsoft dataset: (a) train accuracy and (b) test accuracy.
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Figure 6: Te changing trend of loss value with training epochs on the Microsoft dataset: (a) train logloss and (b) test logloss.
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the performance of the method designed in this study has
been improved to a certain extent. Further, it has excellent
recognition ability, even if the sample distribution is not
uniform.

4.3.3. Experiments on the GCJ Dataset. We view source code
authors as family categories of malware and complete the
classifcation problem by studying the source code au-
thorship attribution issues, comparing the unknown source
code with unique patterns in the source code of known
authors, and identifying authors who program in diferent
languages. Most experiments verify the model’s

generalization ability by using diferent malware datasets.
However, this study also conducts experiments on the GCJ
dataset to verify the performance of the model used in this
experiment with sample sets from diferent domains. Te
experimental setup and evaluation metrics are consistent
with Sections 4.1 and 4.2.

Tis experiment compares standardized images, Markov
images, and the method proposed in this study to generate
images on the GCJ dataset. Using three methods to classify
the GCJ dataset, it is observed that the proposed method for
generating malware images outperforms the other two
methods, with signifcantly faster convergence. On the GCJ
dataset, the schematic diagram of the variation trend of the
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Figure 8: Comparative analysis of accuracy, precision, recall, and F-measure for each family. (a) Accuracy. (b) Precision. (c) Recall. (d) F-
measure.
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Figure 9: Te changing trend of accuracy with training epochs on the GCJ dataset: (a) train accuracy and (b) test accuracy.
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accuracy of the training set and the test set for the training
period is shown in Figure 9. When the accuracy tends to be
stable, it mainly fuctuates slightly up and down between
99.0% and 99.4%. On the GCJ dataset, the changing trend of
the loss values of the training set and the test set for the
training period is shown in Figure 10. With the continuous
increase of the training period, the loss value of the loss
function is constantly decreasing and gradually becomes

stable. We can observe that the loss efect of the proposed
method is signifcantly better than the other two methods.

Tis study designs the method for combining the im-
proved CNN model with data enhancement. To verify the
efect before and after improvement, the proposed method is
compared with the CNN model without data enhancement
method and before improvement. Te selected experimental
results are the highest accuracy on the training set, as shown
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Figure 10: Te changing trend of loss value with training epochs on the GCJ dataset: (a) train logloss and (b) test logloss.

Table 3: Evaluation of the efect of the improved model.

Image enhancement AlexNet Improved AlexNet Accuracy
✓ ✓ × 0.9695
× × ✓ 0.9915
✓ × ✓ 0.9938
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Figure 11: Te trend of accuracy with an increasing number of families.
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in Table 3. Trough observation, we fnd that combining the
improved network model with data augmentation, better
results are achieved, and the accuracy is signifcantly higher
than the other two methods.

To verify the experiment’s scalability, data were collected
from 1600 families in diferent years, nine samples were
selected for each family for training, and 7 datasets of various
sizes were created, including 250, 500, 750, 1000, 1250, 1500,
and 1600 families. Te variation trend of the accuracy with
the increase in the number of families is shown in Figure 11.
Trough observation, the accuracy rate stays stable with the
increase of sample categories. When the sample category
reaches the maximum, the accuracy rate can still reach more
than 98%, and it does not drop too much.

4.4. Comparison with Other Methods. We compare the
method proposed in this experiment with state-of-
the-art classifcation models in the other literature to
evaluate it better. Tis section presents a comparative
analysis of only the relevant literature on classifcation
model experiments using the Microsoft dataset. Te fnal
results are shown in Table 4, showing the accuracy and F-
measure corresponding to diferent methods, such as
byte- and image-based malware classifcation (Gibert
et al.[46], Le et al. [47], Çayır et al. [48], and Tekerek and
Yapici [49]) and multi-feature-based malware classif-
cation (Zhu et al. [50]). Based on the research of Nataraj
et al. [27], Gibert et al. [46] converted malware binary
samples into 128 × 128 grayscale images. Deep learning
was the frst method to fnd patterns from the binary
content image. Le et al. [47], based on a purely data-
driven approach, used CNN to classify byte sequences of
malware samples. Çayır et al. [48] used the bagging
ensemble technology and capsule network-based model
to classify malware images generated from bytes. Tekerek
and Yapici [49] proposed a new method of conversion
called B2IMG, which converts the extracted features into
grayscale and RGB images. Zhu et al. [50] combined
global structural features with local semantic features
and extracted bytecodes and opcodes were converted
into images for feature fusion. Tey completed malware
sample classifcation through a dual-branch CNN. From
Table 4, we can see that the accuracy of our proposed
method is signifcantly better than the existing classif-
cation techniques, which proves that the algorithm has
signifcant advantages over the most advanced methods
in classifying malware families.

5. Conclusion and Future Work

In this study, we propose a malware classifcation method
based on images and deep learning, which visualizes mal-
ware binary fles as color images, directly generates the
required image size, and uses data augmentation methods to
improve the algorithm’s performance. Tis method does not
require reverse analysis and can directly extract sample
features.Te designedmodel has good generalization ability,
saves time, and reduces space consumption. Further, it has
excellent classifcation ability and efectively improves the
accuracy of malware classifcation. Experiments show that
the accuracy of using the CNN model designed in this study
and the method of generating images can reach up to 99.99%
for the Microsoft dataset and 99.38% for the GCJ dataset.
Compared with other methods in the literature, our method
is signifcantly better than other methods in the accuracy of
malware samples.

Although our approach has yielded a good perfor-
mance, there are still many challenges and shortcomings.
For example, the number of model parameters used was
large and only one feature of the sample was analyzed. In
the follow-up work, we will extract more features (such as
entropy images and APIs.) for sample classifcation and
combine dynamic analysis based on static analysis.
Meanwhile, we will conduct more experiments on real-
world malware datasets.
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