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Insect monitoring in the field is an extremely important part of the agricultural production system. Recent advances in computer
technology have provided the technical foundation for automatic field insect monitoring. In insect automatic monitoring, insect
recognition and classification based on images is one of the most active research areas. Rapid advancements in computer vision
technology based on deep learning have provided new ideas for implementing automatic field insect monitoring. Firstly, the field
insect images are preprocessed and input to the lightweight algorithm for feature extraction, and the prediction networks of
different sizes are output by multiscale feature fusion; then, the joint cross-merge ratio is introduced for automatic identification
and classification of field insects. Compared with other algorithms, the simulation results show that the proposed algorithm has
higher accuracy, less time consumption, and stronger robustness. It effectively solves the insect accumulation and background

interference problems and can identify field insects online in real time.

1. Introduction

Insects are closely connected to human life and play an
important part in the functioning of the biosphere [1]. There
are more than a million different species of insects on this
planet [2]. There are some insect species that contribute to
the development and reproduction of plants. However, there
are also insect species that may cause significant damage to
the development of agricultural and forestry crops and to the
storage of agricultural and forestry products [3]. Therefore,
accurate and timely insect detection is an important research
direction in the field of insect research. Early insect detection
is typically accomplished through manual classification and
counting performed by professionals with the assistance of
professional knowledge [4].

In recent years, due to the progress of computer vision,
insect detection based on image processing technology has
attracted the attention of a large number of experts and
scholars [5]. The data that were used in the early stages of
image-based research on insects were typically specimen
data with a high resolution or insect data with a simple

background and a common posture. These images were
captured by sophisticated equipment in the laboratory after
the insects had been collected in the field. In most cases,
there is just one insect specimen depicted in the image, and it
takes the center stage [6]. Therefore, early insect detection
was primarily a problem of classification. Researchers have
begun to try to directly analyze insect data captured in field
scenes, which typically have complex backgrounds and
insufficient insect subjects [7]. This is possible due to the
development of technology and the increase in demand. It is
necessary to separate the insect subject from the background
by performing a large number of complex manual or
semimanual preprocessing steps. This significantly increases
the amount of manual participation required in the rec-
ognition process and does not lend itself well to the scaling
up and automating of insect detection. The traditional form
of computer vision requires the steps of feature extraction to
be completed. The concept is extracted from a group of
image objects that share as many characteristics as possible.
One example is the insect extraction task, which requires the
insects’ colour, shape, and texture features to be extracted, as
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well as the incorporation of the extracted features into an
artificial neural network [8], decision tree [9], or support
vector machine classifier [10]. This feature extraction
method for image classification must be selected manually,
which means that the extraction and selection of features
must be performed manually. Not only is this a more time-
consuming process, but it is also more susceptible to being
influenced by the subjective factors of researchers.

Computer vision methods that are based on deep
learning are becoming increasingly popular and have made
significant progress in a variety of fields, including the
detection of pedestrians [11]. This is due in large part to the
rapid development of computer hardware over the past few
years. In particular, the performance of graphics computing
unit devices has improved significantly. Deep learning in-
troduces the concept of end-to-end learning, which means
that researchers no longer need to manually extract features
from images to achieve end-to-end location detection [12].
And, they only need to inform the machine about the
specific object class to be learned [13]. The network was
trained using deep learning, and it then automatically for-
mulated the characteristics that were the most descriptive
and important for each object [14]. To put it another way, the
network was successful in identifying possible patterns
across a variety of image types. Since deep learning can
handle the complexity of farming environments, it provides
new avenues for research and development in the field of
computer vision-based techniques for agricultural insect
detection and classification. Incorporating depth wise sep-
arable convolution into the feature extraction layer allows
for a significant cut in the amount of calculation that must be
performed. We introduced generalized intersection over
union (GIoU) as a way to improve the accuracy of the
network prediction target. This was accomplished by using
multiscale feature fusion, which results in the output of
prediction networks of varying sizes. These networks are
designed to ensure the detection efliciency of insects of
varying sizes. In conclusion, when contrasted with the
existing classical algorithms, the findings demonstrate that
the proposed algorithm achieves higher accuracy in the
automatic identification and classification of field insects,
accelerates the efficiency of automatic identification and
classification of field insects, and has the potential to be
applied in a diverse range of contexts. This opens the door to
a number of new avenues of research and development.

2. Literature Review

Traditional insect monitoring work is generally carried out
by plant protection workers to conduct field surveys and
classify insects by relying on their own experience or con-
sulting professional books [15]. This type of work has high
labour intensity and poor timeliness, which cannot meet the
current needs of pest occurrence monitoring and hinders
rapid decision-making in the process of agricultural pest
control [16]. Therefore, the development of some automated
insect identification and counting methods is helpful to the
accuracy and effectiveness of insect monitoring so as to
reduce the loss of agricultural economy caused by insect
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pests every year and further improve the implementation of
Internet identification and conversion [17]. The progress of
information technology has promoted the technical level of
the agricultural production system. The automatic detection
and classification of insects based on images are one of the
research hotspots in this field, and scholars have begun to
combine sensor and computer technology for automatic
insect classification [18]. Early automatic recognition and
counting of insect images are cumbersome, as shown in
Figure 1.

It is mainly divided into several steps: insect image
acquisition, insect image preprocessing, insect target seg-
mentation, insect feature extraction, insect target classifi-
cation, insect recognition, and counting [19]. Among them,
image processing includes image enhancement, edge de-
tection, and image content segmentation. Image enhance-
ment is extracting interesting information through image
transformation to avoid poor image quality caused by un-
reasonable illumination and angle. The main process is as
follows: first, the collected insect images are subjected to
image processing and background-foreground separation,
and then category analysis is performed using image rec-
ognition methods. Computer-based insect image segmen-
tation mainly relies on traditional image segmentation
methods, such as threshold-based segmentation methods,
edge flow-based segmentation methods, and segmentation
methods based on wavelet analysis (see Figure 2).

Abdul et al. used multiresolution segmentation and
other methods to realize the identification and counting of
pests, such as rice longitudinal leaf whorl [20]. In this stage
of feature extraction, a variety of insect features, such as
morphological features [21], texture features [22], and local
features [23] need to be selected. Wen et al. effectively re-
alized the classification of various fruit tree pests by com-
bining local features and global features and establishing
a model [24]. The steps of an insect target detection algo-
rithm based on traditional computer vision are cumber-
some. Xie et al. adopted multitask sparse representation and
multiple kernel learning and comprehensively used insect
texture, colour, shape, HOG histogram, and other features to
realize the classification of a variety of different field insects
[25]. Yang et al. used image retrieval technology [26] to
establish a binomial search table based on the morphological
taxonomic identification features of insects. Then, MySQL
was used to establish a taxonomic database of common
vector insects to realize the taxonomic identification of
insects in the field. Although these methods have made some
progress, there is still a certain distance from the practical
application due to the complex interference of the agri-
cultural production environment. As shown in Figure 3,
researchers need to manually extract the dominant features
of insects, such as colour, shape, and texture, and then
classify insects by BP neural network, support vector ma-
chine (SVM), pattern recognition, binary tree recognition,
and other methods.

In recent years, object detection algorithms based on
deep learning have made significant progress in other fields,
so many researchers have tried to apply deep learning to the
field of insect recognition. Yang et al. used a model based on
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FIGURE 1: Traditional insect identification and counting workflow.

FIGURE 2: Background and target insects’ segmentation.
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FiGURE 3: Features which need manual extraction.

a deep residual network [27] to classify ten insects in
a complex context and obtained 98.67% accuracy, while the
SVM-based classification method obtained only 44.00%
accuracy in the same dataset [28]. In practical applications,
since a variety of insects appear in the picture simulta-
neously, it is necessary to use deep learning based on object
detection algorithms. The object detection algorithm based
on deep learning provides an end-to-end training method
without manual feature extraction, which dramatically
simplifies the process of insect identification and counting.
Zhong et al. used sensors to shoot insects on sticky plates.
Due to the small number of samples, the YOLO target
detection algorithm and SVM classifier were combined to
complete the detection and classification of insects, re-
spectively, which had certain advantages compared with the
pure YOLO algorithm, but the speed was significantly slower
[29]. The discriminative information of insect images often
exists in a very fine region, making it difficult to extract the
desired features from the whole image level. Chen and Chen
proposed a bilinear pooling convolutional neural network
based on feature fusion to classify insect images [30]. This
method reduces the level of detail in insect images and can
effectively extract higher-order features. However, the model
suffers from slow parameter convergence and does not take
into account the influence of other classes of training sample
distribution, therefore, the recognition results of this
method are often unsatisfactory. Compared with traditional
computer vision methods, the object detection algorithm
based on deep learning does not need to manually extract
insect features, so it can avoid the interference of human
subjective factors and greatly simplify the process of auto-
matic identification and counting of insects. In the above
works, deep learning-based methods usually achieve better
results than traditional computer vision methods. With the

reduction of hardware cost and the maturity of software
ecology, the method based on deep learning has become the
mainstream research direction in the vision-based automatic
identification and classification field.

3. Lightweight Deep Learning-Based Field
Insects Recognition and Classification Model

3.1. Architecture of the Model. Since their inception, the
YOLO series of object detection algorithms have maintained
a solid reputation for both their lightning-fast detection
speed and their high level of accuracy. YOLO and YOLOv2
served as the foundation upon which YOLOv3 was built. In
the convolutional network, the external network concen-
trates on information that is more specific, while the deep
network concentrates on information that is more specific to
its meaning. Deep semantic information is helpful for ac-
curately detecting the target; however, shallow detail in-
formation has the potential to improve detection accuracy. If
only a small amount of in-depth information is used, de-
tection performance may suffer as a result. In order to
achieve this goal, this article proposes the design of an
automatic identification and classification algorithm for field
insects that is based on a lightweight deep learning model.
The architecture of this model can be seen in Figure 4.

Firstly, the image was input into the algorithm. Secondly,
the feature extraction network was used to output three
feature maps of different sizes. Then, the idea of feature
pyramid networks (FPN) was used to predict the feature
layers of different sizes in the feature extraction network, and
upsample and feature fusion were used to fuse the feature
information of multiple scales together. Finally, the de-
tection was performed independently on the fusion feature
maps of multiple scales.

3.2. Model Compression Strategy. In practical applications,
deep neural networks are computationally expensive and
therefore difficult to deploy. This article is based on YOLOv3
algorithm for target recognition, but the size of YOLOV3
weight file is generally above 200 MB. A large number of
computations are mainly from convolutional operations.
The purpose of the convolution operation is to extract more
features, and the deeper the network level is, the more
features can be mined. For tasks that require fewer target
categories, or insect data sets with small samples, there is
a lot of “redundancy” in convolutional operations. There-
fore, it is necessary to reduce the computation time by re-
ducing the model and memory consumption without
affecting the computational accuracy and reducing the
amount of operations. In this article, we perform model
compression by sparsifying the network at different struc-
tural levels and then by a channel pruning strategy based on
BN layers.
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FIGURE 4: Framework of lightweight insect detection and classification model.

The total compression scheme is shown in Figure 5.
Initial pretraining was first performed to converge to a high
accuracy, and then sparse training is performed by scaling
factors in the BN layer. The model measures the importance
of each channel by learning. Subsequently, the unimportant
channels, i.e., the convolution kernel and the corresponding
feature maps, were pruned according to the set pruning
ratio, and the model width was narrowed. In this article, the
initial setting of 70% pruning ratio is iterated to finally reach
97% pruning ratio. Based on the channel pruning, the
importance of the residual layers was measured by the sum
of the scale factors of each residual layer, and a certain
number of residual layers are pruned out. The number of
model forward inference layers is reduced and finally fine-
tuned to recover the accuracy. The whole process can be
iterated in a loop. The pruning of the residual layers in each
iteration is optional and is shown as a dashed line in the
Figure 5.

3.3. Lightweight Feature Extraction Network. In order to
reduce the model performance overhead, this article rede-
signed the feature extraction network based on depth wise
separable convolution (DSC). DSC is based on the following
assumptions: The mapping of cross-channel correlation and
spatial correlation in the convolutional neural network
feature map can be separated. The principle of depth-
separable convolution is shown in Figure 6. There are two
cycles in the DSC network. Deep convolutional separation
can significantly reduce the calculation of the number of
parameters. Assume that the input Dy x Dp x M charac-
teristics of layer, including M for channel number, size of
convolution kernels for Dy x D x N. When the output
feature size is (Dp x Dp x M), the computation cost in
a conventional convolutional network is
(Dp x Dp x M) x Dg x Dy x N. The convolution operation
is divided into two steps in a deeply separable network. In

the first step, deep convolution is performed, and the input
features of each layer are convolved by using the convolution
of size Dy x Dy x 1. At this stage, the network computation
amount is (Dp X Dp x 1) x Dg x D x M, and the depth of
the feature map remains unchanged. The second step is the
point convolution operation. The convolution kernel size is
1 x 1 x M, and the output feature map size is (Dp x Dp X N),
and the calculation amount is D x Dg X N x (1 x 1 x M).

When Dy =3, the depth of separable convolution of 8 to
9 times less than the standard convolution computation, on
the one hand, speeds up the detection speed, on the other
hand, reduces the memory footprint.

In the default configuration of YOLOV3, the network
resolution is 416 by 416. Because the size of the image used in
this investigation is predetermined, it must be scaled and
filled in a manner that is adaptable to the network resolution.
This process leaves some areas of the image with blank areas.
As a result, the input resolution of the feature extraction
network has been designed to be 608 by 480, and there is no
need to fill too many blank areas after the image has been
scaled.

3.4. Generalized Intersection over Union. Intersection over
Union (IoU) can be used to measure the similarity of two
bounding frames and is an important metric used in the field
of target detection to evaluate the performance of target
detectors. The higher the overlap between the prediction
frame and the real frame, the larger the IoU value, which is
calculated as shown in the following equation:

1

where A and B represent the prediction frame and the real
frame, respectively.

If IoU is used directly as the bounding frame loss, IoU
cannot measure the distance between two bounding frames
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when there is no overlap between the prediction frame and
the real frame. When the regions do not overlap, IoU is 0,
which cannot reflect the relationship between regions. As
shown in Figure 7, IoU is 0 in both (a) and (b), but the
distance between the prediction frame and the real frame in
Figure 7(a) is obviously closer, and its prediction is better.

Based on this, the GIoU proposed in this article makes
full use of the advantages of IoU with scale invariance and
can be used as the distance between two frames. At the same
time, it overcomes the shortcomings of IoU when the

prediction frame does not overlap with the real frame, and
can better reflect the overlap between the prediction frame
and the real frame. As shown in Figure 8, the white frame
range is the representation area of C.

The GIoU is calculated as shown in the following
equation:

_IC~(AUB)|

GIoU = IoU
IC

(2)

Where A and B are the prediction frame and the true
frame, respectively, and C is the minimum closed frame
containing both.

AUB
GloU = -1 + ol (3)
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FiGure 7: Different scenarios when IoU is 0. (a) The prediction frame is far away from the real frame. (b) The prediction frame is closer to the

real frame.

e ——

FIGURE 8: Representation area of C in GIoU. (a) The prediction frame is far away from the real frame. (b) The prediction frame is closer to the

real frame.

From equations (2) and (3), the GIoU varies in the range
(-1, 1] and GIoU =1 when the prediction frame overlaps
with the real frame. When the prediction frame does not
coincide with the real frame, i.e., IoU =0, the formula for
calculating GIoU can be transformed into an equation.

The farther the prediction frame is from the real frame,
the closer A U B Cis to 0 and the closer GIoU is to —1, and the
closer the prediction frame is to the real frame, the closer
AUB Cis to 1 and the closer GIoU is to 0. Therefore,
compared to IoU, GIoU can not only reflect the relationship
between nonoverlapping regions, but also better evaluate the
two boundary frame’s overlap degree.

To show the superiority of GIOU, two different prediction
results are evaluated using IoU and GIoU, respectively, where
Figure 9(a) predicts that the frame is offset from the center of
the real frame, Figure 9(b) predicts that the frame is com-
pletely within the real frame and the distribution is close to the
actual target. When IoU is used as the criterion, both pre-
diction results score is 0.56, which cannot reflect the differ-
ence. When GIoU is used as the criterion, the center of the
prediction frame in Figure 9(b) is closer to the true value and
the boundary is not beyond the true target, so the model tends
to choose the prediction result in Figure 9(b) more.

4. Results and Discussion

4.1. Experimental Environment. Tensorflow was used as the
deep learning framework in the experiment, and an image

processor was used to accelerate the training process. The
hardware configuration was an I7-11700 processor, 64G
memory, and Nvidia GTX3080 graphics, as shown in
Table 1.

The operating environment is Ubuntu 19.10, Python3.7,
and Tensorflowl.15, CUDA 10.1, cuDNN 7.6.5. Table 2
shows the information on the operating environment.

4.2. Data Acquisition and Annotation. Even though there
are some datasets for agricultural insect identification that
are available to the public, it can be difficult to use these
datasets to complete the task of multitaxonomic insect
identification. This is especially true in complex natural
environments due to the wide variety of insects and the
interference caused by a large number of nontarget insects.
For the purpose of this investigation, insect data were
collected in the central region of China using the plant
protection trap light. In order to prevent the activity from
having an effect on the imaging process, the far infrared
heating equipment was used to kill the insects that were
trapped. After positioning the insects so that they were
illuminated by the same light and set against the same
background, high-definition photographs of the insects
were taken from directly above. There are multiple insects
of a variety of species in each picture, and their placement
within the frame is completely random. The algorithm’s
reliability is ensured by the fact that it allows insects of
varying body sizes to be stacked together.
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FIGURE 9: Comparison of predicted results for IoU and GIoU.

TaBLE 1: Information on the experimental environment.

Graphics GTX 3080
RAM 64G
Processor 17-11700

TaBLE 2: Information on the operating environment.

Operating system Ubuntu 19.10

Programming language Python3.7
Model framework Tensorflowl.15
CUDA toolkit CUDA 10.1
Library cuDNN 7.6.5

Visual object tagging tool, which was developed by
Microsoft and stored in Pascal VOC format, was used to
label and categorize the vast majority of the insects con-
tained within the data that was acquired with the assistance
of agricultural specialists. The number of samples of certain
insect species is low due to the characteristics of the bio-
diversity found in nature as well as the limited time available
for sampling. In order to make the experiment run more
smoothly, certain insects were chosen to participate in this
study. Insects that were found in low numbers or caused low
levels of damage were grouped together into the same
classification based on their biological characteristics. This
classification was then further broken down into eight
distinct categories.

In this experiment, 5000 images were selected as the
training set and 300 images as the test set, and Table 3 shows
the number of insect samples and targets for each classifi-
cation in the training set.

4.3. Training Results of Several Algorithms. In order to de-
termine how well the algorithm works, it is compared to
anumber of well-known target networks. This is done so that

TaBLE 3: Sample and target quantity of each classification picture.

Insect categories Sample size Target size

Chilo suppressalis 805 1685
Cicadellidae 621 1782
Coleoptera 1253 2234

the algorithm’s effectiveness can be gauged. YOLOv3 has
been reduced to its simplest form, known as Yolov3-tiny,
which consists of only two output layers of varying scales. It
does so at the expense of accuracy in order to increase
detection speed and reduce resource occupancy, which re-
sults in improved performance in real time. In this exper-
iment, the feature extraction layer of Faster R-CNN is
represented by VGG16. Faster R-CNN is considered to be
one of the more traditional two-stage object detection al-
gorithms. The same test set was used for the evaluation of
each algorithm’s detection capabilities, and the same
training set was used for each algorithm’s training. Table 4
presents the findings of the study. The Faster R-CNN al-
gorithm is a two-stage object detection algorithm. The
number of parameters for this algorithm is as high as 130
million, and the size of the generation algorithm is 540 MB,
which is significantly higher than the size of the generation
algorithm for other algorithms. The average amount of time
needed to detect each image is 336 milliseconds, which is
a very slow rate. The parameters of YOLOv3 are approxi-
mately half of those of Faster R-CNN, which are up to 60
million, and the volume of the algorithm is also half of that of
Faster R-CNN. On the other hand, the detection speed of
YOLOV3 is significantly higher than that of Faster R-CNN,
and the detection time of each photo is approximately
51 milliseconds, resulting in good real-time performance.
The YOLOV3-TINY algorithm has the fewest number of
parameters out of all the algorithms, with only 9 million, and
it also has the smallest volume. However, the loss of accuracy
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TaBLE 4: Effectiveness test results of different algorithms.
Models mAP  Speeds Number of Algorithm size
parameters

YOLOvV3 70.25 51 60 241
YOLOvV3-TINY 53.63 31 9 33
Faster R-CNN  69.10 336 130 540

Our method 74.15 50 9 31

is very high, with a mAP of 53.63 percent, which is the lowest
of all algorithms. Although the algorithm is only 33 MB
large, it has breakneck detection speed and good real-time
performance. The proposed algorithm only has 9 million
parameters and a volume of only 31 MB, which is slightly
lower than YOLOvV3-Tiny but much lower than Faster
R-CNN and YOLOV3 and is approximately one-eighth the
size of YOLOV3. There is no apparent advantage in speed
when compared with YOLOV3, but the detection accuracy is
3.9 percent higher than that of YOLOv3, which achieves the
highest result among all algorithms. This is because the
larger input size used in the feature extraction layer
was used.

In the comparative analysis of the test results between
YOLOV3 and the algorithm presented in this study, it was
observed that both algorithms exhibit similar performance
in scenarios with less dispersed background interference and
minimal target clutter. However, in areas characterized by
high target density or overlapping regions, the proposed
algorithm demonstrated significantly superior results
compared to YOLOv3. This improvement may be attributed
to the enhanced resolution of feature extraction facilitated by
amore comprehensive network architecture, which captures
a greater level of detail. In addition to this, GIoU causes the
algorithm to select the prediction frame that is located closer
to the center of the target. This helps to prevent prediction
frames from receiving a low filtering score due to the overlap
of prediction frames that occurs when the target is close.

5. Conclusion and Future Research

In order to improve the accuracy of automatic field insect
identification and classification, an algorithm for automatic
field insect identification and classification based on
a lightweight deep learning model is proposed. The model is
based on YOLOvV3 target detection framework with in-
tegrated DSC and GloU, which has low resource con-
sumption and high level of accuracy at the same time.
Experiments were conducted to train the algorithm using
5000 insect photos obtained under trap lights, and the results
show that the algorithm in this article has good recognition
ability and good robustness for a wide range of insects, and
can solve the problems of insect stacking and background
interference. Compared with other algorithms, the algo-
rithm in this article has a higher correction rate in automatic
identification and classification of insects in the field.
Although the algorithm in this article achieves good
results, there is a lot of randomness in the actual environ-
ment during the sampling process, resulting in an un-
balanced number between classifications. Moreover, the lack
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of comprehensiveness in terms of the insect species covered
in this article and the number and quality of images used for
training the model needs to be continuously supplemented
in the subsequent work. The prediction results of the au-
tomatic detection and classification model will be compared
with the survey data from the local agricultural department
in collaboration with the local plant protection department
at a later stage. Support will be provided to further validate
the accuracy and effectiveness of the model and to identify as
well as replace traditional survey methods.
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