
Research Article
SR2APT: A Detection and Strategic Alert Response Model against
Multistage APT Attacks

Fan Shen ,1 Levi Perigo ,1 and James H. Curry 1,2

1Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309, USA
2Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309, USA

Correspondence should be addressed to Fan Shen; fan.shen@colorado.edu

Received 21 July 2022; Revised 9 October 2022; Accepted 11 October 2022; Published 19 April 2023

Academic Editor: Yuanyuan Huang

Copyright © 2023 Fan Shen et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advanced persistent threats are an emerging cyber threat to cyber-physical systems (CPS), especially those comprising mission-
critical physical assets. However, defense against such attacks is challenging, due to their sophistication, stealthiness, and zero-day
exploitation. Existing works in this area mainly focus on the detection of APT, but it might be too late or too costly to impede APT
when it is detected with high confdence. Terefore, this work focuses on CPS intrusion detection and prevention against APT
attacks and aims at preventing such attacks in earlier stages through a strategic response policy to imperfect APT alerts by
leveraging the multistage characteristic of APTand a deep reinforcement learning formulation. A novel host-based APTdetection
and response model called SR2APT is proposed, which consists of a detection engine and a decision engine. Te detection engine
is based on graph convolutional network, which classifes a stream of system log provenance subgraphs as an APTstage or benign.
Ten, the detection results are transmitted to the decision engine sequentially, which is trained based on deep reinforcement
learning and outputs the optimal response actions to APTalerts. Experimental results show that the GCN-based detection engine
obtains 94% classifcation accuracy on a semisynthetic dataset of system logs and outperforms classifcation models based on
SVM, CNN, and LSTM.Te strategic alert response policy from the decision engine is compared with two baseline fxed response
policies, and it achieves the best trade-of between preventing APT attacks and minimizing the impediments of mistaken active
defense actions to benign activities that generate false alerts, thus obtaining the highest total rewards in the defense against
APT attacks.

1. Introduction

Cyber-physical systems (CPS) integrate software compo-
nents with physical processes, which provide monitoring
and feedback loops to maintain and improve the perfor-
mance of physical processes [1]. As the physical processes in
CPS are usually mission-critical, such as the power grid or
programmable logic controllers, these systems have been
targeted by advanced persistent threats (APT) [2]. APT is a
type of sophisticated cyberattack [3, 4], which aims at
stealing valuable and possibly confdential data or causing
the malfunction of the mission-critical infrastructure of the
victim without being detected. Initially, the targets of APT
are government or military sectors for espionage, but over
recent years, the APT battlefeld has extended to the IT

infrastructure of high-profle companies [5], IoT networks
[6], and public cloud platforms [7] for sabotage purpose or
fnancial gains. Considering the devastating outcome of
APT, any modern organizations should be aware of it and
have protection mechanisms in place to defend against it,
and the leveraging unique traits of sophisticated attacks like
APT for accurate and agile detection is a focus of CPS in-
trusion detection system design [8].

Defense against APT presents an evolving challenge due
to the unique characteristics of such attacks. Diferent from
general computer viruses or worms that intend to cause
widespread and indiscriminate damage, APT attacks focus
on specifc targets, e.g., a server storing sensitive data or a
mission-critical infrastructure component, just like the
programmable logic controllers (PLCs) compromised in

Hindawi
Security and Communication Networks
Volume 2023, Article ID 6802359, 15 pages
https://doi.org/10.1155/2023/6802359

mailto:fan.shen@colorado.edu
https://orcid.org/0000-0003-3975-7302
https://orcid.org/0000-0001-8434-3278
https://orcid.org/0000-0003-4204-5250
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6802359

Stuxnet [3], therefore, attack vectors are usually well planned
and customized for the target. In order to access the target
without being detected, APTattackers move low and slow to
maintain persistence in the victim’s network, and these long-
term campaigns span multiple stages, such as reconnais-
sance, weaponization, delivery (of malicious code), exploi-
tation, installation (of malware), command and control
communication, and action on objective [9]. Most impor-
tantly, APT is advanced as these well-resourced attackers are
capable to exploit zero-day vulnerabilities. Te attackers in
Stuxnet, believed to be responsible for the malfunction of
centrifuges in Iran’s nuclear project, exploited more than
four zero-day vulnerabilities [10].

Existing studies on APT detection can be categorized as
either point detection, focusing on special behaviors or
specifc stages of APT attackers, or contextual detection
combining the footprints of diferent APTstages. In terms of
point detection, network packets and fows, especially those
related to http(s) trafc, are analyzed in [11–13] to identify
the command and control (C2) communication, which is
commonly used by APT malware to receive instructions
from or exfltrate data to malicious servers. E-mail features
are extracted to detect spear phishing e-mails used by APT
attackers to deliver malicious PDF fles or URLs to the
victim’s system [14, 15]. CPU and memory utilization, the
content of the Windows Registry, and the System32 di-
rectory are also useful sources to capture the footprints of
APTmalware [16, 17]. Host-level system logs are analyzed in
[18] to map a sequence of system logs to an APT stage.
However, point detection methods may cause lots of false
positives when anomalous behaviors can result from both
APT and benign activities [19]. To reduce false positives,
contextual detection methods correlate detection results of
multiple APT stages. An attack pyramid model is proposed
in [20] providing a thorough conceptual framework to link
APTalerts of diferent stages across various planes. An attack
chainmodel is used in [19] to describe the APT life cycle, and
anomalous events from diferent APT stages are combined
using statistical methods to assign scores to hosts, indicating
the level of compromise by APT. A bottom-up approach is
proposed in [21] to map low-level system logs to TTPs of
APT defned by MITRE ATT & CK using predefned rules
and then build a chain of TTPs based on node relations on
the provenance graph and apply scoring rules to diferentiate
APT scenarios and benign scenarios.

Tis work focuses on the defense against a multistage
APT attack on a host and considers the threat model in
which the behavioral pattern of each APTstage can appear in
both attack and benign scenarios. Terefore, it is insufcient
to claim the existence of APT by the detection of a single
APT stage. Existing works that tackle similar APT scenarios
[19, 21] using contextual detection methods have demon-
strated the feasibility to detect multiple APT stages from
system logs. Te goal of these works is to reduce false
positives in APT detection by correlating alerts of multiple
APT stages. However, there is no defender’s intervention
that would afect system activities during the collection of
APTalerts, and it can be too late or too expensive to impede
APT when it is detected with confdence. In this paper, an

APT detection and alert response model called SR2APT is
proposed to provide agile and strategic responses to im-
perfect APTalerts to secure critical hosts in CPS. On the one
hand, SR2APT integrates the detection of APT stages and
strategic responses to APTalerts such that a multistage APT
is prohibited in earlier stages, which is more advantageous
than ex post facto remedies when APT has progressed to
later and more destructive stages. On the other hand,
SR2APT applies a model-free deep reinforcement learning
method to solve strategic alert response actions, which does
not require assumptions about the strategies of the APT
attacker compared with game theoretic studies. Te two
main components of SR2APT are described below, with
more technical details in Section 4.

First, the detection engine in SR2APT is responsible for
classifying a provenance subgraph, which is extracted from
host-level system logs, as one stage of a multistage APTor a
general benign class. A graph convolutional network (GCN)
is used for the multiclassifcation task, which leverages useful
features hidden in the structure of a graph. To the authors’
knowledge, this is the frst work of using GCN to analyze
system logs for the detection of APT stages.

Second, the decision engine in SR2APT outputs optimal
response actions to alerts fromAPTstages. It is trained based
on deep reinforcement learning, which incorporates the
defender’s understanding of the threat model, interdepen-
dencies between APT stages, costs, and benefts of response
actions. Although APT alerts can be triggered by both APT
and benign activities in the threat model of this paper, the
alert response strategy from the decision engine is able to
prevent APT attacks in earlier stages and minimize the
impediments to benign activities from mistaken active de-
fense actions. Unlike existing contextual APT detection
methods, SR2APT takes the defender’s responses into
consideration during detection, thus it enables cost-efective
proactive defense against multistage APT attacks.

For evaluations, the detection engine of SR2APT is tested
on a semisynthetic dataset, which includes host-level system
logs about malicious behaviors of six APT stages and benign
behaviors. Te decision engine of SR2APT is evaluated on
synthetic alert traces from both APT and benign scenarios,
which are generated according to the interactions between
the defender and the attacker. Experimental results show
that the GCN-based detection engine achieves 94% classi-
fcation accuracy and outperforms other kernels including
SVM (support vector machine), one-dimensional CNN
(convolutional neural network), and LSTM (long short-term
memory). Te strategic alert response policy from the de-
cision engine achieves the highest total rewards in the de-
fense against APT when compared with two baseline fxed
response policies, because it optimally balances the trade-of
between maximizing the number of prevented APT attacks
and minimizing the impediments of mistaken active defense
actions to benign activities that generate false alerts.

Te remaining of this paper is outlined as follows.
Section 2 reviews related works about defending against
APT by the analysis of system logs. Section 3 presents the
architecture of the proposed APT detection and alert re-
sponse model, SR2APT. Section 4 provides technical details

2 Security and Communication Networks

of the main components of SR2APT. Section 5 shows the
design and results of the proof of concept experiments.
Section 6 concludes this work and suggests directions for
future work.

2. Related Work

System logs record essential activities executed by users,
applications, or operating systems, serving as an important
source for digital forensic analysis [22]. Each entry in system
logs is known as an event, including the felds defned by the
system log capturing tools, such as the event time, enter
process name and ID, exit process name and ID, and event
type. A trace of system logs is a sequence of events in the
temporal order. Signature-based methods can be used to
check if an event is malicious or not. For example, a simple
string matching method is applied to system logs for the
detection of data exfltration, which is one of the main goals
of APT attacks [23]. In this work, malicious actions such as
rename, copy, and move to sensitive fles are captured by
system logs, and then a policy-based method is used to
enforce a set of rules to detect malicious activities and send
alert notifcations. However, signature-based methods can
only detect known attack patterns and require that the rules
are well-defned, complete, and updated. Instead of focusing
on a single event, occurrence-based methods are used to
extract features of system behaviors that relate to multiple
events. In [24], a trace of system logs is represented by short
and fxed-length contiguous sequences, and then metrics
based on Hamming distance are used to decide if a trace of
system logs is malicious by comparing its representation
with the representation of benign traces. An anomaly de-
tection method based on k-nearest neighbors is proposed to
analyze system logs in [25]. In that paper, the occurrences of
each type of system calls are collected to form the feature
vector of a trace of system logs. For an unknown trace,
cosine similarity is applied to fnd its k-nearest neighbors in
the feature space, and then those neighbors’ classes are used
to determine its class. To consider the ordering of system
calls, Subba et al. [26] used the frequencies of unique n-
grams to form the feature vector of a trace of system logs,
where an n-gram is defned as a contiguous system calls of
length. However, when dealing with large-scale real-world
system logs, the number of unique n-grams can grow ex-
ponentially, and the dimension of the frequency vector
increases, thus it becomes intractable to enumerate all
patterns.

To efciently detect APT by analyzing system logs, recent
works suggest using provenance graphs or information fow
graphs to structure system logs and then either obtaining
more meaningful sequences of system logs from provenance
graphs or applying graph-based methods to analyze prov-
enance graphs. Te advantage of provenance graphs is that
system calls are connected based on their causal relations
rather than being temporally ordered [27], meaning that two
interdependent system calls spanning a long period can be
more efciently connected by provenance graphs than raw
system logs. Figure 1 shows a provenance graph built from a
sample trace of system logs.

Te hidden Markov model (HMM) is used to study host-
level system logs in [18] for identifying multiple APT phases.
In this work, a sequence of low-level system logs pertaining to
an APT phase is frst extracted from a provenance system;
next, it is translated to a sequence of abstracted states called
storylines by HMM.Ten, these high-level state sequences are
fed into three multiclassifcation models: LSTM, 1-dimen-
sional CNN, and SVM, to predict the APTphase of a sequence
of system logs. Teir results show that using HMM-based
storylines outperforms using the original sequence of system
logs in the multiclassifcation models. However, HMM re-
quires prior knowledge of defnitions of hidden states, and
such models are computationally expensive.

HOLMES [21] is a bottom-up framework to detect APT
from system logs with the help of provenance graphs. Te
three layers in this model from low to high are system logs,
TTPs (tactics, techniques, and procedures) defned by MI-
TRE ATT&CK, and APTstages. First, a provenance graph is
generated from system logs, and then TTPs are identifed
from local structures of the graph based on predefned rules
that are matched by node properties, edge types, and dis-
tances between nodes. Finally, a weighted product scoring
rule is applied to aggregate a chain of TTPs and assign it a
threat score. Tough HOLMES is able to assign distin-
guishable threat scores to APTand benign scenarios, since it
relies on predefned rules to map system logs to TTPs, this
model has high requirements for prior knowledge.

A Bayesian LSTM neural network is used to detect APT
system log traces [27], in which these fxed-length traces are
obtained from a host-level system provenance graph.
Context information and neighborhood information are
encoded for each event node in the provenance graph. Te
advantage of BNN is that it provides uncertainty to the
predictions. Tis work focuses on predicted APT traces with
low uncertainty and constructs the attack story for such a
trace by fnding its most similar trace in the training set.
However, their way of constructing the attack story assumes
that the APT traces in the training set are well understood,
which can be difcult to guarantee as the split of the training
set and testing set usually requires data shufing and ran-
dom sampling.

UNICORN [28] is an APT detection model that peri-
odically summarizes the graph histogram by counting
unique subtrees in the whole system provenance graph of a
host and compares graph histograms efciently using graph
sketching. It detects anomalies by building evolutionary
models for regular behaviors and using unsupervised
learning to determine the state of current graph histogram in
each model, if the state does not match the state transition
pattern of any evolutionary models, it indicates the existence
of APT. However, UNICORN can lead to high false positives
if the set of evolutionary models for regular behaviors is not
complete, or there exist anomalies that are not APT related.

A detection model that is capable to identify novel APT
attacks is proposed in [29] by analyzing provenance graphs
derived from system events. By using online metric learning
(OML), their model learns a latent feature embedding by
minimizing the distance between provenance subgraphs of
the same class and maximizing the distance between

Security and Communication Networks 3

subgraphs of diferent classes. However, using node2vec and
the average over nodes to get the features of a graph in this
paper only considers the neighboring information but omits
the heterogeneity of nodes and edges. Additionally, the
output of their model is either “benign” or “attacks,” hence it
cannot diferentiate diferent stages of APT, though in-
stances of diferent APT stages are labeled in their data.

Tere is no doubt that provenance graphs are an efective
way to structure system logs and provide more informative
data to improve the detection accuracy of APT attacks.
However, more work needs to be performed to address some
challenges in this area. First, appropriate graph-based learning
approaches need to be applied to provenance graphs gen-
erated from system logs to efciently detect APT by encoding
important information such as the graph structure and
properties of nodes and edges. Second, advanced APT can
imitate benign activities or make use of benign applications to
fulfll its goals, for example, by exploiting zero-day vulner-
abilities of benign software. To detect such malicious be-
haviors of APT, lots of false positives will be incurred as APT
alerts can also be triggered by benign activities. Terefore,
strategic ways are needed to deal with false positives.

In this work, SR2APT, a novel host-based detection and
response model against multistage APT attacks is proposed
by analyzing system logs. To address the frst challenge, an
anomaly detection engine based on graph convolutional
network (GCN) is built to identify diferent stages of APT
and benign behaviors from subgraphs of a system log
provenance graph. It improves detection accuracy by
leveraging useful features hidden in the graph structure. To
deal with the issue of false positives, a decision engine based
on deep reinforcement learning is built, which provides
optimal alert response actions such that actual APT attacks
are prevented in earlier stages and minimal mistaken active

defense actions are enforced on benign activities that gen-
erate false alerts.

3. Overview of Model Architecture

SR2APT can ft in the IDS architecture defned by the In-
trusion Detection Working Group (IDWG), which consists
of four modules: an event module, a database module, an
analysis module, and a response module [30]. Figure 2
summarizes the functions of these modules and how
functions are performed in SR2APT; the dashed arrows in it
indicate important workfows including the inputs and the
outputs of two engines that drive the APT detection and
strategic response to alerts.

Te event module incorporates a provenance graph
generator, which dynamically processes system call events
captured by monitoring tools such that the values of certain
felds are properly extracted to update the causal relations on
the provenance graph accordingly.

Te database module stores all necessary information to
support the functionalities of the analysis module, including

(i) A whole provenance graph that is updated dy-
namically; but the proposed APT detection engine
does not take the entire graph as its input; instead, it
analyzes focal subgraphs that are local structures of
the entire graph. Te subgraphs can be obtained by
searching the neighborhood of a node of interest or
a new node. In the experiments of this paper, a
public dataset is used whose subgraphs are formed
by querying specifc node names backward a pre-
defned number of steps. Each subgraph is sent to
the detection engine in the analysis module. Te
detection result indicating the class of a subgraph is

('systemd-udevd', 2388)

('systemd-udevd', 357)

('check-new-relea', 2378)

('check-new-relea', 2395)

('init', 1)

('timesync', 1588)

('python3', 2395)

('irqbalance', 1350)

('dbus-daemon', 486)

('memballon', 1588)

exec

exec

exec

exec

exe
c

exec

exec

exec

Figure 1: Provenance graph of a sample trace of system logs. Nodes represent system entities. Arrows and labels on edges indicate the
direction and type of relations between entities.

4 Security and Communication Networks

stored in the database module, and the subgraph
will be discarded after being evaluated.

(ii) Representative subgraphs with their class labels and
abstracted representations including a node feature
vector and an adjacency matrix; these subgraphs are
used for training the graph convolutional network
in the detection engine, and they can be periodically
updated to adapt to new APT behavioral patterns.

(iii) Occurrences of all classes received from the de-
tection engine within the current observing win-
dow, which will be used to form the state of the
system together with the newest detection result.
Te reason for including historical counts of all
classes is that they may exhibit diferent patterns
when they are generated in attack scenarios and
nonattack scenarios because APT stages usually
appear more independently in nonattack scenarios
than in attack scenarios [19].

(iv) Replay memory, which is a key term from the deep
Q-network algorithm. It is used for training stra-
tegic response actions in the decision engine. Each
entry in the replay memory is a 4-tuple: current
system state, response action, next system state, and
immediate reward.

Te analysis module is where the intelligence lies, and it
consists of a detection engine and a decision engine to ef-
fectively defend against multistage APT. Te core of the
detection engine is a graph convolutional network that
classifes a graph as one of the multiple classes. In SR2APT,
these classes include diferent stages of APT and a general
benign class. Te decision engine outputs the optimal

response action to the APT alert based on the state of the
system, which is formulated by deep reinforcement learning
and is trained using the deep Q-network algorithm.

Te response module automatically executes preconfg-
ured instructions corresponding to the response action
outputted from the decision engine in the analysis module.
Since the main focuses of this work are novel modelings of
the detection engine and the decision engine, a simplifed set
of response actions to APT alerts is considered in the ex-
periments, in which only two types of responses are avail-
able: passive defense and active defense. Examples of
preconfgured instructions in the response module for
passive defense can be simply “no operation,” and the in-
structions for active defense can be “stop process,” “reset
password,” “reboot host,” etc.

4. APT Detection and Response Model

In this section, technical details of the detection engine and
decision engine in SR2APT are provided. For each part, the
mathematical model used to formulate the problem is in-
troduced frst, followed by how it is integrated into SR2APT.

4.1. GCN-Based APT Stage Detection Engine

4.1.1. Graph Convolutional Network. To efectively classify a
provenance graph generated from system logs, it is desired to
encode more useful information such as the graph structure,
properties of nodes, and edges. A graph convolutional
network (GCN) model [31] is used in SR2APT to encode all
this information to perform a multiclass classifcation task.

system logs

labeled subgraphs provenance graph replay memoryoccurrences of classes
class of current subgraph

detection engine decision engine

subgraph
GCN

class
APT s1
APT s2
APT s3
APT s4
APT s5
APT s6
benign

system state

DQN
action

active defense
passive defense

provenance graph generator

focal subgraph stream
train

update

train

subgraph class stream

system state

pre-configured instructions

response action

Event
Module

Database
Module

Analysis
Module

Response
Module

Figure 2:Te functional modules and workfows in SR2APT. Blue dashed arrows indicate the input and output of the detection engine and
decision engine.

Security and Communication Networks 5

Additionally, it does not require prior knowledge to build
the model, and it can handle graphs of various sizes directly.

Te GCN model used in SR2APT is based on the eigen
decomposition of the graph Laplacian matrix, and it ad-
dresses limitations of efciency and the vertex localization
problem in the frst spectral-based graph convolutional
network model [32], by truncating the Chebyshev polyno-
mial to frst order and relaxing the largest eigenvalue. More
specifcally, given an undirected graph G � (V, E), where V

is the set of nodes with |V| � n and E is the set of edges with
|E| � m, the adjacency matrix of the graph is denoted by A

with Aij � wij where wij is the weight of the edge between
node i and node j. If no edge exists between node i and node
j, then wij � 0. For an undirected graph, A is symmetric.Te
degree diagonal matrix D is defned as Dii � Σnj�1Aij, and the
Laplacian matrix of the graph denoted by L is computed by
L � D − A. Additionally, the normalized Laplacian matrix is
computed by L � I − D−1/2AD−1/2 where I is the identity
matrix of size n × n. In the GCNmodel, the input and output
of each graph convolutional layer are a matrix Xl of size
n × dl, which is the node feature representation where dl is
the dimension of the feature map defned for the layer l. Te
propagation operator applied to the graph convolutional
layer in GCN is defned as follows:

Xl � σ D
− 1/2

AD
− 1/2

Xl−1Θl , (1)

where Xl is the output node feature and Xl−1 is the input
node feature for the graph convolutional layer l. A is
computed by A � A + I which adds self-loops to the adja-
cency matrix of the original graph. Accordingly, D is the
degree diagonal matrix of A, and Θl is the parameter matrix
of size dl−1 × dl which is learned in the model training phase.
σ represents an activation function, which is usually a dif-
ferentiable nonlinear function used in neural networks to
learn more complex functions, e.g., ReLU, sigmoid, softmax,
and tanh. X0 is the node feature representation ingested by
the frst graph convolutional layer and the model input.

4.1.2. APT Stage Detection Engine. TeGCN-based detection
engine in SR2APT performs a multiclass classifcation task on
provenance subgraphs. In the eventmodule of SR2APT, system
logs are structured in the form of a provenance graph using
tools such as CamFlow [33], and GrAALF [34] is leveraged to
build the subgraph dataset used for the experiments in this
work. A valid system log record for a provenance graph should
have two nodes with some identifers and their relation. Taking
GrAALF as an example, the felds “timestamp,” “from_name,”
“from_id,” “to_name,” “to_id,” and “event_type” are extracted
from valid system log records. Ten, based on the “id” in-
formation, the causal relations between nodes are established to
form a provenance graph; “name” and “event_type” are labels
of nodes and edges in the graph.

Subgraphs from a provenance graph are the neighboring
structure around nodes of interest. Nodes of interest can be
newly added nodes on a streaming provenance graph [21],
specifc processes, or fles [34]. Ten, the neighboring

structure of a node can be obtained by using some search
methods, for example, traversing backwards or forwards for
a certain number of steps from the node. In the operation of
SR2APT, the timestamp of nodes is used to make sure that
subgraphs sent to the detection engine maintain the correct
temporal order of system activities, which is important for
solving optimal sequential response actions in the decision
engine.

Te labels of nodes and edges in a graph are encoded into
numeric values, and a length threshold is applied to deal with
long labels. Te input of the GCN model, also known as the
node feature X0, is a vector of node labels. Te values in the
adjacency matrix of a graph, which is used for the operation
of graph convolutional layers, are edge labels.

Te GCN-based detection engine in the experiments of
this paper consists of an input layer and three graph con-
volutional layers, and each of them is followed by a pooling
layer, a dense layer, and an output layer. A cross-entropy loss
function is used; therefore, the true label of a graph is
represented as a one-hot vector. Seven classes are defned for
the multiclass classifcation task, including six classes in-
dicating APTstages 1, 2, 3, 4, 5, 6, and a general benign class.
Te model output is a 7-dimensional vector, which is a
probability distribution over all seven classes, and the class
with the largest probability is the predicted label of the input
graph. Te detection engine continuously transmits its
outputs to the database module. If the current classifcation
result is positive, indicating an alert of one APT stage, the
current system state is then sent to the decision engine to
decide the optimal response action to this alert.

4.2. DQN-Based APT Response Decision Engine

4.2.1. Deep Reinforcement Learning. Te motivation of APT
prevention in SR2APT is to strategically respond to APT
alerts in a threat model where APTalerts can be triggered by
both benign activities and APT attacks. Such a proactive
defense approach can reduce the damage of APT by pro-
hibiting it from evolving to deeper stages, which is more
cost-efective than reactive approaches whose responses can
be too late as APT might already or almost succeed at the
moment of the defender’s frst response. However, enforcing
active defense actions on the APT alerts triggered by benign
activities incurs costs, which should be avoided as much as
possible.

Te decision engine in SR2APT considers APT charac-
teristics (multistage, stealthiness, and advance), costs, and
benefts of response actions to APT alerts from benign or
APT attack activities. It then formulates the problem of
strategic alert response based on deep reinforcement
learning. Te goal of a reinforcement learning agent is to
learn a transformation from environment states to a
probability distribution over feasible actions (also known as
a policy) such that its cumulative reward is maximized [35].
By thoughtfully modeling the evolution of APT stages and
the costs and benefts of response actions in diferent sit-
uations, a deep reinforcement learning model is able to drive
the decision engine to generate an optimal response policy.

6 Security and Communication Networks

Temathematical formulation of reinforcement learning
(RL) is based on a 5-tuple (S, A, R, P, c); S is a set of en-
vironmental states that can be observed by the agent. A is a
set of actions that the agent can take in each state. R is a set of
rewards received by the agent after taking an action. P is a
state transition model represented by a matrix where Pij is
the probability of transitioning from state i to state j. c is the
discount factor that controls the importance of future re-
wards in the characterization of the agent’s cumulative re-
ward. Te goal of RL is to learn the optimal policy in each
state. Since the system state defned in the decision engine of
SR2APT is high-dimensional, a deep reinforcement learning
algorithm is used, in which a neural network learns a
function to map system states to a distribution over response
actions.

In SR2APT, the defender is the only RL agent, but it can
be extended to a multiagent problem by considering the
attacker as another strategic agent. Figure 3 illustrates the
abstracted interactions between an RL agent and the envi-
ronment in a deep reinforcement learning setting. At time t,
the agent takes action at in state st, then the environment
transitions to the next state st+1 and the agent receives its
reward rt of taking that action. As this is a sequential de-
cision-making process and the action taken in the current
state not only afects the immediate reward but also afects
future rewards through state transition, the objective of the
RL agent is to maximize the cumulative reward (also called
value function) starting from the current state that is for-
mulated as follows:

V st(� r st(+ cr st+1(+ c
2
r st+2(+ . . . + c

T− t
r sT(. (2)

If the action of the agent is taken as another independent
variable, a state-action value function (also called the Q
function) is formulated as follows, where P(st+1′ |st, at) is the
probability of transitioning to state st+1′ , when the agent takes
action at in the state st:

Q st, at(� r st, at(+ c

st+1′

P st+1′ |st, at(· V st+1′(.
(3)

Terefore, the objective function of the agent can be
reformulated as follows:

max
π(s)

a

Q(s, a) · π(a), (4)

where π(s) is called a policy, which is a probability distri-
bution over all feasible actions of the agent in the state s.

Te deep Q-network (DQN) algorithm [36] is used to
train the decision engine. DQN uses a deep convolution
neural network called Q-network to approximate the state-
action value function Q(s, a, θ). Te advantages of this
technique are twofold. First, it leverages a replay mechanism
by randomly sampling amini batch from a replaymemory to
train the Q-network for every update. Each data unit stored
in the replay memory is represented by a 4-tuple
(st, at, rt, st+1), meaning that taking action at in state st leads
to an immediate reward rt and state st+1, and it can be viewed
as an “experience.” Second, a slowly updated neural network
called a target network Q(s, a, θ′) is used to compute the

target value Q-network in every iteration. Te parameters of
the target network are copied from the Q-network peri-
odically, and they are fxed in each iteration. Tese two
special designs ensure the stability of the DQN algorithm,
smooth out the learning process, and efectively avoid
divergence.

Te DQN algorithm is implemented as follows. Before
training, a replay memory of fxed-length, which stores the
most recent experiences, aQ-network Q(s, a, θ), and a target
network Q(s, a, θ′) with the same random parameters
Q(s, a, θ′) are initialized. In the beginning of every iteration
i, the agent is in a state st, then it chooses an action at based
on the rule of ε − greedy which balances exploitation (stick
to the current best action) and exploration (randomly try
other actions). After taking the action, the agent receives
reward rt and learns that the state transitions to st+1. Te 4-
tuple (st, at, rt, st+1) is then stored in the replay memory.
Once the size of the replay memory is greater than the
predefned batch size, a batch of 4-tuples is sampled ran-
domly from the replay memory to update the parameters of
the Q-network according to the loss function as follows:

Li θi(� E s,a,r,s′()∼B r + max
a′

Q s
′
, a
′
, θ′ − Q s, a, θi(

2
⎡⎣ ⎤⎦,

(5)

where B is the sampled batch, the frst Q(·) is the target
network, and the second Q(·) is the Q-network. Note that, if
s′ is a terminal state, the term maxa′ Q(s′, a′, θ′) in the loss
function will not exist; therefore, the Q-network needs to be
trained by a new episode of interaction.

4.2.2. Decision Engine. Te problem setting in the decision
engine of SR2APT is as follows. APT attackers intend to hide
their behaviors by imitating benign activities, for example, the
data exfltration stage in APT might look like a normal fle
transfer behavior by an authenticated user. Terefore, the
threat model considered in this paper is that APT-related
alerts from the detection engine can be triggered by APT
attacks or benign activities. For the sake of brevity, in the rest
of the paper, actual APT activities were referred to as AAPT,
and the complementary benign activities imitated by APT
were referred to as BAPT. By constructing dedicated cost/
reward functions based on the understanding of APTattacks,
a strategic alert response policy can be generated by the
decision engine such that AAPT is efectively impeded in
earlier stages while less BAPT is mistakenly impeded, without
explicitly knowing if an APT alert is triggered by AAPT or
BAPT. To integrate APT characteristics into the decision
engine, the efectiveness of active defense in stopping APT
movement is assumed to be limited, as APT attackers are
capable to exploit zero-day vulnerabilities. Te experiments
that evaluate the performance of the decision engine in this
paper focus on a six-stage APTattack; however, it can be ftted
into other APTattack scenarios by modifying the parameters
in the deep reinforcement learning model. States, actions,
rewards, and state transitions defned in the decision engine
are described in detail as follows.

Security and Communication Networks 7

(1) States. Te system states are constructed by fusing the
classifcation results from the detection engine from the
beginning of the current monitoring episode. It is repre-
sented by an 8-dimensional vector s � (c0, c1, c2, c3, c4,

c5, c6, cs) where c0 is the number of occurrences of the
benign class, ci(i ∈ [1, 6]) is the number of occurrences of
each APT si class, and cs indicates the current signal
(classifcation result). Each episode starts from a system state
where an alert of APT si(i ∈ [1, 5]) is raised, for example, an
initial system state can be s � (0, 0, 1, 0, 0, 0, 0, 2) which
means the current signal is APT s2 class and the occurrence
of APT s2 class is 1 while the occurrence of other classes is 0.

In the threat model considered by this paper, either the
APT attacker or the defender takes control of the host in a
monitoring episode. Terefore, terminal states are diferent
depending on who is taking over the host. When the attacker
is in control, a sequence of detection results that the decision
engine receives is regarded as an AAPTalert trace. Terminal
states are those states in which the current signal is 6 (in-
dicating the attacker wins to the end), or the current signal is
0 and it results from the defender’s active defense (indicating
the defender takes over again), or the maximum length of a
monitoring episode is reached. When the defender is in
control, a sequence of detection results is regarded as a
BAPT alert trace, and the only terminal state is the state in
which the maximum length of a monitoring episode is
reached.

(2) Actions. For nonterminal states, a defender can choose
from two response actions: passive defense and active de-
fense. In practice, examples of active defense are to inves-
tigate suspicious behaviors, patch vulnerabilities, reboot
machines, and reset passwords; passive defense can be
simply ignoring the alert, either because of not trusting it or
for the purpose of continuous observation.

(3) Rewards. After taking a response action, the decision
engine will receive a reward as feedback from the envi-
ronment. In SR2APT, this reward is dependent on the
current detection result and whether it is part of an alert
trace of AAPT or BAPT and whether the action is active
defense or passive defense. Since earlier APT stages usually

have limited damage than later stages, an exponential
function is used to quantify the damage of an APTstage and
the cost of active defense to impede its movement. For
example, if activities of an AAPT are being monitored and
current detection result is APT stage si, the damage of the
behavior that triggers this alert is dsi (d> 0) and the cost of
active defense against it is csi (c> 0) , then the reward of
choosing active defense action is dsi − csi (d> c) while the
reward of choosing passive defense action is −dsi , However,
if active defense action is enforced on the APT alerts trig-
gered by benign activities, the defender receives a penalty. In
SR2APT, this penalty is also an exponential function of APT
stage, that is, if current detection result is APTstage si which
is triggered by a BAPT, then the reward of taking active
defense action is −psi (p> 0) while the reward is 0 by taking
passive defense action.

(4) State Transition. Deep reinforcement learning allows to
model real-world uncertainties via probabilistic state tran-
sitions. In SR2APT, state transitions are decided by the
ordering of detection results, which is afected by the in-
terdependencies between APT stages conditioning on the
defender’s responses to APT alerts. In this paper, the ef-
fectiveness of active defense action against APT is assumed
to be limited, in order to model an APT attacker’s ability to
exploit zero-day vulnerabilities. In addition, the ordering of
diferent detection results in an AAPTalert trace and a BAPT
alert trace should exhibit diferent patterns because APT
stages are more interdependent in AAPT but not in BAPT. It
would be ideal to use real AAPT alert traces and BAPT alert
traces to train the decision engine, but synthetic alert traces
also work if real data is not available as long as the synthetic
traces can represent the behavioral patterns of AAPT and
BAPT. In the experiments of this paper, synthetic alert traces
are used and they are generated based on the following
behavioral patterns of AAPT and BAPT.

(i) Current detection result is the benign class. No
matter if it is part of AAPT or BAPT, the defender
does not respond to it. Terefore, if it is part of
AAPT, then it indicates that the attacker is staying
quiet, and the next expected detection result is the
benign class or a higher APT stage according to the
attacker’s movement plan. If it is part of BAPT, the
next expected detection result is one of the seven
classes defned in the detection engine at random.

(ii) Current detection result is an APT stage si and it is
part of AAPT. When the defender responds by
taking a passive defense action, the attacker will stay
quiet for a random period of time and then evolve to
stage si+1,When the defender takes an active defense
action, the movement of APT would be efectively
impeded with probability e(0< e< 1) , in this case,
the attacker will either be kicked out of the de-
fender’s system or stay quiet for a while then restart
from an earlier stage sj j(∈ [1, i)) . However, the
active defense could also be inefective with prob-
ability (1 − e) , in this case, the attacker will stay
quiet for a while then evolve to stage si+1.

Environment
P (st+1|st, at)

Agent

st+1

stat

rt

parameter θ

policy
π (s)

state
s

Figure 3: Interactions between agent and environment in deep
reinforcement learning (a: action; r: reward; s: state; P: state
transition model).

8 Security and Communication Networks

(iii) Current detection result is an APT stage si and it is
part of BAPT. No matter what response action the
defender takes, the next expected detection result is
either the benign class or APT stage sj(j ∈ [1, 6]) at
random.

5. Evaluation

In this section, the proof of concept experiments are
designed and implemented to evaluate the performance of
SR2APT in defending against APT. First, a semisynthetic
dataset of system log provenance graphs is used to evaluate
the performance of the GCN-based detection engine in the
subgraph classifcation. Ten, synthetic alert traces from
both APT and benign scenarios are used to compare the
performance of the strategic alert response policy from the
DQN-based decision engine and two baseline fxed response
policies.

5.1. Provenance Subgraph Classifcation. Te dataset of
system log provenance graphs from [18] is used to train and
test the detection engine, which covers the system logs of
system activities about six APT stages: system reconnais-
sance, network discovery, persistence, privilege escalation,
asset discovery, and data exfltration; as well as some benign
system activities.

To construct the dataset, frst Sysdig is used to monitor
the activities on a host and generate system logs, which
allows up to 57 felds to structure raw log data. Ten,
GrAALF [34] is used to get subgraph samples for each class
in the detection engine. It is a Java application that can
process raw system logs, store processed data in a graph
database, and support queries to retrieve subgraphs. Re-
garding the dataset used in the experiment of this paper,
nodes of interest are predefned for each APTstage behavior
e.g., “whoami” is a keyword for the reconnaissance stage
[18].Ten a subgraph sample for an APTstage is obtained by
starting from the nodes of interest to traverse backwards or
forwards for certain steps. For instance, Figure 4 shows the
subgraph data returned by GrAALF, which corresponds to
the APT privilege escalation stage, by running the query
“back select∗from∗where name is su.” Eventually, 300
subgraphs for each of the seven classes are obtained by using
the provided query templates and resampling. Te seven
classes in the experiments are benign (class 0), APT s1 (class
1), APTs2 (class 2), APTs3 (class 3), APTs4 (class 4), APTs5
(class 5), and APT s6 (class 6). Out of total 2100 subgraphs,
80% are used for training the detection engine, 10% are used
for validation, and 10% are used for testing.

Figure 5 shows the confusion matrix generated by
comparing the true labels and predicted labels of 210 tested
subgraphs. Te X-axis and Y-axis are labeled by the seven
classes defned in the detection engine, and the value at row i

and column j is the number of subgraphs whose true label is
class i and predicted label is class j. As shown in Figure 5, the
values at of-diagonal positions are much smaller than the
values at diagonal positions for every row and column,
meaning that the detection engine of SR2APTcan efectively

identify malicious behaviors of diferent APT stages and
benign behaviors, with overall 94% classifcation accuracy,
which outperforms other compared classifcation models
SVM (83%), CNN (84%) and LSTM (86%).

Te basic metrics for evaluating the performance of a
classifer are true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). TP is the number of
positive instances that are correctly classifed as positive. TN
is the number of negative instances that are correctly
classifed as negative. FP is the number of negative instances
that are incorrectly classifed as positive. FN is the number of
positive instances that are incorrectly classifed as negative.
Other important metrics including the true positive rate
(TPR), false positive rate (FPR), precision, and recall are
calculated as follows:

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(6)

Te AUC-ROC curve of each class classifed by the
detection engine of SR2APT is shown in Figure 6, which
evaluates the performance of the proposed detection engine
in classifying each class, under diferent probability
threshold settings. When the probability threshold changes,
it could be the case that both the TPR and the FPR change or
only one of them changes, thus producing vertical, hori-
zontal, and slant segments on an AUC-ROC curve.Te black
straight dashed line is a benchmark indicating a model has
no classifcation power. Figure 6 shows the AUC (area under
the curve) of each class classifed by the detection engine is
almost 1.00, meaning that the detection engine is not sen-
sitive to the probability threshold, and the learned feature
representation for each class is efective.

F1 − score �
2 · Precision · Recall
Precision + Recall

�
TP

TP + 1/2(FN + FP)
.

(7)

Additionally, the F1-score is used to compare the pro-
posed GCN-based detection engine with some classic
classifcation models, because it evaluates a model by con-
sidering both FP and FN. From Equation (7), the F1-score is
the harmonic mean of precision and recall, where precision
refects the impact of FP and recall refects the impact of FN.
Te F1-score of a model is high if both precision and recall
are high, and is low if one or both of them are low. As the
detection results are important signals to the decision en-
gine, both FP and FN are not desired, thus the F1-score is a
good metric to compare detection models using diferent
kernels. Tree commonly used kernels of classifcation
models for anomaly detection are tested on the same dataset,
which are support vector machine (SVM), one-dimensional

Security and Communication Networks 9

convolutional neural network (CNN), and long short-term
memory (LSTM). To implement the kernels other than
GCN, “from_name,” “evt_type,” and “to_name” in the se-
quence of system logs corresponding to a subgraph are
extracted in temporal order to form the input of classif-
cation models. Te parameters of every model are tuned
such that it achieves the highest accuracy. Te sklearn Py-
thon library is used to implement the linear SVMmodel.Te
Keras Python library is used to implement the one-di-
mensional CNN model and the LSTM model. Te one-

dimensional CNN consists of one 1D convolutional layer
(flters� 20, kernel size� 3), one 1D max pooling layer (pool
size� 3), and one dense layer with softmax activation
function being used. For the LSTM neural network, it
consists of one masking layer, three LSTM layers with each
followed by a dropout layer (dropout rate� 0.2), and one
dense layer using the softmax activation function. To train
the one-dimensional CNN model and the LSTM model, the
Adam optimizer and categorical cross-entropy loss function
are used. As shown in Table 1, the GCN-based detection

 { "sequence_number": 42578,
"user": "boba_fett",
"from_id": 2402 ,
"from_name": "perl",
"evt_type": "exec",
"to_name": "sh" ,
"to_id": 2665 ,
"count": 1},

{ "sequence_number": 42592,
"user": "boba_fett",
"from_id": 2665 ,
"from_name": "sh",
"evt_type": "exec",
"to_name": "fl7Klh5a" ,
"to_id": 2666 ,
"count": 1},

 { "sequence_number": 43311,
"user": "boba_fett",
"from_id": 2666 ,
"from_name": "fl7Klh5a",
"evt_type": "exec",
"to_name": "su" ,
"to_id": 2679 ,
"count": 1}

Figure 4: A sequence of system logs for an APT privilege escalation stage.

0

0 0 0 1

0

0

0 00 0

0 0 0

1

0

1 10 0

0 0 0 0

0 0 0 0 0 0

0

04 0

0

0

1

1

2 0 0 024

25

26

29

32

29

33

0

5

10

15

20

25

30

0 641 3 52

6

5

4

3

2

1

0

Figure 5: Te confusion matrix for the tested provenance subgraphs.

10 Security and Communication Networks

engine achieves the highest F1-score for classes of APT s1,
APT s3, APT s4, APT s5, and APT s6. For the other two
classes of benign and APT s2, the GCN-based detection
engine still achieves an F1-score that is greater than 0.9.
Terefore, GCN improves the performance of the detection
engine in provenance subgraph classifcation compared to
SVM, CNN, and LSTM, because it leverages useful features
hidden in the dependencies of nodes in a graph.

5.2. Strategic Response Policy to APT Alerts. To train and
evaluate the performance of the decision engine that outputs
strategic response actions to sequential APT alerts within a
monitoring window, synthetic alert traces for APTscenarios
(AAPT) and benign scenarios (BAPT) are used. Tese
synthetic alert traces are generated according to the be-
havioral patterns of the APTattack considered in this paper,
which are afected by the defender’s response actions. More
details about how synthetic alert traces are generated are
provided in the state transition part of Section 4.

When implementing the proposed decision engine,
preliminary works are needed to provide gain/loss feedback
after taking a response action, which is host-dependent and
is out of the scope of this paper. To generate the feedback
information for the proof of concept experiments, the pa-
rameter settings used in the experiments are: d � 4, c � 1.5,
p � 1.5 which are the base in the exponential function
representing the damage of each APTstage, the cost of active
defenses against each APT stage, and penalty of mistaken

active defenses to APT alerts triggered by benign activities,
respectively; e � 0.9 which indicates the efectiveness rate of
active defenses in slowing down the movement of APT. Note
that the parameters in the experiments are chosen only
because they allow the total reward of the DQN response
policy to be positive, but they can be other values. Te
advantage of the DQN policy is not dependent on parameter
settings, rather it is because the DQN policy is learned from
trial and error. Terefore, with sufcient experiences the
DQN policy is always able to approximate the optimal
policy. When implementing the decision engine, the de-
fender should use their own feedback mechanism based on
the status of the protected target, rather than the parameter
settings used in the proof of concept experiments.

To demonstrate the advantages of the response policy
generated by the decision engine (DQN policy) in the
SR2APTmodel, the DQN policy is compared with two fxed
rate response policies. A fxed rate policy p is defned as
follows: every time an APTalert is reported, a defender takes
an active defense action with a fxed probability p. One
baseline fxed rate policy is p � 1.0 which represents the
most aggressive response policy, and the other fxed rate
policy is p � 0.5.

Te decision engine was trained for 100 episodes. Each
episode simulates an alert trace of AAPTor BAPT, which is
dynamically afected by the defender’s response actions.
Before the start of an episode, whether this episode simulates
AAPT or BAPT is decided by the ratio of AAPT: BAPT� 3 :
7, which represents the defender’s perception of how often

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.20.0 0.8 1.00.60.4
False Positive Rate

class 0 (auc = 0.99)
class 1 (auc = 0.98)
class 2 (auc = 1.00)
class 3 (auc = 0.98)

class 4 (auc = 0.99)
class 5 (auc = 1.00)
class 6 (auc = 1.00)

Figure 6: Te AUC-ROC curve for each class classifed by the detection engine of SR2APT.

Table 1: Te F1-score of classifcation models based on SVM, CNN, LSTM, and GCN regarding each class.

Benign APT s1 APT s2 APT s3 APT s4 APT s5 APT s6
SVM 1.00 0.52 0.96 0.80 0.73 0.89 0.89
CNN 0. 8 0.65 0.95 0.72 0.77 0.89 0.90
LSTM 0.95 0.62 1.00 0.88 0.87 0.78 0.87
GCN 0.91 0. 6 0.98 0.8 0. 0 0. 7 1.00

Security and Communication Networks 11

the system is taken over by the attacker and the defender.
Once the decision engine is trained, the DQN response
policy is evaluated by running the decision engine for 10
iterations, where each iteration consists of 100 episodes.

First, the total rewards are compared by following the
DQN alert response policy from the decision engine and two
fxed rate policies. As shown in Figure 7, the two fxed rate
policies perform equally worse than the DQN policy. Al-
though a more aggressive fxed rate policy can prevent
damage from APT activities by frequently taking active
defenses, it also increases the probability of mistaken active
defenses to false APT alerts triggered by benign activities,
and vice versa. However, the DQN policy learns to implicitly
treat the APTalerts triggered by AAPTand BAPTdiferently,
to minimize the penalties from mistakenly impeding BAPT
and maximize the gains from slowing down the movement
of AAPT by taking active defenses.

Next, the ability of each response policy to successfully
prevent AAPT is evaluated. Here, a successful prevention
against AAPTmeans that the APTattacker is defeated out of
the defender’s system. In Figure 8, the yellow bar represents
the total number of APT attacks in each iteration, and the
other three bars represent the number of attacks that are

successfully prevented by following the three response
policies, respectively. As shown in Figure 8, the less ag-
gressive fxed rate policy (p � 0.5) is the worst, but both the
DQN policy and the most aggressive fxed rate policy (p �

1.0) are able to prevent almost all attacks in every iteration.
Since the most aggressive fxed rate policy instructs the
defender to take an active defense action against all APT
alerts, it is difcult for an APT attack to succeed under this
circumstance. Although the DQN response policy from the
decision engine treats APTalerts diferently, it still performs
extremely well to prevent attacks, and it achieves greater
total rewards than the most aggressive fxed rate policy.

To further address the advantage of the strategic DQN
response policy, the number of mistaken active defenses
enforced on BAPT by following the three policies are col-
lected. In Figure 9, each colored bar represents the total
number of active defense actions enforced on the APTalerts
triggered by BAPT by following the corresponding policy. It
shows that the most aggressive fxed rate policy (p � 1.0) is
the worst, as it instructs the defender to take active defense
actions for all APT alerts from BAPT, which is not a wise
policy for the considered threat model, where BAPT alert
traces appear more frequently than AAPT. Te less

5000

0

-5000

-10000

to
ta

l r
ew

ar
ds

0 20 40 60 80 100
episode

DQN
fixed rate (1.0)
fixed rate (0.5)

Figure 7: Total rewards by following the DQN response policy from the decision engine of SR2APT and two fxed response policies.

1 2 3 4 5 6 7 8 9 10
iteration

0

10

20

30

40

50

total attacks
attacks prevented by DQN
attacks prevented by fixed rate (1.0)
attacks prevented by fixed rate (0.5)

Figure 8: Number of APT attacks prevented by following the DQN response policy from the decision engine of SR2APT and two fxed
response policies.

12 Security and Communication Networks

aggressive fxed rate policy (p � 0.5) reduces the number of
mistaken active defenses to benign activities, but it is still
much worse than the DQN policy. As the system states in the
decision engine take historical detection results into con-
sideration, it is likely that the system states for an alert from
AAPTand an alert from BAPTare quite diferent because of
the interdependencies between APT stages; hence, the DQN
policy will choose not to take an active defense action to an
alert triggered by BAPT as much as possible.

Finally, the strategic DQN alert response policy from the
decision engine prevents APT attacks in earlier stages. Te
average frequencies of active defense actions in one iteration
are collected for each APTstage, except for the APTstage s6,
which is an indicator of a terminal state where no response
action is available. As shown in Figure 10, more active
defense actions are enforced on the alerts corresponding to
earlier stages of APT attacks, which is as expected because
greater damages and costs of defense are assigned to later
APT stages in the considered threat model.

Overall, the strategic APT alert response policy
generated by the decision engine in the SR2APT model
achieves the best performance compared with two fxed rate
response policies, regarding the total rewards in the defense
against APT, the ability to successfully prevent APT attacks,
andmistaken active defenses for false APTalerts triggered by
benign activities.

6. Conclusion

In this paper, a novel host-based APTdetection and response
model called SR2APT is proposed, which can be integrated
into cyber-physical systems to provide cost-efective and
agile protection to critical hosts against sophisticated APT
attacks. Te proposed model addresses two important but
overlooked problems in the defense against multistage APT:
preventing APT attacks in earlier stages and minimizing the
impediments of mistaken response actions to benign

1 2 3 4 5 6 7 8 9 10
iteration

0

1000

2000

3000

4000

5000

active defenses to BAPT by DQN
active defenses to BAPT by fixed rate (1.0)
active defenses to BAPT by fixed rate (0.5)

Figure 9: Number of active defense actions enforced on benign activities by following the DQN response policy from the decision engine of
SR2APT and two fxed response policies.

APT stage 1 APT stage 2 APT stage 3 APT stage 4 APT stage 5
0

2

4

6

8

10

12

14

fre
qu

en
cy

 o
f a

ct
iv

e d
ef

en
se

s

Figure 10: Average frequencies of active defense actions to APT stages of 1 to 5 in APT scenarios.

Security and Communication Networks 13

activities that generate false alerts. SR2APT tackles these two
problems through a strategic APT alert response policy.

Te detection engine of SR2APT applies a graph con-
volutional network to analyze subgraphs of a provenance
graph generated from system logs, to detect malicious be-
haviors of each APT stage as well as benign behaviors. Te
experimental results on a semisynthetic dataset show that the
GCN-based detection engine obtains 94% classifcation ac-
curacy and outperforms classifcation models based on other
kernels including SVM, CNN, and LSTM. To derive optimal
response actions to sequential APT alerts from the detection
engine, the decision engine of SR2APT is built upon deep
reinforcement learning, which considers the characteristics of
APT attacks such as multistage, stealthiness, and zero-day
exploitation capability. With dedicated cost and reward
functions in the decision engine such that they are compatible
with the threat model considered in this paper, the alert
response policy generated by the decision engine outperforms
two baseline fxed response policies and achieves the highest
total rewards in the defense against APT. Because it optimally
balances the trade-of between maximizing the number of
prevented APT attacks and minimizing the impediments to
benign activities from mistaken active defense actions. In
addition, the experimental results show that the strategic alert
response policy from the decision engine is able to prevent
APT attacks in earlier stages by taking advantage of deep
reinforcement learning.

SR2APT can be applied to other APT scenarios, because
both its detection engine and decision engine are fexible.
Tis work focuses on multistage APT attacks on a host, thus
a potential extension is to apply SR2APT to defend against
APTattacks moving across multiple hosts. In that case, host-
level system logs need to be replaced by network-level
monitoring data, e.g., network trafc in the detection engine,
to detect the lateral movement stage of APT. In addition,
strategic alert responses in diferent situations where the
defender has incomplete monitoring information or limited
defense resources are also promising directions of the future
work.

Data Availability

Te host-level system logs data and synthetic APT alert
traces for both APT and benign scenarios used to support
the fndings of this study are included within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Publication of this article was funded by the University of
Colorado Boulder Libraries Open Access Fund.

References

[1] S. Han, M. Xie, H. Chen, and Y. Ling, “Intrusion detection in
cyber-physical systems: techniques and challenges,” IEEE
Systems Journal, vol. 8, no. 4, pp. 1052–1062, 2014.

[2] L. Huang and Q. Zhu, “A dynamic games approach to pro-
active defense strategies against Advanced Persistent Treats
in cyber-physical systems,” Computers & Security, vol. 89,
Article ID 101660, 2020.

[3] R. Langner, “Stuxnet: dissecting a cyberwarfare weapon,”
IEEE Security and Privacy Magazine, vol. 9, no. 3, pp. 49–51,
2011.

[4] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A
survey on advanced persistent threats: techniques, solutions,
challenges, and research opportunities,” IEEE Communica-
tions Surveys & Tutorials, vol. 21, no. 2, pp. 1851–1877, 2019.

[5] A. Juels and T. Yen, “Sherlock Holmes and the case of the
advanced persistent threat,” in Proceedings of the 5th USENIX
Workshop on Large-Scale Exploits and Emergent Treats
(LEET 12), San Jose, CA, USA, Apr. 2012.

[6] A. Rot and B. Olszewski, “Advanced persistent threats attacks
in cyberspace. Treats, vulnerabilities, methods of protec-
tion,” in Proc. FedCSIS (Position Papers), pp. 113–117, Czech
Republic, Prague, 2017.

[7] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and
D. Woods, “Cloud-Trust: a security assessment model for
infrastructure as a service (IaaS) clouds,” IEEE Transactions on
Cloud Computing, vol. 5, no. 3, pp. 523–536, 2017.

[8] R. Mitchell and I. R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing
Surveys, vol. 46, no. 4, pp. 1–29, Apr. 2014.

[9] P. N. Bahrami, “Cyber kill chain-based taxonomy of advanced
persistent threat actors: analogy of tactics, techniques, and
procedures,” Journal of Information Processing Systems,
vol. 15, no. 4, pp. 865–889, Aug. 2019.

[10] T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,”
Computer, vol. 44, no. 4, pp. 91–93, 2011.

[11] N. Villeneuve and J. Bennett, “Detecting APT activity with
network trafc analysis,” Trend Micro Inc, vol. 547, p. 78, 2012
Available at: http://www.trendmicro.com/cloud-content/us/
pdfs/securityintelligence/.

[12] X. Wang, “Detection of command and control in advanced
persistent threat based on independent access,” in Proc. IEEE
Int. Conf. Commun. (ICC), pp. 1–6, Kuala Lumpur, Malaysia,
May 2016.

[13] M. Marchetti, F. Pierazzi, M. Colajanni, and A. Guido,
“Analysis of high volumes of network trafc for advanced
persistent threat detection,” Computer Networks, vol. 109,
pp. 127–141, Nov. 2016.

[14] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici, “Detection of
malicious PDF fles and directions for enhancements: a state-
of-the art survey,” Computers & Security, vol. 48, pp. 246–266,
Feb. 2015.

[15] J. V. Chandra, N. Challa, and S. K. Pasupuleti, “A practical
approach to E-mail spam flters to protect data from advanced
persistent threat,” in Proc. 2016 International Conference on
Circuit, Power and Computing Technologies (ICCPCT),
pp. 1–5, Nagercoil, India, Mar2016.

[16] S. Chandran, P. Hrudya, and P. Poornachandran, “An ef-
cient classifcation model for detecting advanced persistent
threat,” in Proc. 2015 International Conference on Advances in
Computing, Communications and Informatics (ICACCI),
pp. 2001–2009, Kochi, India, Aug. 2015.

[17] N. Mohamed and B. Belaton, “SBI model for the detection of
advanced persistent threat based on strange behavior of using
credential dumping technique,” IEEE Access, vol. 9,
pp. 42919–42932, 2021.

14 Security and Communication Networks

http://www.trendmicro.com/cloud-content/us/pdfs/securityintelligence/
http://www.trendmicro.com/cloud-content/us/pdfs/securityintelligence/

[18] M. AbuOdeh, “A novel AI-based methodology for identifying
cyber attacks in honey pots,” in Proc. AAAI Conference on
Artifcial Intelligence, pp. 15224–15231, Feb. 2021.

[19] J. Sexton, C. Storlie, and J. Neil, “Attack chain detection,”
Statistical Analysis and Data Mining: Te ASA Data Science
Journal, vol. 8, no. 5-6, pp. 353–363, Aug. 2015.

[20] P. Giura and W. Wang, “A context-based detection frame-
work for advanced persistent threats,” in Proceedings of the
2012 International Conference on Cyber Security, pp. 69–74,
Alexandria, VA, USA, Dec. 2012.

[21] M. M. Sadegh, “Holmes: real-time apt detection through
correlation of suspicious information fows,” in Proceedings of
the 2019 IEEE Symposium on Security and Privacy,
pp. 1137–1152, San Francisco, CA, USA, May 2019.

[22] H. Studiawan, F. Sohel, and C. Payne, “A survey on forensic
investigation of operating system logs,” Digital Investigation,
vol. 29, pp. 1–20, Jun. 2019.

[23] A. Awad, “Data leakage detection using system call prove-
nance,” in Proceedings of the 2016 International Conference on
Intelligent Networking and Collaborative Systems (INCoS),
pp. 486–491, Ostrava, Czech Republic, September 2016.

[24] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion de-
tection using sequences of system calls,” Journal of Computer
Security, vol. 6, no. 3, pp. 151–180, 1998.

[25] Y. Liao and V. R. Vemuri, “Using text categorization tech-
niques for intrusion detection,” in Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, USA, Aug.
2002.

[26] B. Subba, S. Biswas, and S. Karmakar, “Host based intrusion
detection system using frequency analysis of n-gram terms,”
in Proceedings of the 2017 IEEE Region Ten Conference
(TENCON), pp. 2006–2011, Penang, Malaysia, Nov. 2017.

[27] M. Anjum, S. Iqbal, and B. Hamelin, “ANUBIS: a provenance
graph-based framework for advanced persistent threat de-
tection,” Dec. 2021, Available at: https://arxiv.org/abs/2112.
11032.

[28] X. Han, “Unicorn: runtime provenance-based detector for
advanced persistent threats,” in Proceedings of the 27th An-
nual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, Feb. 2020.

[29] G. Ayoade, “Evolving advanced persistent threat detection
using provenance graph and metric learning,” in Proceedings
of the 2020 IEEE Conference on Communications and Network
Security (CNS), pp. 1–9, Avignon, France, Feb 2020.

[30] V. Jyothsna, V. Rama Prasad, and K. Munivara Prasad, “A
review of anomaly based intrusion detection systems,” In-
ternational Journal of Computer Application, vol. 28, no. 7,
pp. 26–35, Aug. 2011.

[31] T. N. Kipf and M. Welling, “Semi-supervised classifcation
with graph convolutional networks,” in Proceedings of the
2017 International Conference on Learning Representations,
pp. 1–14, Toulon, France, Apr. 2017.

[32] J. Bruna, “Spectral networks and locally connected networks
on graphs,” in Proceedings of the 2nd International Conference
on Learning Representations, Banf, Canada, Apr. 2014.

[33] T. Pasquier, “Practical whole-system provenance capture,” in
Proceedings of the 2017 Symposium on Cloud Computing,
pp. 405–418, 2017.

[34] O. Setayeshfar, C. Adkins, M. Jones, K. H. Lee, and P. Doshi,
“Graalf: supporting graphical analysis of audit logs for fo-
rensics,” Software Impacts, vol. 8, Article ID 100068, 2021.

[35] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT press, Cambridge, MA, USA, 2018.

[36] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, Feb. 2015.

Security and Communication Networks 15

https://arxiv.org/abs/2112.11032
https://arxiv.org/abs/2112.11032

