
Research Article
TZEAMM: An Efficient and Secure Active Measurement Method
Based on TrustZone

Xiaoqing Liu,1 Yingxu Lai ,1,2 Jing Liu ,1,2 and Shiyao Luo 1

1Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, Beijing 100124, China

Correspondence should be addressed to Yingxu Lai; laiyingxu@bjut.edu.cn

Received 21 July 2022; Revised 25 November 2022; Accepted 4 January 2023; Published 31 January 2023

Academic Editor: Biao Han

Copyright © 2023 Xiaoqing Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of computer and communication technology, embedded systems are widely used in smart devices.
Te increasing connectivity of these systems and the difculties in providing comprehensive security have made such devices
vulnerable to malicious attacks. Passive defense technologies and trafc-based intrusion detection technologies are not fully
efective against such attacks. Trusted execution environment (TEE) technology can ensure system security against unknown
attacks to some extent. Most researchers use TrustZone to implement TEE. However, the problem is that the API interface of the
TEE module which provides the service is not secure. Terefore, to actively defend against attacks, we developed a trusted
computing active measurement architecture based on TrustZone. To overcome the serious problem that modules in the trusted
execution environment need to be passively invoked to provide services, we have proposed an active measurement closed-loop
immune mechanism. To reduce the trusted computing base and reduce the performance overhead, we removed certain functional
modules from the trusted execution environment. In addition, based on this architecture, we developed a trust chain and dynamic
measurement method to ensure the security of the target applications. We changed the traditional attack response method, which
requires the entire system to be restarted after an attack, by developing a fallback mechanism that is more suitable for the system.
Finally, we verifed the efectiveness of the architecture by developing an attack model. Performance testing and analysis showed
that the architecture reduced the impact of the security mechanisms on the system. In the future, we will extend our research to
more fne-grained measurements.

1. Introduction

Te rapid development of computing and communications
technology has led to the widespread use of embedded
systems in smart devices. Given the increasing connectivity
of systems and the difculty of providing comprehensive
security, embedded systems are often attacked by malicious
parties [1–5]. For example, application-level rootkits typi-
cally use code with Trojan characteristics to replace the
binary code of a normal application, or they can use other
means to modify the behavior of an existing application [6].
Memory can be modifed in a number of ways, such as by
using a self-modifying code and the mprotect call. Te self-
modifying code requires modifcation of its own instructions
during program runtime [7–9]. It requires the modifcation

of memory permissions in order to dynamically update the
code and data. Tis method is often used by hackers. In
addition, when there is nomemorymodifcation permission,
an attacker can also gain write access to memory through the
mprotect call [10], resulting in a loss of integrity. Once
memory permissions are modifed and the target applica-
tion’s code and data are tampered with or corrupted, the
impact is immediate and large. For example, a data leak
afects the confdentiality of information, the abnormal
operation of devices afects the integrity of information, and
system failure afects the availability of information.
Terefore, attacks on embedded systems pose a major threat.
Passive frewall technologies and trafc-based intrusion
detection technologies are not sufcient to defend against
the previously mentioned attacks.

Hindawi
Security and Communication Networks
Volume 2023, Article ID 6921960, 18 pages
https://doi.org/10.1155/2023/6921960

mailto:laiyingxu@bjut.edu.cn
https://orcid.org/0000-0001-9844-1717
https://orcid.org/0000-0002-7495-4419
https://orcid.org/0000-0001-9095-8463
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6921960

Most researchers use the trusted execution environment
(TEE) to solve the previous problems.Te TEE is designed to
provide a secure zone for devices and applications to protect
assets and execute a trusted code [11–14]. Te TEE is
designed to coexist with the rich execution environment
(REE). Te REE provides a scalable and powerful envi-
ronment for applications and devices with greater openness
and fexibility than the TEE [14] for general purpose
computational tasks [15]. Te REE can only access the re-
sources of REE and cannot access the resources of the TEE
[16]. Terefore, researchers [15, 17–21] often take advantage
of the security of the TEE by setting up measurement
modules in it. In this way, the resources in the REE are
measured regularly to ensure their security.

Many researchers have implemented the TEE using
TrustZone, which is the predominant TEE implementation
technology on the ARM platform. In this study, we conduct
our research based on TrustZone. Dorjmyagmar et al. [18]
proposed the integrity measurement architecture TIMA
based on TrustZone. TIMA designs periodic kernel mea-
surements and real-time kernel protection components in
the TEE to periodically validate the kernel code and data to
ensure kernel integrity. Dong et al. [19] proposed the KIMS
architecture based on TrustZone. KIMS builds a secure and
isolated environment to protect monitoring and measure-
ment modules. Measuring the integrity of the kernel in the
REE is achieved by using the privileges of the TEE to de-
termine whether it is destroyed. Dong et al. [20] proposed an
active measurement architecture based on the TrustZone
design with split-core asynchrony. A trusted encryption
module was developed in the TEE to achieve trusted re-
source monitoring in the REE. Trough CPU asynchronous
cross-core calls, the problem of excessive CPU time allo-
cation in the TEE is solved, while a storage security method
and communication security method are proposed for data
protection. Te previously mentioned studies propose dif-
ferent resource protection schemes in the REE based on the
TEE technique but still have the following limitations:

(1) Te vulnerability of the API interface of the mea-
surement module in the TEE leads to the security
monitoring being bypassed. Te TEE follows a re-
quest-response execution model. Te measurement
module in the TEE must be invoked by the appli-
cation in the REE to function properly. First, the
client application (CA) in the REE, which is re-
sponsible for calling the measurement modules,
initiates the security request. Ten, the processor is
switched to the TEE by calling the secure monitor
call (SMC) command, and the trusted application
(TA) responsible for the measurement work is ex-
ecuted [22, 23]. If the API interface in the REE to call
TA is broken, the measurement work in the TEE will
be interrupted and will not provide security for
systems and applications such as the Trojan Dvmap
virus [24].

(2) Performance degradation due to active measurement
modules working in the TEE. Since active mea-
surements require initiative and regularity, this is

usually achieved by improving the priority of the
active measurement module and confguring the
measurement cycle with high frequency [21]. Te
active measurement module is deployed in the TEE.
When the REE computational task is interrupted by
a high-priority measurement, the environment
switch is triggered. Te resources of the measured
target (code segment and data segment) also need to
switch environments to obtain. Each environment
switch causes a signifcant performance overhead
[25]. Terefore, in the case of a high-frequency
measurement cycle, the computational task in REE is
severely afected, which also leads to performance
degradation of the system.

(3) Te conventional attack response method has the
problem of long-time delay and low efciency.When
the active measurement module detects the occur-
rence of attack behavior, the protection system
usually does not design an attack response strategy
[26, 27], or it applies the method of restarting the
whole system [17] for attack response. When a
trusted node in the trust chain is corrupted, the
entire system must be rebooted to respond to the
attack. Te trust chain must also be rebuilt, and the
measurement between layers needs to be reper-
formed. Tis method takes too long and has low
recovery efciency, which afects the work efciency
of the data processing tasks at the REE.

To solve the previously discussed problems simulta-
neously, this study proposes a TrustZone-based architecture
named TZEAMM for trusted computing active measure-
ment, which provides efcient security protection for target
applications. TZEAMM includes two execution environ-
ments: the rich execution environment for active mea-
surement (REE_A) and the trusted execution environment
for active measurement (TEE_A).Te target applications are
deployed in the REE_A. Te functional modules are
deployed in the REE_A and in the kernel, which is a more
secure place than the REE_A due to kernel permission re-
strictions. Te functional modules monitor the target ap-
plications through dynamic measurement. Te TEE_A
stores trusted reference values and deployed a monitoring
module to monitor the functional modules. Within this
architecture, we design an active measurement closed-loop
based on the trusted chain to protect the functional modules.
Tis solves the problem of the insecure API interface be-
tween the CA and TA and ensures that the measurement of
the target applications cannot be bypassed. Since the
functional modules that perform the measurement operate
in REE_A and the kernel, the target application monitoring
runs outside of TEE_A, mitigating the performance deg-
radation problem and reducing the number of switches
between environments by 2 ∗ n. (Te n represents the
number of data transmission times of the measured target).
In addition, with the previously discussed architecture, the
target applications are deployed in REE_A, the code size of
the modules in TEE_A is smaller, and the trusted computing
base (TCB) is smaller, reducing the attack surface [28–31].

2 Security and Communication Networks

We also developed a fallback mechanism that changes the
original attack response method of restarting the whole
system after an attack.

Te main contributions of our study are as follows:

(i) We develop an active measurement architecture, a
trusted chain, and an active measurement mecha-
nism to proactively monitor attacks and protect
target applications. Wemitigated attacks on the API
between CA and TA by ensuring that measurement
for target applications cannot be bypassed in REE,
thereby mitigating serious attack threats.

(ii) Removing target applications and functional
modules reduces the size of the TCB while ensuring
that the target applications are protected in real
time. Because the measurements are taken at the
REE, the number of environment switches and
performance overhead are also reduced.

(iii) Instead of the conventional method of restarting the
entire system when an attack is detected, a fallback
mechanism was developed. Using this mechanism
decreases the additional performance overhead. It
shortens the attack response time and is a more
efcient method of attack response.

Te remainder of this paper is organized as follows:
Section 2 explains the related work, and Section 3 describes
the attack model. A detailed introduction to the architecture
is presented in Section 4, and Section 5 presents the tech-
nology employed in the proposed system. Te design idea is
described in Section 6, and the implementation method is in
Section 7. In Section 8, the experimental analysis is de-
scribed. In Section 9, we draw conclusions.

2. Related Work

In this section, we describe the work related to the tech-
nology in this article. In Section 2.1, we introduce SGX and
the TrustZone technology. Te TrustZone-based defense
method is presented in Section 2.2. In Section 2.3, we analyze
the performance overhead of the TrustZone-based active
measurement method.

2.1. SGX and TrustZone. SGX is an Intel-based technology
developed to meet the requirements of the trusted com-
puting industry [18, 32–34]. SGX distrusts the OS and
implements isolation by building private areas of memory
called enclaves. Te data in the enclave cannot be accessed
from outside and are not visible to outsiders.Te application
is often divided into two parts: a trusted and an untrusted
part [35]. Te trusted part of the application is implemented
by enclave defnition language (EDL) and executed in the
enclave to protect the key data and other resources of the
application. However, in SGX technology, the resource
protection of the enclave is implemented by EDL to defne
the code. Terefore, it is easy to reverse engineer to spy on
the resource data in the enclave.

TrustZone is a hardware architecture [30] designed for
embedded devices using ARM to provide a security

framework against device attacks. TrustZone relies on a
secure OS, and it achieves isolation by building a secure
execution environment. Te execution environment is di-
vided into two parts: REE and TEE. Resources that need to
be protected can be placed in the TEE and are inaccessible to
the REE. If the REE needs data or services from the TEE, it
must invoke the application in the TEE. TEE follows the
request-response execution model. It executes when it re-
ceives a request from REE to a TA. Te CA initiates a se-
curity request. Te processor is then switched to TEE, and
the associated TA is executed by invoking the SMC in-
struction. After executing the TA, the processor switches
back to the REE.

2.2. TrustZone-Based Protection and Defense Methods.
According to the TrustZone execution environment
classifcation, there are several main ways to deploy
defense technology. One way is to deploy data and ap-
plications on the TEE site to achieve isolation protection
[36–39]. Guan et al. [36] used TrustZone to provide a
lightweight trusted execution environment for security-
critical applications, which provides a secure and isolated
environment for applications and is more suitable for
application execution. It also protects against Iago at-
tacks by developing authentication mechanisms. Sun
et al. [37] proposed TrustOTP, which aims to protect
one-time passwords (OTP) through the TrustZone se-
curity domain and provide reliable OTP generation and
trusted OTP display. Salman and Du [38] use Trust-
Zone’s TEE to ensure the integrity of data collected from
peripherals and the security of data processing,
guaranteeing QR code payments and location verifca-
tion services in mobile phones. However, this method
cannot protect the system from DoS attacks. Li et al. [39]
implement a verifable mobile advertising framework
AdAttester based on TrustZone. AdAttester uses Trust-
Zone’s TEE to collect and authenticate the two primitives
of unforgeable clicks and verifable displays to accurately
distinguish AD fraud from legitimate AD operations.
However, as the number of applications on the TEE
increases, the previous method [36–39] will increase the
TCB [28, 29], and a larger TCB makes the system more
vulnerable [30]. As shown in Table 1, the previously
discussed methods have increased the scale of TCB to
some extent. Moreover, some research needs to complete
the system call in REE, which is a security risk. Our
method not only reduces the TCB but also guarantees the
security of the application.

Another method is to run ameasurementmodule in TEE
to protect applications and data deployed in REE
[15, 17, 26, 27]. By calculating the hash value of themeasured
target and comparing it with the reference value, this
method can determine whether the resource is under attack.
Jia et al. [15] proposed an active trusted computing model to
realize active measurement, design security computing units
in the TEE, and realize trusted boot and dynamicmonitoring
of systems and applications in the REE. However, this ap-
proach does not use semantic constraints to describe the

Security and Communication Networks 3

semantic integrity of the kernel’s dynamic data. Tian et al.
[17] constructed a security-frst model, designed a trusted
monitoring and measurement module in the TEE, and
performed fne-grained dynamic monitoring of the kernel
module using semantic reconstruction to protect the in-
tegrity of the kernel. However, in this method, the mea-
surement is performed on the TEE, and the acquisition of
measurement data is subject to multiple environment
switches, which afects the performance of the system. Ling
et al. [26] proposed a paging-based process integrity mea-
surement and proof method for IoT devices based on
TrustZone. TEE periodically measures the code segments of
the process in REE to ensure the runtime integrity of the
REE. However, this method cannot protect against attacks
on the API interfaces between CA and TA. Yalew et al. [27]
designed TruAPP, which designed verifcation components
in the TEE, and verifed the integrity of other security
components and applications such as trackers in the REE
while providing authenticity verifcation features such as
static watermarking and hash encryption. However, each
time the method provides the authenticity verifcation
function, it needs to authenticate component integrity and
system integrity including the entire kernel, which afects the
timeliness of the application function. As shown in Table 2,
the previously discussed methods all have the problem of
unsafe API interfaces. On the basis of protecting the ap-
plication security, our scheme protects the security of the
measurement service API interface and has a small TCB.

In addition, there are several research methods that take
advantage of the TrustZone architecture. Sun et al. [29]
designed an isolated computing environment in REE to
reduce the size of TCB while protecting the secure code and
used the controller in TEE to realize inter-domain switching
and isolation. Ge et al. and Wang et al. [40, 41] realized the
introspection mechanism through the method of probes.
When there was an operation to update the page table, an
exception was thrown and the processor switched to the TEE
for security verifcation. Jiang et al. [22] implemented CA
identity authentication in the TEE to prevent sensitive data
leakage and DoS attacks given the security threats between
CA and TA sessions. As shown in Figure 1, among the
research methods with diferent characteristics, our method
has the advantages of small TCB, high security, low-per-
formance overhead, and deployment of efcient attack re-
sponse methods.

2.3. Performance Overhead under the TrustZone-Based Active
Measurement Method. When the TA in the TEE measures
the CA in the REE, it introduces some performance

overhead that is refected in the cost of environment
switching, shared memory allocation, shared memory
deallocation, and so on. First, before executing the TA, part
of the memory area of REE is reserved as shared memory.
Te system copies the data to be passed to the TA and stores
it in shared memory. Ten, when the CA calls the TA, the
environment is changed. However, there are times when the
TA responds to an interrupt from the REE and returns to the
TA after the interrupt is completed. Te number of envi-
ronment switches and the performance overhead then in-
crease. After the TA executes, the data returned to the CA
are copied to shared memory. When the environment
switches back to the REE, the CA acquires the data from
shared memory. Finally, the REE releases the shared
memory. Terefore, running applications based on Trust-
Zone incurs signifcant additional performance overhead.
According to one analysis [25], loading and executing TA,
environment switching, and allocating and releasing shared
memory all incur some performance costs. Terefore, to
improve performance, we should reduce the frequency of
these factors as much as possible. Our work reduced the
performance overhead of factors such as the number of
world switches by deploying most of the functional modules
outside of TEE.

Table 2: Comparison of diferent defensemethods in classifcation 2.

Method Character
Reference [15] TCB:general/larger

Application: safe
API interfaces for measuring services: unsafe

Reference [17]
Reference [26]
TruAPP [27]

TZEAMM
TCB:smaller

Application: safe
API interfaces for measuring services: safe

33%

TrustICE [29]
SPROBES [41]
TZ-MRAS [42]

Reference [22]
TZEAMM

Small
TCB

Attack
Response

High
Security

Low
Performance

100

80

60

40

20

0

Va
lu

e (
%

)

21%

21%

21%

21%

43% 60%

11%

11%

11%

33%

14%

14%

14%

14%

14%

40%
0%

Figure 1: Comparison of diferent defense methods in classifca-
tion 3.

Table 1: Comparison of diferent defensemethods in classifcation 1.

Methods Character
TrustShadow [36] TCB: general and security: low
TrustOTP [37] TCB: larger and security: high
Reference [38] TCB: general and security: low
AdAttester [39] TCB: larger and security: high
TZEAMM TCB: smaller and security: high

4 Security and Communication Networks

3. Attack Model

Some researchers deploy functional modules on the TEE to
dynamically measure and assess the health of target appli-
cations in real time and assess their state. Functional
modules assess the security state of the application code and
data segments to protect them in real time. However, when
using the TrustZone mechanism, the modules in the TEE,
which provide security services, are passively invoked by
applications in the REE. Te security services will be
deactivated whenever the API interface for these passive calls
is deleted, such as the Trojan Dvmap virus [24].

As shown in Figure 2, Target Apps represents the
protected applications. Te collection of components in the
TEE that provide measurement services to the Target Apps is
called functional modules. Te functional modules’ invoker,
which calls functional modules, and the functional modules
periodically perform their measurements when invoked by
this module. Te specifc attack process is as follows.

By modifying the entire page table, the attacker alters the
properties of the memory page so that it is writable. Te
contents of the memory page corresponding to code and
data segments can be modifed. First, the attacker manip-
ulates the functional modules’ invoker to break the API call
interface and bypass the measurement service of the func-
tional modules. When the invocation interface of the
measurement service is disrupted, the attacker destroys the
Target Apps and accesses the apps’ privacy data.

In summary, we assume that TEE is secure, and complex
hardware attacks such as side-channel attacks are beyond the
scope of this article. We only consider the following two
points of attack: one is themodules and applications running
on REE. Te other is the API interface in REE, which is used
to invoke the TEE security service. We only consider the
security of the process code and data segments.

4. System Overview

In this study, a trusted computing active measurement ar-
chitecture based on the TrustZone architecture named
TZEAMM is proposed and simulated with an open portable
trusted execution environment (OP-TEE). TZEAMM is
based on two execution environments, REE_A and TEE_A,
as shown in Figure 3. REE_A performs normal computa-
tional tasks and provides measurement protection for the
target applications. TEE_A stores trusted reference values
and checks the security of functional modules in REE_A.

TZEAMM consists of four main modules and seven
submodules. As shown in Figure 3, the mainmodules are the
CA, TAOC (trusted application on the client), TA, and FM-
K (functional module-kernel) modules. Te target appli-
cations running in the CA module perform the computa-
tional tasks. Te TAOC module is a functional module
running in REE_A. It contains the submodules removed
from TEE_A, the control module, and the assessment
module. Te control module schedules the entire mea-
surement process in an active mode. Te assessment module
determines whether the measurement result is as expected.
Te TA is a functional module deployed in TEE_A and

includes the TBDB (trusted base database) submodules and
the monitoring module. Te TBDB stores trusted reference
values of modules and applications. Te monitoring module
ensures the security of the functional modules moved into
the kernel. Te FM-K module also consists of submodules:
the measurement module and the communication module.
Te measurement module is the core module that imple-
ments active measurement mechanisms and measurement
strategies. Te communication module transmits informa-
tion between the kernel and the user area. In addition, the
OP-TEE message transmission submodule in the kernel is
used to transmit information between REE_A and TEE_A.

In this architecture, the functional modules are deployed
in REE_A, and the measurement data acquisition mainly
depends on the inter-module communication and the
kernel-user communication. CPU mainly operates in
REE_A, which has little impact on the target application.Te
performance cost caused by environment switching times is
also greatly reduced.

5. Innovative Technology Employed in the
Proposed System

In this section, we present two innovative technologies based
on the proposed system: an active measurement mechanism
for active defense and a fallback mechanism for attack
response.

5.1. Active Measurement Mechanism. As shown in Figure 4,
the active measurement mechanism includes two parts: the
active measurement of the target application and the internal
immunity of the active measurement modules realized by
the active measurement.

One is the active measurement of the target application
by active measurement modules. Te active measurement
modules consist of TAOC, FM-K, and monitoring modules.
Active measurement does not require the invocation of a
target application. During the operation of the target ap-
plication, the active measurement modules measure the
target application according to the security policy to ensure
that the behavior of the target application is consistent with
expectations.

Te other is the active measurement closed-loop im-
munity of the active measurement modules. To improve the
operating efciency of the security mechanism, the TAOC
and FM-K modules are executed in REE_A. Tey may be
threatened by the attack described in Section 3.Te attack on
the TAOC and FM-K modules will afect the normal op-
eration of the active measurement mechanism. Terefore,
we have developed an active measurement closed-loop
immune mechanism to ensure the security of the active
measurement modules. Based on the trust transfer of three
functional modules, the active measurement closed-loop
immune mechanism is implemented, as shown in Figure 4.
Te monitoring module runs in TEE_A and is protected by
TEE_A. Te monitoring module, as the starting point for
trust transfer, actively measures the FM-K module. Te
trusted FM-K module actively measures the TAOC module,

Security and Communication Networks 5

which is at the end of the trust transfer. Based on the
abovementioned trust transfer, the TAOC module is pro-
vided with a function to control and call the monitoring
module. In this way, an active measurement closed-loop is
established. Under the supervision of the FM-K module, the
caller of the monitoring module, namely the TAOCmodule,
controls the monitoring module’s measurement task to solve
the problem of the monitoring module’s unsafe passive call
interface. Each functional module is controlled by the su-
perior module in the closed-loop. Even if it is attacked by the

passive call cancellation attack described in the attack model,
it can be detected by the superior module and return to the
normal state through the fallback mechanism (described in
Section 5.2). By developing an active measurement closed-
loop immunity mechanism, we solve the problem of an
insecure API interface between TA and CA, protect the
monitoring module in TEE_A, and then ensure the security
of the external functional module of TEE_A.

Consequently, the active measurement mechanism en-
sures the security of the target applications with the security

REE_A TEE_A

Target
Appprocess

CA

TAOC

Assessment
module

Measurement
module

KERNEL

Communication
module

TBDB

OP-TEE
Messaging module

TA

Safety origin BIOS

OSLoder
FM-K

Control
module Monitoring

module

Taregt application deployed in REE

Functional module removed from TEE

Unmoved modules from the original schema

Figure 3: System architecture diagram.

Functional
Modules' Invoker

Functional
Modules

API call

Target Apps

Disrupt

Measurement
Service

CA TA

Attacker

REE TEE

Figure 2: Schematic of the attack model.

6 Security and Communication Networks

functional module, which can efectively protect all code and
data segments from tampering.

5.2. FallbackMechanism. In the face of attacks on the active
measurement modules and target applications, the fallback
mechanism is employed to fall back to the nearest trusted
module. Trust is restored from this module. Te module is
then given permission to restart the attacked module and
transfers the trust down until the security of the entire
system is restored. As follows, attacks may occur in two
places.

(1) FM-K is the measurement and communication
modules. When an attack occurs in the FM-K
module, the right of control falls back from the
TAOCmodule to the monitoring module in TEE_A,
as shown in Figure 5. Te monitoring module au-
tomatically restores and measures the attacked
module through a backup. Te chain of trust is then
retransmitted down, starting with the FM-Kmodule.
Finally, the TAOC module, validated as a trusted
component, is used to regain control of the appli-
cation process.

(2) TAOC, i.e., the control and assessment modules.
When an attack is detected in the TAOC module, it
relinquishes control to the higher-level FM-K
module and stops measuring the application process,
as shown in Figure 6.Te untrusted TAOCmodule is
destroyed and restarted by the FM-K module in the
user mode. It then resumes measurement and
control of the application process after being found
to be trusted.

Tis method replaces the previous way of restarting the
entire system as soon as an attack is detected, and it
eliminates to some extent the additional performance
burden.

6. Design

In this section, we describe the processes of static mea-
surement and dynamic measurement, as well as the data
interaction description method used in the dynamic
measurement.

6.1. Data Interaction Description Method

Defnition 1. Te measured entity can be expressed as
follows:

EM � 〈target, identifer, state, data〉. (1)

Here, the target is the measured target, which may be the
user mode application process (ClientAP) or a functional
module that has been removed from the TEE (FM). Te
identifer is a unique identifer of the measured target, re-
ferred to as the process number (PID) or the FM-K module
name (kernel_symbol). Te state represents the status of the
target, i.e., whether it is trusted, untrusted, or null. Null here
denotes that the status of the target has not been measured
yet. Data are the transmission data and can be the mea-
surement result of the measurement module, the trusted
reference value from the TBDB, or null.

Defnition 2. Te transmission of the measured target in-
formation can be expressed as follows:

S⊳1 (control,measurement,EM)∩EM � 〈target, identifier, null,∅〉 @t. (2)

Tis means that the control module sends information
about the measurement target to the measurement module

within t seconds. Here, the measured entity EM in Defnition
1 gives specifc information about the target. When the state

REE_A TEE_A

CA
Process 1
Process 2

Process N

Target
 Application

Control
Active measurement

Active Measurement
Closed-Loop

Immune Mechanism

Active Measurement
Modules

Measurement
module

Monitoring
module

TAOC

FM-K

Control
module

......

Figure 4: Te active measurement mechanism model in TZEAMM.

Security and Communication Networks 7

of the measured target is null, the control module outputs
the measurement work for the measurement goal. At this
stage, the data are represented by ∅.

Defnition 3. Te transfer of the measurement value can be
denoted as follows:

S⊳2 (measurement, communication,EM)∩EM � 〈target, identifier, null, hash〉 . (3)

Tis indicates the transmission of the measurement
value from the measurement module to the communication
module. Again, the state of the measured target is set to null.

Te hash value calculated by the measurement module is
stored in the data.

In the same way as before,

S⊳3 (communication, assessment,EM)∩EM � 〈target, identifier, null, hash〉 , (4)

is expressed as the fow of the measurement value from the
communication module to the assessment module.

Defnition 4. Te transfer of the trusted reference value can
be described as follows:

S⊳4 (TBDB, assessment,EM)∩EM � 〈target, identifier, null, hash_base〉 . (5)

Te formula represents the transfer of the trusted ref-
erence value from the TBDB to the assessment module. Te

state of the target is null here as well. Te data are set to the
trusted reference value in the TBDB.

Monitoring
Module ApplicationTAOC

ApplicationTAOC

FM-K

Right of
Control

Restore

Fallback mechanism
Attacker

Unsafe area
Safe area

End trust transfer
Trust transfer

Right of
Control

Figure 6: Fallback mechanism in case 2.

Monitoring
Module ApplicationTAOC

ApplicationTAOC

FM-K

Right of Control

Restore

Fallback mechanism

Attacker

FM-K

Unsafe area
Safe area

End trust transfer
Trust transfer

Attacker

Figure 5: Fallback mechanism in case 1.

8 Security and Communication Networks

Defnition 5. Te transmission of the decision result indi-
cation can be expressed as follows:

S⊳5 (assessment, control,EM)∩EM{

� 〈target, identifier, trusted|untrusted,∅〉.
(6)

Tis indicates the transfer of the state of the measured
target from the assessment module to the control module,
whose value is trusted or untrusted.

6.2. Static Measurement. Tis study is grounded in the
TrustZone architecture’s security mechanism, which can
ensure the integrity of the REE_A application start-up and
load times. Te trust chain can be divided into two stages.
Te frst stage is the trust verifcation from the frmware
start-up to the loading of TEE_A.Te second stage is loaded
by TEE_A to verify the trust of REE_A systems and ap-
plications. In this study, the TrustZone architecture is
simulated using OP-TEE.

Te trusted root of the system is code in read-only
memory (ROM) in the CPU kernel, which is considered as
trusted in this study, and is not tampered with. Tis code is
loaded into the CPU’s static random-access memory
(SRAM) during start-up. Based on the PUF characteristic of
the initial power-up value of the CPU on-chip SRAM [20],
the data in the SRAM are overwritten by other data after the
system starts. Te rest of the system is verifed by the trusted
chain to ensure the security of the entire system.

Te frst step of the frst stage is to use the on-chip trusted
code segment to verify the security of the basic input and
output system (BIOS). After passing the verifcation, the
BIOS is loaded and the trust is passed to the segment. Te
trust is fnally transferred to TEE_A via the BIOS and
OSLoader. Te TEE_A boots after verifcation, and the frst
stage of authentication ends [42].

Te second stage of authentication starts with the trusted
TEE_A. First, TEE_A validates the operating system of
REE_A through the OP-TEE mechanism. REE_A is acti-
vated when TEE_A fnds it trustworthy. Next, the moni-
toring module in TEE_A determines whether the FM-K
module is trusted. After the FM-K module is determined to
be trusted, it loads and measures the TAOCmodule. Finally,
the active measurement modules measure the application
launched in REE_A. Here, certifcation is a coarse-grained
measurement of the code segment and data segment. Te
loaded target can be executed if it expects the measurement
value. Tus, the trust chain extends from the trusted root to
the entire system.

In the following sections, we describe the protection
methods for code segments.Te protectionmethods for data
segments are the same as those for code segments and
therefore do not need to be discussed separately.

6.3. Dynamic Measurement. If you rely only on static
measurements, the safety of the system is not guaranteed.
For example, static measurements are not able to handle
TOU-TOC (time of use-time of check) attacks [21, 41, 43],
where the process remains unafected before the

measurement but is destroyed afterwards. Only with the help
of dynamic measurement and the defnition of an appro-
priate measurement period can we ensure the security of the
system during runtime. Te object of the dynamic mea-
surement includes two parts: the active measurement
modules in REE_A and the target application in REE_A.

Te dynamic measurement of the application is per-
formed by the active measurement modules. Terefore, it is
important to ensure the security of these modules. Once they
are attacked, the measurement results they provide are no
longer trustworthy. As shown in Figure 7, the monitoring
module in TA periodically measures the FM-K module to
ensure its security.Te following describes the measurement
procedure for the code segment. First, the monitoring
module receives the entity information of the FM-Kmodule,
expressed as EM � 〈FM, kernel_symbol, null, null〉. Second,
the monitoring module accesses the kernel symbol list to
determine the address of the code segment. Finally, the code
segment is measured and evaluated. Te FM-K module,
which is trusted, authenticates the TAOC module. Here, the
FM-K module collects information about the TAOC
module, which is represented as EM � 〈FM, pid, null, null〉.
Ten, the code segment of the module is acquired according
to the PID. Finally, the FM-K module measures the code. If
the TAOC module and the FM-K module are found to be
untrusted, the fallback mechanism is used to recover them.

Te active measurement modules that are verifed to be
trusted measure the application to ensure the security of
its runtime. As shown in Figure 8, the control module regularly
sends the measurement module an authentication request for
the process in the CA module as
S⊳1 (control,measurement,EM)∩EM�{ 〈clientAP, pid, null,
∅〉}@t. After receiving the process unique identifer PID, the
measurement module receives the code segment of the
corresponding process space and performs the hash operation
on it. Ten, the measurement module sends the calculated
hash value to the communicationmodule.Tis is expressed as
S⊳2 (measurement, communication,EM)∩EM� 〈clientAP{

, pid,null, hash〉}. According to the interaction strategy be-
tween the kernel and the user state, the communication
module transmits the hash value to the assessment module in
the user mode, described as S⊳3 (communication, assessment,{

EM)∩EM � 〈clientAP, pid, null, hash〉}. When the control
strategy is executed, the assessment module retrieves the
trusted reference value from the TBDB in TEE_A.Te data are
passed between REE_A and TEE_A via the OP-TEE message
transmission module. After receiving the communication re-
quest from the assessment module to the TBDB, the SMC uses
the instruction to switch the environment. Ten, it sends
a read request to the TBDB. Te TBDB stores the trusted
reference value in the shared memory, and the environ-
ment switches back to REE_A. Tis process is referred
to as S⊳4 (TBDB, assessment,EM)∩EM � 〈clientAP, pid,

null, hash_base〉}. Te assessment module retrieves the
trusted reference value from the shared memory, compares
it with the hash value provided by the measurement
module, and sends the comparison result to the control
module. Te previously described process can be expressed
as S⊳5 (assessment, control, EM)∩EM �{ 〈clientAP, pid,

Security and Communication Networks 9

trusted|untrusted,∅〉}. Finally, the control module applies
the appropriate strategy to the process, depending on the
outcome of the decision. If the result is credible, the module
does not interfere with the normal operation of the process;
otherwise, it forcibly terminates the process.Tis completes
the dynamic measurement of the process.

7. Implementation

In this section, we explain the experimental environment
and implementation methods of the key technologies.

7.1. Execution Environment. Te quick emulator (QEMU)
2.9.50 of Ubuntu 16.04 and OP-TEE 2.6.0 was used in this
experiment. Te two prototype systems were virtualized by
QEMU. TZEAMM was built so that REE_A and TEE_A
could run simultaneously. Te virtual REE_A ran on a

complete Linux system. It could obtain the security services
of TEE_A by calling the API provided by OP-TEE [44]. We
used OP-TEE to simulate the trusted execution environment
of TrustZone.

In this study, the Netlink communication mechanism
used the socket application programming interface (API) for
interprocess communication, which enables full-duplex and
asynchronous communication. It also enables data trans-
mission between the user space and the kernel space. It
provides not only a set of standard API interfaces for user-
space programs but also a set of special APIs for kernel
modules. By calling the API, messages can be passed between
the two spaces.

Te following describes how the CA invokes the services
in the TA. First, the CA calls the TEE_Client_API to initiate
the system call to enter the kernel state in REE_A and then
locates the appropriate driver based on the parameters
called. Te driver invokes the SMC command, switches the

process

Control
module

Assessment
module

Measurement
module

Communication
module

OP-TEE Messaging
module

hash value hash base

hash base

TBDB

TA

TAOC

KERNEL

CA

pid①

②

hash value③

⑤

⑥

⑦

⑧

⑨

⑩

④

Figure 8: Dynamic measurement details.

FM-K TA

Monitoring
module

TAOC

Control
module

process

CA

Measurement
module

Monitoring module measures
functional module in the kernel ①

Functional modules in the
kernel measure the TAOC

module

②

Functional modules measure
the application③

①

②

③

Figure 7: Te schematic diagram of dynamic measurement.

10 Security and Communication Networks

processor to the secure kernel state, and enters the security
environment of TEE_A. Ten, the service request of CA is
sent to TEE_A. TEE_A calls the corresponding TA via the
TEE_Internal_API and transmits the data that needs to be
transferred to the CA. Finally, it goes back to the TEE_A
kernel state and invokes the SMC command to switch back
to REE_A.

7.2. Implementation Method. Te API interface is used by
the control module to control the operation of the moni-
toring module and by the assessment module to read the
trusted reference value from the TBDB. In the context of the
OP-TEE mechanism, the implementation of the API in-
terface of REE_A that calls the TEE_A service is as follows: to
begin, the TEEC_InitializeContext function needs to ini-
tialize and set up a context with TEE_A. Ten, the TEE-
C_OpenSession function is applied to establish the session
window between the CA and the TA. Te CA sends an
execution request to the TA by the TEEC_InvokeCommand
function to perform the specifc operation. Finally, the
session window is closed using the TEEC_CloseSession
function and the established context is cleared by the
TEEC_FinalizeContext function. When REE_A calls the API
interface of TEE_A, the TA, such as the TBDB and the
monitoring module, must perform the following steps: to
facilitate the API call, an entry point for the CA is set up by
executing the TA_CreateEntryPoint function to facilitate the
API call. Ten, the TA_OpenSessionEntryPoint function is
used to establish a communication channel between the CA
and the TA.Te TA_InvokeCommandEntryPoint function is
executed to receive the instructions and parameters trans-
mitted by the CA, and the function is implemented
according to the command ID. Te communication channel
is closed by executing the TA_CloseSessionEntryPoint
function. Te access point is fnally removed by executing
the TA_DestroyEntryPoint function.

To send the PID of the measured process to the mea-
surement module, it is necessary to establish a communi-
cation connection between the user state and the kernel
state. To do this, the user-mode process needs to create a
socket and use the bind function to bind the address used to
the socket.Ten, the function ioctl is used to transfer the PID
to the measurement module’s driver fle, and the function
recvfrom is used to receive the returned value from the
kernel.

Te measurement-specifc process for the code segment
is described as follows: the task structure of the process is
determined by calling the function fnd_vpid according to
the PID. Te address of the code segment is obtained, and
the code is mapped to the preallocated memory. When
visiting the preallocated space, the SHA cryptographic al-
gorithm is used to hash the code segment and obtain the
measurement value. Te measurement method for TAOC is
the same as for the target application. Te FM-K module’s
code segment acquisition method is described as follows: the
kernel module can be accessed in the form of a kernel
symbol. Terefore, the function kallsyms_lookup_name is
used to read the kernel symbol list and obtain the address of

the code segment. Ten, the code segment obtained by the
access address is stored in a variable of the TEEC_Operation
data type for transmission to the monitoring module in
TEE_A.

8. Evaluation

In this section, we analyze and evaluate the proposed system
from two aspects: function and performance.

8.1. Function Evaluation. In this section, we examine the
functions in two ways: in Section 8.1.1, we verify the
functions through attack tests. In Section 8.1.2, we theo-
retically analyze the functions included in this system by
comparing and analyzing them against the other three TEE
designs and integrity measurement schemes.

8.1.1. Function Verifcation. We implemented the attack
model to test whether TZEAMM can detect and respond to
the attack. Te attack module resides in the kernel, and its
purpose is to attack and destroy the process by modifying its
code segment. It looks up the process descriptor of the target
process based on the PID in the process descriptor list. By
modifying the fag bit of the virtual memory region corre-
sponding to the process, the region changes from a read-only
property to a read-write property. Te code segment in the
area was modifed to perform the attack on the specifed
process. After the attack started, the measurement value
process changed. Te assessment module showed that the
comparison of the measurement value did not match, thus
detecting an attack on the code segment of the process.
Finally, the control module automatically resumed the attack
process to prevent the system from being further compro-
mised. Trough functional tests, we verify that the defense
mechanism can efectively defend against code segment
attacks such as CSE509-Rootkit, Reptile, and enyelkm by
setting corresponding measurement targets.

8.1.2. Comparison and Analysis. Te study’s scheme is
compared with the other three TEE runtime systems. Te
results are shown in Table 3.

iFlask is a Flask scheme based on TrustZone proposed by
Zhang and You [45] which is an access control module
integrity protection system. It uses the TEE to protect the
access control security server subsystem, and it not only
implements memory protection policies but also provides an
exception trap mechanism to protect other functional
components. Te proposed memory protection strategy
extends the scope of TrustZone’s protection while restricting
access to physical pages. Te integrity of the process code
segment, all functional components, and applications in REE
is protected by the method described previously. In addition,
the attack response technique is implemented through the
exception trap mechanism, which hooks the exception
modifcation and sends it to the TEE for a response.
However, the impact of a higher TCB is ignored, and the
only defense strategy is a passive access control-based one.

Security and Communication Networks 11

TLR [46] is a trusted language runtime approach that
allows developers to create trusted components using high-
level languages. Te computation portion of a sensitive
application is split into the TEE, while the rest remains in the
REE. Isolated runtime environments for distinct applica-
tions are created in the TEE, and functional modules are set
in the REE to connect the two parts of the application. Tis
reduces the TCB while protecting the critical computational
activities of the application. Attackers can still cancel the call
to the TEE service by modifying code segments or com-
promising applications and functional modules in the REE
due to the lack of memory monitoring and protection in the
REE. As a result, the TEE technique, which only covers the
key operation part of the program, is not sufcient to ensure
the security of the entire application. Te integrity of the
process code segments, functional components, and appli-
cations of REE is not adequately protected.Te performance
problems caused by frequent invocation of the sensitive
computing component of the TEE when the environment
switches are not discussed in this article nor are the response
to attacks and active defense.

TAuth [47] is a TrustZone-based technique for pro-
tecting the security of authentication applications. Te
isolated environment is confgured in the REE and protected
by a memory isolation mechanism. In this method, the
critical components of the application are isolated in the
REE, and the TEE is used to switch between the normal and
the isolated area in the REE. As a result, this technique
efectively minimizes the TCB’s size. Using a memory iso-
lation method also ensures the security of functional
components. However, similar to the TLR, the isolation area
can only ensure the security of the internal parts and not the
rest of the application outside the isolation region. Tere-
fore, the integrity of the application component outside the
isolation region, as well as the associated code segment,
cannot be guaranteed. Attack response and active defense
are not mentioned in the article nor are the performance
issues caused by frequent environment switching, which are
still worthy of attention.

To reduce the TCB, we excluded the majority of func-
tional modules from the TEE in our research. To ensure the
security of removed functional modules, we set up the
monitoring module in the TEE. To cope with the attack
mode specifed by the attack model, we developed an active
measurement mechanism. To ensure the integrity of the

application and process code segments, the active mea-
surement modules dynamically measured the target appli-
cations. Te attack response mechanism, based on the
fallback mechanism, and the active defense method, based
on dynamicmeasures, work together to protect the system as
much as possible.

Next, we performed a comparative analysis with four
TrustZone-based integrity measurement scheme methods.
Te results are shown in Table 4. KIMS [19] is a scheme to
provide measurement integrity protection for the kernel in
REE. TZTCM [20] is an active measurement scheme for
applications. TruAPP [27] is a scheme to provide integrity
verifcation for functional modules and applications such as
tracers in REE. Reference [26] is a scheme for measuring
application code segments. Our solution provides a dynamic
measurement for applications and functional modules.
Regarding the size of TCB, KIMS, and TZTCM, the authors
in [26] do not consider the reduction of the size of TCB and
the attack surface that TCB provides. TruAPP has removed
functional modules such as the tracker, and the TCB is
reduced to some extent compared to other schemes. In our
scheme, most of the functional modules have been removed
and the TCB is smaller. Our scheme protected the API
interface between CA and TA. However, KIMS, TZTCM,
and TruAPP disregarded the security of the API interface
while providing services in functional modules. Te mea-
surement module in Reference [26] is called by the Attes-
tation CA in REE to run but ignores the situation that the
security measurement service is bypassed after the API
interface of the Attestation CA call is attacked. For attack
response, TZTCM proposed a shutdown restart or alert
scheme. We propose a more efcient fallback mechanism;
other schemes do not consider the response actions after an
attack.

In addition, we also made a quantitative comparison
among the abovementioned schemes. Since the system ar-
chitectures of the abovementioned solutions are diferent,
the details of the interaction between modules are not
covered in the articles. Terefore, we compare the param-
eters that have a great impact on performance, that is, the
environment switch. Te measurement modules of other
schemes such as KIMS are deployed in TEE, so it needs to
switch the environment 2 ∗ n times to obtain the mea-
surement data, and 2 times environment switches are needed
to call and return the measurement results. However,

Table 3: Function comparison of this system with other runtime systems.

Function iFlask [45] TLR [46] TAuth [47] TZEAMM

Small TCB

Process code segment integrity
Attack response
Protection of functional components
App protection
Active defense
: Realization. : Partial-realization. : No-realization.

12 Security and Communication Networks

TZEAMMdeploys the measurement module in the kernel of
REE and TBDB in TEE; only two environment switches are
needed to obtain the trusted reference value. Terefore,
TZEAMM optimizes the performance.

8.2. Performance Evaluation. In this section, we analyze
performance mainly from two perspectives: Section 8.2.1
analyzes the time overhead caused by the communication
between REE_A and TEE_A, and Section 8.2.2 examines the
performance of the system using the performance test tool,
Lmbench.

8.2.1. Performance Optimization Analysis. In the raw in-
tegrity measurement architecture, when TA is invoked by
CA, there is a time cost due to environment switching,
registration, and shared memory release. As shown in
Figure 9, when the CA invokes the service in the TEE, an
environment switch occurs. In addition, the shared memory
must be registered in the REE.Te control module sends the
control strategy to the measurement module, which requires
communication between the modules. Te measurement
module must access the REE kernel to obtain the code
segment, which requires an environment switch and com-
munication between the user mode and the kernel state. If
the size of the code segment is M and the size of the shared
memory used for data transfer isMg, it must go through 2 ∗
n� 2 ∗ M/Mg environment switches [48]. After the
measurement is completed, the following communication
between the modules is required: transferring the measured
value, retrieving the trusted reference value, and sending the
measurement result to the control module. Te control
module executes the appropriate strategy according to the
decision result. Ten, it must release the shared memory,
switch the environment, and return to the REE. In this
process, we have to go through a total of 2 ∗ (1 + n) envi-
ronment switches, one shared memory registration, one
shared memory destruction, fve communication processes
between modules, and two communication processes be-
tween the kernel mode and the user mode. Since most of the
measurement work is carried out in the TEE, if the TA
requires a large amount of computation and takes up the
CPU for a long time, it would shield the interrupt requests
from the REE. Tis causes the process in the REE to starve
due to a long wait time (process hunger occurs when the
waiting time has a signifcant impact on process progress
and response. Starvation death occurs when the process of
starvation, in a sense, waits until it has no practical meaning,

even when it is completed). To reduce the phenomenon of
“starve to death,” the priority of the processes in the REE
must be increased and some of the REE interrupts must be
answered during the TA operation. Each interrupt response
introduces an overhead of at least two environment switches,
which greatly afects the performance of the system.

In the mechanism proposed in TZEAMM, the following
additional costs are incurred when making measurements,
as shown in Figure 10: the inter-module communication
cost incurred, which is caused when a measurement request
is sent to the measured process, the cost incurred when the
PID is transmitted to the control module, the cost incurred
when the measurement value is sent to the judgment
module, and the cost incurred when the judgment result is
sent to the control module. Te data fow between the
control module and the measurement module is carried out
through the communication process between the user state
and the kernel. When the judgment module goes to the
TBDB to get or write the trusted reference value, the
overhead increases by two environment switches, one shared
memory registration, and one shared memory destruction.
When performing nmeasured data transmissions, the entire
process must go through two environmental switches, one
shared memory registration, one shared memory destruc-
tion, four times intermodule communication, and 2 ∗ n
times of communication between the kernel state and the
user mode. As most of the measurements were performed in
the REE, no world switching is required when handling
external interrupts to avoid “starvation,” which reduces the
impact on system performance.

It is, therefore, crucial to reduce the computational cost.
Terefore, each environment switch must go through a
complex process of state saving and loading, which is more
costly in terms of performance than kernel-user interaction.
Comparing the proposed architecture with the raw integrity
measurement architecture, Table 5 shows that this mecha-
nism greatly reduces the number of environment switches
and optimizes performance.

8.2.2. Performance Optimization Evaluation. To verify the
efectiveness of the architecture proposed in this paper, we
used the Lmbench tool to test two systems with and without
the security mechanism.Te experiment was performed on a
machine using a CPU of Intel Core (TM) i7-6500. It has two
cores with 2.5GHZ and 4G memory. It uses OP-TEE to
simulate ARM TrustZone and uses Linux as the operating
system. Te Linux kernel version is 4.15.0–142-generic. Te

Table 4: Function comparison of this system with other integrity measurement schemes.

Models KIMS [19] TZTCM [20] TruAPP [27] Reference [26] TZEAMM
Integrity protection Realize Realize Realize Realize Realize
TCB Larger Larger General Larger Smaller
Protection of CA-TA API interfaces None None None None Realize
Attack response Shutdown etc None None None Fallback
Number of environment switches 2 ∗ (1 + n1) 2 ∗ (1 + n1) 2 ∗ (1 + n1) 2 ∗ (1 + n1) 2
1n: if the size of the code segment isM and the size of the shared memory used for data transfer isMg, it must go through 2 ∗ n� 2 ∗ M/Mg environment
switches.

Security and Communication Networks 13

TACA

Control module

Application Control module

TBDB

Application

Measurement
module

Assessment
module

Assessment
module

KERNEL

② ③ *n

② ③ *n

③ ④

③ ④

①

①

①

①

①

Control module

③

Communication between modules
Environment switch

①

④ Shared memory allocation/releasion
Communication between kernel and user mode②

Figure 9: Raw integrity measurement architecture’s additional overhead.

CA TAOC FM-K

② *n

② *n

③

③

Control module

Control module

Control module

Control module

Measurement
module

Assessment
module

Assessment
module TBDB

④

④

Application

①

①

③

Communication between modules
Environment switch

①

①

①

④ Shared memory allocation/releasion
Communication between kernel and user mode②

TA

Figure 10: Extra cost of this design.

14 Security and Communication Networks

tests were divided into four categories: normal operations,
basic integer operations, fle system latencies, and memory
latencies. Box plots were used to describe the experimental
results. Te test results are presented in the article as follows.

Normal operations included the null-call, open-close, and
fork-proc. Te null-call is a simple system call, and open-close
is the operation of opening and then immediately closing the
document. Te fork-proc is the operation that allows one to
exit immediately after forking the process. As can be seen in
Figure 11, the impact of the security mechanism on the null-
call operation was negligible, and the impact on the open-
close operation was approximately 0.23ms. Our architecture
has some impact on the fork-proc operation. Te impact was

about 20ms, but the maximum delay was less than 80ms.
Te basic integer operations include intgr-div, int64-mod,
double-mul, and double-div to test the impact of hash op-
erations on the system.Te results in Figure 12 show that the
largest impact on the four operations is approximately
0.5 ns. As can be seen in Figure 13, the fle system latencies
have two operations: 10k-create and fle-delete. Here, 10k-
create represents the time taken to create a 10k fle, while fle-
delete represents the time taken to delete a 10k fle.Te delay
of 10k-createwas increased by roughly 75ms, and the impact
of fle-delete was about 20ms. Te operations in Figure 14
that afect memory are main-mem and rand-mem, which
represent the latency of memory continuous access and

Table 5: Performance comparison of this architecture with raw integrity measurement architecture.

Operations Raw architecture Our architecture
Communication between modules 5 4
Communication between the kernel and the user mode 2 2 ∗ n1
Environment switch 2 ∗ (n1 + 1) 2
Shared memory allocation/release 2 2
1n: number of times the measurement data are transferred.

0.45

0.50

0.55

0.60

0.65

Ti
m

e (
m

s)

original our method

(a)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Ti
m

e (
m

s)

original our method

(b)

220

240

260

280

300

Ti
m

e (
m

s)

original our method

(c)

Figure 11: Testing normal operations. (a) Null-call operation latency. (b) Open-close operation latency. (c) Fork-proc operation latency.

9.00
9.25
9.50
9.75

10.00
10.25

Ti
m

e (
ns

)

original our method

(a)

13.5

14.0

14.5

15.0

15.5

Ti
m

e (
ns

)

original our method

(b)

1.35

1.40

1.45

1.50

Ti
m

e (
ns

)

original our method

(c)

4.8

5.0

5.2

5.4

Ti
m

e (
ns

)

original our method

(d)

Figure 12: Testing basic integer operations. (a) Intgr-div operation latency. (b) Int64-mod operation latency. (c) Double-mul operation
latency. (d) Double-div operation latency.

Security and Communication Networks 15

random access operations. Te delay of memory continuous
access operations was approximately 1.1 ns. Compared with
the system without a security mechanism, our system re-
duced the speed of memory random access operations by
11.54%. In summary, the impact of our method on the
performance of the host system was very limited.

Moreover, the security mechanism is always on after
the system is powered on, and the measurement data will
be read and written frequently in memory. In order to
evaluate the impact on the system, we measured the
change in memory throughput in REE with or without a
security mechanism. We performed 100 write and read
memory operations under the memory space of 100MB to
analyze the average throughput. As shown in Table 6, the
average write throughput is 3.49MB/s when there is no
security mechanism and 3.31MB/s when there is a se-
curity mechanism. Te throughput of write operations is
reduced by 5.16%. Te average throughput of read op-
erations is 67.34MB/s when there is no security mecha-
nism, and it is 65.48MB/s when there is a security
mechanism. Te throughput of read operations decreased
by 2.76%. It indicates that the overhead of the normal
computation system’s memory is acceptable.

9. Conclusion

In the face of attacks on smart devices, technologies such as
passive defense frewalls and trafc-based intrusion detec-
tion are no longer sufcient. Although the existing TEE
technology can ensure system security to some extent, there
are still some problems, such as the larger attack surface due
to the large TCB, the insecure API of the TEE service, and
the high-performance cost. In view of this situation, we
developed a trusted computing active measurement archi-
tecture based on TrustZone. We reduced the size of TCB by
removing some functional modules in TEE. We developed
an active measurement mechanism to protect the internal
security of the functional modules and the security of the
target applications. It implemented active defense and
defended against security vulnerabilities in the API interface

0

50

100

150

200

250

300

350

Ti
m

e (
m

s)

original our method

(a)

10

20

30

40

50

60

Ti
m

e (
m

s)

original our method

(b)

Figure 13: Testing fle system latencies. (a) 10k-create operation latency. (b) File-delete operation latency.

original our method

19

20

21

22

23

Ti
m

e (
ns

)

(a)

original our method
120

130

140

150

160

170

Ti
m

e (
ns

)

(b)

Figure 14: Testing memory latencies. (a) Main-mem operation latency. (b) Rand-mem operation latency.

Table 6: Troughput testing with or without security mechanism.

Operations Without security mechanism With security
mechanism

Write 3.49MB/s 3.31MB/s
Read 67.34MB/s 65.48MB/s

16 Security and Communication Networks

to the TEE service. By deploying measurement work on the
REE, the world switches are reduced and the performance
overhead is reduced. To improve the availability and ef-
ciency of the system, a fallback mechanism is established as a
response mechanism to attack. Experimental results have
shown that our method can actively detect and respond to
attacks. In addition, through performance testing and
analysis, we have shown that our method can reduce per-
formance overhead and reduce the impact of security
mechanisms on the system. Currently, dynamic measure-
ment only includes code segments and data segments. In the
future, we will investigate the measurement of more dy-
namic structures, e.g., in the stack.

Data Availability

Te source code used to support the fndings of this study
can be made available from the corresponding author upon
request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported in part by the National Key R&D
Program of China (Key Technologies and Applications of
Security and Trusted Industrial Control System, grant no.
2020YFB2009500) and Beijing Municipal Natural Science
Foundation (grant no. L192020).

References

[1] L. Zhou, C. Su, Y. Wen, W. Li, and Z. Gong, “Towards
practical white-box lightweight block cipher implementations
for iots,” Future Generation Computer Systems, vol. 86,
pp. 507–514, 2018.

[2] X. Zhai, K. Appiah, S. Ehsan et al., “A method for detecting
abnormal program behavior on embedded devices,” IEEE
Transactions on Information Forensics and Security, vol. 10,
no. 8, pp. 1692–1704, 2015.

[3] S. Iskhakov, A. Shelupanov, and A. Mitsel, “Internet of things:
security of embedded devices,” in Proceedings of the 2018 3rd
Russian-pacifc conference on computer technology and ap-
plications (RPC), Vladivostok, Russia, August 2018.

[4] H. Amrouch, P. Krishnamurthy, N. Patel, J. Henkel, R. Karri,
and F. Khorrami, “Special session: emerging (un-)reliability
based security threats andmitigations for embedded systems,”
in Proceedings of the 2017 International Conference on
Compilers, Architectures and Synthesis For Embedded Systems
(CASES), Seoul, Korea (South), October 2017.

[5] C. M. VanYe, B. E. Li, A. T. Koch, B. E. Li, and M. N. Luu,
“Trust and security of embedded smart devices in advanced
logistics systems,” in Proceedings of the 2021 Systems and
Information Engineering Design Symposium (SIEDS), Char-
lottesville, VA, USA, April 2021.

[6] X. Lin, “Te attack principle and defense of rootkit virus,”
Computers & Security, vol. 5, no. 4, 2009.

[7] M. Botacin, M. Zanata, and A. Grégio, “Te self modifying
code (smc)-aware processor (sap): a security look on

architectural impact and support,” Journal of Computer Vi-
rology and Hacking Techniques, vol. 16, no. 3, pp. 185–196,
2020.

[8] R. Farley and X. Wang, “CodeXt: automatic extraction of
obfuscated attack code frommemory dump,” Lecture Notes in
Computer Science, vol. 10, pp. 502–514, 2014.

[9] S. Blazy, V. Laporte, and D. Pichardie, “Verifed abstract
interpretation techniques for disassembling low-level self-
modifying code,” Journal of Automated Reasoning, vol. 56,
no. 3, pp. 283–308, Jan 2016.

[10] AUDIT MY PC, “Linux kernel mprotect() function memory
permission bypass,” 2010, https://www.auditmypc.com/
network-security-4282006.asp [Online]. Available:

[11] M. Gentilal, P. Martins, and L. Sousa, “Trustzone-backed
bitcoin wallet,” in Proceedings of the Fourth Workshop on
Cryptography and Security in Computing Systems. ACM,
Stockholm, Sweden, January 2017.

[12] Y. Fan, S. Liu, G. Tan, and F. Qiao, “Fine-grained access
control based on trusted execution environment,” Future
Generation Computer Systems, vol. 109, pp. 551–561, 2020.

[13] M. A. Bouazzouni, E. Conchon, and F. Peyrard, “Trusted
mobile computing: an overview of existing solutions,” Future
Generation Computer Systems, vol. 80, pp. 596–612, 2018.

[14] Global Platform, “TEE System architecture version 1.2,” 2018,
https://globalplatform.org/specs-library/?flter-committee=
tee [Online]. Available.

[15] X. Jia, Y. He, X. Wu, and H. Sun, “Performing trusted
computing actively using isolated security processor,” in
Proceedings of the 1st Workshop on Security-Oriented Designs
of Computer Architectures and Processors. ACM, Toronto,
Canada, January 2018.

[16] Arm, “Trustzone for armv8-a,” 2020, https://developer.arm.
com/documentation/102418/0100/TrustZone-in-the-
processor?lang=en [Online]. Available.

[17] J. Tian, H. Sun, X. Wu, and X. Chen, “A fne-grained trusted
monitoring measurement method based on security-frst
architecture,” Journal of Cyber Security, vol. 4, no. 5, 2019.

[18] M. Dorjmyagmar, M. C. Kim, and H. Kim, “Security analysis
of samsung knox,” in Proceedings of the 2017 19th Interna-
tional Conference on Advanced Communication Technology
(ICACT), February 2017.

[19] S. Dong, Y. Xiong, W. Huang, and L. Ma, “Kims: kernel
integrity measuring system based on trustzone,” in Pro-
ceedings of the 2020 6th International Conference on Big Data
Computing and Communications (BIGCOM), July 2020.

[20] P. Dong, Y. Ding, Z. Jiang, C. Huang, and G. Fan, “Design and
implementation of tpm/tcm with active trust based on tee,”
Journal of Software, vol. 31, no. 5, pp. 1392–1405, 2020.

[21] Y. Qin, J. Liu, S. Zhao, D. Feng, and W. Feng, “Ripte: runtime
integrity protection based on trusted execution for iot device,”
Security and Communication Networks, vol. 2020, pp. 1–14,
Article ID 8957641, 2020.

[22] H. Jiang, R. Chang, L. Ren, and X. Xiao, An Efective Au-
thentication for Client Application Using ARM Trustzone,
Springer International Publishing, Midtown Manhattan, NY,
2017.

[23] Q. Zhang, J. Qiao, and Q. Meng, “Build a trusted storage
system on a mobile phone,” IET Information Security, vol. 13,
no. 2, pp. 157–166, Mar 2019.

[24] C. Brook, “Google removes rooting trojan dvmap from play
store,” 2017, https://threatpost.com/google%20-removes-
rooting-trojan-from-play-store/126111/.

Security and Communication Networks 17

https://www.auditmypc.com/network-security-4282006.asp
https://www.auditmypc.com/network-security-4282006.asp
https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee
https://developer.arm.com/documentation/102418/0100/TrustZone-in-the-processor?lang=en
https://developer.arm.com/documentation/102418/0100/TrustZone-in-the-processor?lang=en
https://developer.arm.com/documentation/102418/0100/TrustZone-in-the-processor?lang=en
https://threatpost.com/google%20-removes-rooting-trojan-from-play-store/126111/
https://threatpost.com/google%20-removes-rooting-trojan-from-play-store/126111/

[25] J. Amacher and V. Schiavoni, On the Performance of ARM
TrustZoneSpringer International Publishing, Midtown Man-
hattan, NY, 2019.

[26] Z. Ling, H. Yan, X. Shao et al., “Secure boot, trusted boot and
remote attestation for arm trustzone-based iot nodes,” Journal
of Systems Architecture, vol. 119, Article ID 102240, Oct 2021.

[27] S. D. Yalew, P. Mendonca, G. Q. Maguire, S. Haridi, and
M. Correia, “TruApp: A trustzone-based authenticity detec-
tion service for mobile apps,” in Proceedings of the 2017 IEEE
13th International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob), October
2017.

[28] S. Hu, Q. A. Chen, J. Joung, C. Carlak, and Y. Feng, “Cvshield:
guarding sensor data in connected vehicle with trusted exe-
cution environment,” in Proceedings of the Second ACM
Workshop on Automotive and Aerial Vehicle Security, LA,
New Orleans, USA, April 2020.

[29] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice:
hardware-assisted isolated computing environments on
mobile devices,” in Proceedings of the 2015 45th Annual IEEE/
IFIP International Conference on Dependable Systems and
Networks, June 2015.

[30] S. Pinto and N. Santos, “Demystifying arm trustzone: a
comprehensive survey,” ACM Computing Surveys, vol. 51,
no. 6, pp. 1–36, 2019.

[31] T. Hardjono and N. Smith, “Towards an attestation archi-
tecture for blockchain networks,” World Wide Web, vol. 24,
no. 5, pp. 1587–1615, 2021.

[32] F. Raynal, “Overview of intel sgx,” 2020, https://blog.
quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.
html [Online]. Available:

[33] Y. Cheng, Q. Wu, W. Chen, and B. Wang, “Distributed
shielded execution for transmissible cyber threats analysis,”
Journal of Parallel and Distributed Computing, vol. 122,
pp. 70–80, 2018.

[34] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein,
“Eleos: exitless os services for sgx enclaves,” in Proceedings of
the Twelfth European Conference on Computer Systems, April
2017.

[35] Y. Zhang, W. You, S. Jia, L. Liu, Z. Li, and W. Qian,
“Enclavepost: a practical proof of storage-time in cloud via
intel sgx,” Security and Communication Networks, vol. 2022,
pp. 1–16, 2022.

[36] L. Guan, P. Liu, X. Xing, X. Ge, and X. Zhang, “Trustshadow:
secure execution of unmodifed applications with arm
trustzone,” in Proceedings of the 15th Annual International
Conference onMobile Systems, Applications, and Services, New
York, Niagara Falls, USA, April 2017.

[37] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: transforming
smartphones into secure one-time password tokens,” in
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, October 2015.

[38] A. S. Salman and W. Du, Securing Mobile Systems GPS and
Camera Functions Using TrustZone Framework, pp. 868–884,
Springer International Publishing, Midtown Manhattan, NY,
2021.

[39] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: secure online
mobile advertisement attestation using trustzone,” in Pro-
ceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, May 2015.

[40] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: enforcing
kernel code integrity on the trustzone architecture,” Computer
Science, vol. 25, no. 6, pp. 1793–1795, 2014.

[41] Z. Wang, Y. Zhuang, and Z. Yan, “TZ-MRAS: a remote at-
testation scheme for the mobile terminal based on ARM
TrustZone,” Security and Communication Networks, vol. 2020,
pp. 1–16, 2020.

[42] Y. Zhou, B. Zhao, and Y. An, “A novel trusted software base
for commercial android devices using secure tf card,” Security
and Communication Networks, vol. 2022, pp. 1–12, 2022.

[43] Z. Liu and D. Feng, “Tpm-based dynamic integrity mea-
surement architecture,” Journal of Electronics and Information
Technology, vol. 32, no. 4, pp. 875–879, Jun 2010.

[44] H. Yang and M. Lee, “Demystifying arm trustzone tee client
api using op-tee,” in Proceedings of the Te 9th International
Conference on SmartMedia and Applications, Jeju, Republic of
Korea, June 2020.

[45] D. Zhang and S. You, “Ifask: isolate fask security system from
dangerous execution environment by using arm trustzone,”
Future Generation Computer Systems, vol. 109, pp. 531–537,
2020.

[46] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm
trustzone to build a trusted language runtime for mobile
applications,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 67–80, 2014.

[47] Y. Zhang, Y. Qin, D. Feng, B. Yang, andW.Wang,An Efcient
Trustzone-Based In-Application Isolation Schema for Mobile
Authenticators, Springer International Publishing, Midtown
Manhattan, NY, 2018.

[48] B. Yang, P. Dong, L. Zhang, and Y. Ding, “Research on
performance optimization of secure application based on
trustzone,” Computer Engineering & Science, vol. 42, no. 12,
pp. 2141–2150, 2020.

18 Security and Communication Networks

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

