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With the development of IT technologies, an increasing number of industrial control systems (ICSs) can be accessed from the
public Internet (with authentication). In such an open environment, cyberattacks become a serious threat to both ICS system
integrity and data privacy. As a countermeasure, anomaly detection systems are often deployed to analyze the network trafc.
However, due to privacy regulation, the network packages cannot be directly processed in plaintext in many countries. In this
work, we present a privacy-preserving anomaly detection platform for ICS. Te platform consists of three nodes running low-
latency MPC protocols to evaluate the live network packages using decision trees on the fy with privacy assurance. Our
benchmark result shows that the platform can process thousands of packages every ten seconds.

1. Introduction

A modern industrial control system (ICS) is a complex
distributed system that consists of multiple feld devices, e.g.,
sensors, actuators, and instrumentation, as well as some
control/management systems. ICS is the interface of cyber-
physical system (CPS), enabling humans to control opera-
tions and receive data from devices. In recent years, ICS has
been widely used in many industrial scenarios, such as gas,
water, and nuclear power systems, and the security of these
systems is critical.

As shown in Figure 1, a typical architecture of an in-
dustrial control system has four layers. (i) Te enterprise
management layer ofers business services and is often
connected to public network, which may include the en-
terprise resource planning (ERP) system, manufacturing
execution system (MES), and management information
system (MIS). (ii) Te supervisory control layer receives and
stores data from the underlying devices and then gives
appropriate responses. (iii) Te process control layer has
programmable logic controller (PLC) and remote terminal
unit (RTU), which directly control devices in the underlying

layer. (iv) Te feld control layer has multiple feld devices
that receive commands and send data to the process control
layer. As the enterprise management layer connects to the
public network, ICS is exposed to cyberattacks. Along with
the advancement of cyberattacks, the corresponding
countermeasure techniques also need to be upgraded. In
practice, a great number of famous industrial control sys-
tems have been severely threatened by cyberattack. For
instance, the Stuxnet virus spied and reprogrammed in-
dustrial systems controlling centrifuges of the Iran nuclear
power plant [1]. In 2021, hackers breached Colonial Pipeline
using compromised password and Colonial Pipeline had to
give hackers ransom [2].

To enhance industrial control system security, defense
systems like intrusion (or anomaly) detection system (IDS)
are deployed in ICS. IDS plays an important role in pro-
tecting ICS, which is commonly used to detect potential
cyberattacks. IDS can be classifed as network intrusion
detection system (NIDS) and host-based intrusion detection
system (HIDS). Te NIDS examines network trafc, while
the HIDS monitors the system data logs. According to
detection approach, IDS can be classifed as signature-based
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detection and anomaly-based detection. Te former detects
intrusion by recognizing harmful system pattern, while the
latter does it by analyzing network trafc packages.

In this work, we aim to design an anomaly-based net-
work intrusion detection platform for ICS. Te platform can
be deployed alongside any existing of-the-shelf ICSs, and it
can examine live network packages on the fy and raise
alarms once fault is detected. However, in many countries,
processing network packages in plaintext violates the local
privacy laws and regulations. Te European Union has put
forward General Data Protection Regulation [3] in 2016,
which has a clear standard for the processing of personal
information. In 2020, Te United States carried out the
California Consumer Privacy Act [4], creating a series of
privacy rights for consumers, such as the right to access,
delete, and know. In China, new 2020 edition of the Personal
Information Security Specifcation [5] has proposed clear
regulations in the life cycle of the personal information,
including collection, storage, use, processing, transmission,
openness, and deletion. Tese regulations will have a pro-
found impact to systems that store and/or process personal
information. Terefore, our anomaly detection platform is
designed to be privacy preserving.

As a closely related work, Gao et al. [6] used the ho-
momorphic encryption scheme to encrypt data when
training and applying ICS-specifc anomaly detectionmodel.
But homomorphic encryption scheme will lead to heavy
computation overhead. Alternatively, we utilize low-latency
secure multi-party computation (MPC) techniques for
privacy-preserving anomaly detection.

More specifcally, our platform consists of three non-
colluding servers that run low-latency MPC protocols to
analyze network package in real time using the gradient
boosting decision tree (GBDT) model with privacy assur-
ance. GBDT is an efective machine learning algorithm
which classifes input data rapidly with high accuracy.

1.1. Our Contributions. In this work, we present an efcient
MPC-based privacy-preserving anomaly detection platform
for ICS. More specifcally, the contributions of this work are
as follows:

(i) We propose a new MPC-based anomaly detection
architecture for ICS, and it is compatible with any
of-the-shelf ICSs.

(ii) We design several new constant-round low-latency
MPC protocols for privacy-preserving decision tree
evaluation.

(iii) We implement a prototype of the proposed system,
and our benchmark result shows that processing
1000 network packages with a depth-9 decision tree
takes 11 seconds in the LAN setting.

1.2. Roadmap. Te remainder of this paper is organized as
follows. We introduce the preliminary knowledge about the
approach we used in Section 2. Ten, system overview and
security model of our platform are given in Section 3. Section
4 describes privacy-preserving decision tree evaluation in
detail. We present the performance of the proposed platform
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Figure 1: A typical architecture of industrial control system.
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in Section 5. Te related work is given in Section 6. Finally,
conclusion and future work are given in Section 7.

2. Preliminary

2.1. Notations. Troughout the paper, we use the following
notations. Denote τ as the security parameter. Denote
a value x indexed by a label i as (x)i. (s, t)-secret sharing is to
divide secret into t parts, and any s participants can reveal
secret jointly. Denote (2, 2)-additive secret sharing, (3, 3)-
additive secret sharing, and (2, 3)-additive secret sharing in
Zn in Table 1.

r⟵ R means to randomly sample the element r from
the set R. In addition, y⟵ f(x) represents y is the output
when the function f( ) takes x as input. For
x ∈ [− 2l− 1, 2l− 1], map it to Z2l by adding 2l− 1.

2.2.Gradient BoostingDecisionTree. Our proposed platform
mainly uses gradient boosting decision tree (GBDT) as
intrusion detection model. Decision tree is a classical ma-
chine learning model, which is efcient and interpretable. Its
non-leaf node is decision node, which performs a test to
decide to go to left sub-tree or right sub-tree. Its leaf node is
the end of a decision path that begins with root node, in-
cluding prediction result. Boosting is a kind of algorithm
that combines many weak learners into a strong learner. Te
frst step is training a base learner, like decision tree. Ten,
adjust training samples according to the classifcation result
of base learner, so that those misclassifed samples will get
more attention in the subsequent training process. After
that, train next weak learner using adjusted training samples.
Repeat the process iteratively to obtain enough weak clas-
sifers and combine them together according to their weight
to obtain a strong classifer. Gradient boosting is an algo-
rithm in boosting, which iterates the new learner through
gradient descent.

Te GBDT is a learning algorithm based on boosting. Its
essence is that the next regression decision tree is built on the
gradient descent direction of the loss function of the last
round, and multiple regression decision trees are combined
into a gradient boosting decision tree fnally. When x is the
input of GBDT, its classifcation result is 􏽢y � 􏽐

K
k�1fk(x),

where K is number of decision trees in GBDT and fk(x) is
k-th tree’s output. In general, the tree in GBDTis CARTtree.

Given a training set S: � (x1, y1), (x2, y2),􏼈

. . . , (xn, yn)}, where xi is input feature vector and yi is its
class label. Te process of training GBDT consists of T

rounds iteration. In the k-th iteration, the goal is to generate
a decision tree fk to minimize the objective function L.

L
(k)

� 􏽘
n

i�1
l yi, 􏽢y

(k− 1)
i + fk xi( 􏼁􏼐 􏼑 +Ω fk( 􏼁, (1)

where Ω(f) � cT + 1/2λ􏽐
T
j�1ω

2
j is regularization item and

􏽢y
(k− 1)
i is i-th sample’s classifcation result in k-th iteration. l

is loss function, T is number of leaf nodes, and ωj is the value

of a leaf node. Expression (1) uses a second-order Taylor
expansion to get the following expression.

L
(k)≃􏽘

n

i�1
l yi, 􏽢y

(k− 1)
􏼐 􏼑 + gifk xi( 􏼁 +

1
2
hif

2
k xi( 􏼁􏼔 􏼕 +Ω fk( 􏼁,

(2)

where gi � z
􏽢y

(k− 1) l(yi, 􏽢y(k− 1)) is the frst step degree value of
loss function l and hi � z2

􏽢y
(k− 1) l(yi, 􏽢y(k− 1)) is the second step

degree value of loss function l.
Te k-th decision tree only includes a root node with the

training set S initially. Suppose a sample set S in a node is
partitioned into Sl and Sr; Lsplit(Sl, Sr) is defned as follows.

Lsplit Sl, Sr( 􏼁 � −
1
2

􏽐i∈Sl
gi􏼐 􏼑

2

􏽐i∈Sl
hi + λ

+
􏽐i∈Sr

gi􏼐 􏼑
2

􏽐i∈Sr
hi + λ

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + cT. (3)

Perform a test for each possible split point and select the
optimal split point that causes minimum Lsplit. If the current
node does not meet the splitting requirements, for example,
the depth of the current node reaches the maximum, the
current node becomes a leaf node with a value V(S), and
V(S) is defned as follows.

V(S) � −
􏽐i∈Sgi

􏽐i∈Shi + λ
. (4)

GBDT has strong classifcation ability in anomaly
detection task.

2.3. Secure Multi-Party Computation. Secure multi-party
computation permits two or more participating parties to
obtain output result by jointly computing over sensitive data
from respective inputs. At the same time, the participating
parties do not learnmore about other parties’ inputs than the
information about the output, so that each participating
party can get computation result without leaking sensitive
message.

Secure multi-party computing usually includes two
diferent adversary models, namely, semi-honest security
model and malicious security model. A semi-honest security
model is one in which the adversary will honestly perform
the intended calculation process but may wish to know the
information of each party to the maximum extent. A
malicious security model is one in which an adversary can
control, manipulate, and arbitrarily contaminate in-
formation on a multi-party computing network. In this
work, we mainly consider the semi-honest security model.

Although the frst MPC protocol was already proposed
by A. C.-C. Yao [7] in the 1980s, it was implemented
practically in the last eighteen years. Nowadays, MPC be-
comes more important as data privacy gets more and more
attention. It was adopted for private set intersection [8] and
privacy-preserving machine learning [9].
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Secret sharing is one of important parts in MPC. Te
remaining part of this section introduces distributed interval
containment function (DICF) and shared oblivious transfer
that we adopt in our MPC protocol.

2.3.1. Function Secret Sharing. Function secret sharing (FSS)
[10] can split a function f: X⟶ Y into (f)0: X􏼈

⟶ Y , (f)1: X⟶ Y } and f(x) � (f(x))0 + (f(x))1
(mod|Y |) for each x ∈ X, where |Y | denotes the number of
element in Y . Distributed point function (DPF) is a FSS
scheme. For a point function fα,β(x): X⟶ Y , the range Y
has only one non-zero value fα,β(α) � β. Tere are two
algorithms in DPF:

(i) Gen(1λ, fα,β): It generates a pair of keys
((F)0(F)1). Each key is the share of fα,β without
revealing α and β.

(ii) Eval(i, (F)i, x): ∀x ∈ X, it outputs (βx)i, such that
(βx)0 + (βx)1 � fα,β(x) (mod |Y |).

Denote run Eval on all inputs by EvalAll(i, (F)i).
DICF [11] is also a FSS scheme that can judge whether

a secret input value is in a publicly known interval. Denote
an interval containment function as the following equation.

Fp,q(x) �
1, if x ∈ [p, q],

0, otherwise.
􏼨 (5)

DICF uses ofset interval containment function defned
as follows.

Fp,q,rin ,rout
x + rin( 􏼁 � Fp,q(x) + rout, (6)

where rin and rout are random ofset values. Like DPF, DICF
also consists of two algorithms.

(i) Gen(1λ, Fp,q,rin,rout
): it generates ((F)0, (F)1), as p, q

are publicly known and rin and rout are unrevealed.
(ii) Eval(i, (F)i, x + rin): outputs a result (β)i, so that

(β)0 + (β)1 − rout � Fp,q(x) (mod |Y |).

2.3.2. Oblivious Transfer. Oblivious transfer (OT) [12] is an
important basic block in many MPC protocols. In oblivious
transfer protocol, a sender has multiple messages and only
one of them will be selected by receiver. Which message is
selected is oblivious to the sender and the receiver can only
obtain the selected message.

Shared OT is a kind of OT scheme that is used to fetch
value in the shared form without revealing the value. In our
approach, we utilize a 3-party shared OT protocol. In this
protocol, three participants S0, S1, S2 share a data vector x �

(x0, x1, x2, . . . , xn− 1) and an index i (i ∈ Zn), as S0 holds
(x)0, (x)1, (i)0􏼈 􏼉, S1 holds (x)1, (x)2, (i)1􏼈 􏼉, and S2 holds
(x)2, (x)0, (i)2􏼈 􏼉, where (x)j � ((x0)j, (x1)j, (x2)j, . . . ,

((xn− 1)j)). Ten, they can fetch xi in the shared form
without revealing i by jointly computing.

2.4. Intrusion Detection. Te main goal of intrusion de-
tection system [13] is to detect cyberattacks. Cyberattack is
any type of ofensive action against computer systems,
computer networks, or personal computer. Damaging, ex-
posing, modifying, disabling software or services, or stealing
or accessing data from any computer without authorization
is considered an attack on the computer and computer
network. According to the attack mode, cyberattack can be
divided into active attack and passive attack. An active attack
attempts to destroy computer system, which includes denial
of service (DoS), distributed denial of service (DDoS), and
botnet, while a passive attack aims to learn information
about network system like port scan attack.

DoS deliberately attacks faws in the network protocol
implementation or depletes the target’s resources by brutal
means, so that service or network cannot provide normal
services. DDoS is a special form of denial of service attack
based on DoS. It is a distributed and coordinated large-scale
attack that may come from multiple attackers.

Botnet refers to the use of one or more means of
transmission to infect a large number of hosts with bot
program virus, so as to form a one-to-many control network
between the controller and the infected host. Te attacking
process of port scanning attack is usually to remotely scan
each port of the target computer, detect the services pro-
vided by diferent ports, and then record the response of the
target computer to collect its information.

Generally, network anomaly detection requires the in-
formation about data packets, such as packet header char-
acteristics, characteristics about TLS, and packet length.

3. System Framework and Security Model

Tis section gives the overview of our system framework
frstly and describes the security model in Section 3.2.

3.1. SystemFramework. Tere are several components in the
system framework, as depicted in Figure 2. Te ICS pre-
processed its packages frstly, including extracting features
and secret sharing. For each data package, a feature vector is
extracted from it. Te feature vector contains the in-
formation about packet header and packet length. Ten, the
feature vector is divided into three parts using (2, 3)-additive
secret sharing among S0, S1, S2. Next, the parts of secret are

Table 1: (s, t)-secret sharing.

(s, t)-additive
sharing in Zn

Description

(2, 2)-additive sharing [x]:� (x)0, (x)1􏼈 􏼉, where x � (x)0 + (x)1(mod n). S0 holds (x)0 and S1 holds (x)1

(3, 3)-additive sharing 〈x〉:� (x)0, (x)1, (x)2􏼈 􏼉, where x � (x)0 + (x)1 + (x)2(mod n). S0 holds (x)0, S1
holds (x)1, and S2 holds (x)2

(2, 3)-replicated sharing 〈x〉r:� (x)0, (x)1, (x)2􏼈 􏼉, where x � (x)0 + (x)1 + (x)2(mod n). S0 holds
(x)0, (x)1􏼈 􏼉, S1 holds (x)1, (x)2􏼈 􏼉, and S2 holds (x)2, (x)0􏼈 􏼉
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distributed to three servers, where a well-trained CART
model is stored in the shared form using (2, 2)-additive
secret sharing between S0 and S1. Finally, the three nodes
jointly obtain a detection result based on CART model,
running MPC protocols described in Section 4.

3.2. SecurityModel. In the process of anomaly detection, we
cannot store and process sensitive data from ICS in plain-
text, according to respective laws and regulations. In order to
detect attacks in network trafc with privacy assurance, we
adopt MPC to achieve our goals. Firstly, we assume that
there is a component in the ICS that can extract feature
vectors of its network packages. Tis component shall be
trusted, and it will then secretly share the extracted features
to the threeMPC nodes of our platform. One out of the three
MPC nodes can be semi-honestly corrupted by the adver-
sary.Te shared process result will be sent back to the system
admin of ICS, who will recover the result and make further
actions accordingly.

3.2.1. Security Requirements. As described above, our pro-
posed platform should protect privacy of ICS data when
examining the sensitive data. Besides, the platform should
respond accurately and quickly so that ICS can identify
anomalies in time.Tus, we defne the following key security
requirements.

(i) Data Privacy. Tough we detect the sensitive data
from ICS, the data will not be stored or processed in
plaintext. Even if a MPC node is semi-honestly
corrupted by the adversary, the data privacy can
still be protected.

(ii) Accuracy. As the platform’s task is anomaly de-
tection, the accuracy of detection model should be
as high as possible.

(iii) On Time. Our platform should respond ICS as fast
as possible so that ICS can handle cyberattack
timely.

4. Privacy-Preserving Decision Tree Evaluation

Tis section describes the MPC protocols utilized in our
approach. Firstly, we describe 3-party shared OT in Section
4.1. Ten, we give the whole detection process, including
data preprocessing, tree model storage, and evaluation.

4.1. 3-Party Shared OT. Given a replicated shared data
vector x � (x0, x1, . . . , xn− 1) and an additively shared index
i ∈ Zn, three participants hold the shared form
(x)0, (x)1, (i)0􏼈 􏼉, (x)1, (x)2, (i)1􏼈 􏼉, and (x)2, (x)0, (i)2􏼈 􏼉 re-
spectively, that is similar to [14]. Ten, the three participants
can obtain xi in shared form by running our 3-party shared
OT protocol.

4.1.1. Intuition. Our protocol is mainly constructed on the
basis of Paul et al. [14], whose main idea is that each par-
ticipant serves as the generator of DPF scheme, while the

other two participants serve as evaluators to get i-th value of
vector x in the shared form. For instance, let S0 be the DPF
generator and S1, S2 be the DPF evaluators. Firstly, S1 and S2
randomly select r1, r2⟵Zn, respectively. Ten, S1, S2 ex-
change r1 − (i)1, r2 − (i)2 and send r1, r2 to S0. After that,
S1, S2 compute σ: � r1 − (i)1 + r2 − (i)2 (mod n) and S0
computes θ: � (i)0 + r1 + r2 (mod n). It is easy to see that
θ − σ � i (mod n). Next, S0 generates a pair of DPF keys for
point function fθ,1(x) and sends keys to evaluators. Finally,
S1, S2 run full domain evaluation to jointly obtain
[β0,θ], [β1,θ], . . . , [βn− 1,θ]􏽮 􏽯 ([βk,θ] is 1 if k � θ, and is
0 otherwise). Note that θ-th element in shifted vector is
[(xi)2], as [(x)2] is cyclic shifted to the right σ position. After
all these steps, S1, S2 hold [(xi)2] in shared form. Following
similar steps, S0, S2 can jointly get [(xi)0] and S0, S1 can
jointly get [(xi)1]. In our 3-party shared OTprotocol, we let
the generator produce DPF keys of fμ,1(x), where μ⟵Zn

is randomly picked by generator. Ten, the generator can
produce DPF keys, which leads to less communication.
Subsequently, all participants jointly compute and reveal
〈σ〉: � 〈i〉 + 〈0〉 − μ to evaluators. At the end, evaluators
can get [(xi)0], [(xi)1], [(xi)2] in the shared form.

4.1.2. Protocol Description. Te 3-party shared OT is
depicted in Protocol 1. Initially, for j ∈ Z3, Sj and Sj+1 agree
on a random seed φj ∈ 0, 1{ }τ as j ∈ Z3, and if index (j + 1)

greater than 2, Sj+1 is the brief form of Sj+1 (mod 3). Note that
as the index j ∈ Z3, we omit (mod 3) in the rest of this
paper. Before each round of shared OT, for j ∈ Z3, node Sj

generates DPF keys ((Fμj
)0, ((Fμj

)1).Ten, Sj sends (Fμj
)0

to Sj+1 and (Fμj
)1 to Sj+2. All participants generate some 〈0〉

using random seeds and pseudo-random function PRF.Tey
jointly compute and reveal 〈σj〉:� 〈i〉 + 〈0〉− μj (mod N)

to evaluators Sj+1 and Sj+2. Next, evaluators Sj+1, Sj+2 use
DPF keys ((Fμj

)0, ((Fμj
)1) to get [β0,μj

], [β1,μj
], . . . ,􏼚

[βn− 1,μj
]} by running EvalAll algorithm. Ten, they jointly

obtain

xi( 􏼁j+2􏽨 􏽩 � 􏽘
n− 1

k�0
xk+σj

􏼒 􏼓
j+2
∙ βk,μj
􏼔 􏼕􏼠 􏼡 mod2l􏼐 􏼑. (7)

Tey can jointly get xi as xi � (xi)0 + (xi)1 + (xi)2.
Lastly, participants rerandomize shares to ensure their
uniform distribution.

4.2. Data Preprocessing. Before ICS transmits its network
packages, the data need to be preprocessed in two steps.
Firstly, ICS extracts a feature vector for each package so that
decision tree can detect on package level. Ten, it completes
data desensitization. A feature vector x � (x0, x1, . . . , xn− 1)

is shared as 〈x〉r � (x)0, (x)1, (x)2􏼈 􏼉, where (x)j � ((x0)j,

(x1)j, . . . , (xn− 1)j) and j ∈ Z3. Ten S0 holds (x)0, (x)1􏼈 􏼉, S1
holds (x)1, (x)2􏼈 􏼉, and S1 holds (x)2, (x)0􏼈 􏼉.

4.3. Storage of Tree Model. As we adopt a constant-round
MPC protocol that needs a full binary tree and our trained
model is just a binary tree, we will pad the binary tree as
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Figure 2: System framework.

Initialization:
for each j ∈ Z3 do

Sj and Sj+1 have the same random seed φj⟵ 0, 1{ }τ ;
end

Preparing:
for each Sj do

Generate μj⟵Zn;
Generate a pair of keys ((Fμj

)0, (Fμj
)1) for fμj ,1: Zn⟶ Z2l ;

Send (sid, (Fμj
)0) to Sj+1, (sid, (Fμj

)1) to Sj+2;
end

for each Sj do
Receive (sid, (x)j, (x)j+1, (i)j) from the environment;

end
for each Sj do

for each k ∈ Z3 do
rk,j⟵PRFZn

φj
(sid, k), rk,j+2⟵PRFZn

φj+2
(sid, k);

(σk)j⟵ (i)j + rk,j − rk,j+2 (mod n);
end
(σj)j⟵ (σj)j − μj (mod n);
Send (sid, (σj)j, (σj+1)j) to Sj+2, (sid, (σj)j, (σj+2)j) to Sj+1;

end
for each Sj do
Receive (sid, (σj+1)j+1, ((σj+2)j+1) from Sj+1, (sid, (σj+2)j+2, ((σj+1)j+2) from Sj+2;

end
for each Sj do
for each k ∈ Z3 do

PROTOCOL 1: Continued.
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depicted in Figure 3 when storing the tree model. Ten, we
get a full binary tree such that adding tree nodes does not
afect the fnal result.Tis full binary tree can be saved as two
vectors N � (N0, N1, . . . , NN− 1) and L � (l0, l1, . . . , lL− 1),
where N:� 2d− 1 − 1 is the number of non-leaf nodes and
L: � 2d− 1 is the number of leaf nodes in a full binary tree
with depth d. Ni (Ni:� ti, vi􏼈 􏼉) denotes the non-leaf node
with index i. Te index increases from top to bottom, left to
right. If a non-leaf node has non-leaf sub-nodes, its left child
node is N2i+1 and its right child node is N2i+2. Te values ti

and vi belongs to the i-th non-leaf node. Given a feature
vector, the decision tree algorithm extracts the ti-th value of
the feature vector to compare with the threshold vi. If ti-th
value of feature vector is greater than vi, perform the same
operation on the right child node, otherwise on left child
node.Te algorithmwill be end when the node is a leaf node.
Te li in L is classifcation result when the leaf node with
index i is the end of decision path. N and L are shared as
[N] � (N)0, (N)1􏼈 􏼉 and [L] � (L)0, (L)1􏼈 􏼉. Ten, S0 holds
(N)0, (L)0􏼈 􏼉 and S1 holds (N)1, (L)1􏼈 􏼉, where (N)j �

( (t0)j, (v0)j􏽮 􏽯, (t1)j, (v1)j􏽮 􏽯, . . . , (tN− 1)j, (vN− 1)j􏽮 􏽯), (L)j �

((l0)j, (l1)j, . . . , (lL− 1)j) and j ∈ Z2.

4.4. Evaluation. When the three servers received a feature
vector, respective feature values will be compared with each
value vi in non-leaf node Ni. For each edge in decision tree,
S0 and S1 will obliviously set their cost to 0 if the edge is
selected according to the comparison; otherwise, set to
a random non-zero value, as depicted in Figure 4. Ten, S0
and S1 jointly sum up edge costs for all paths. Among all
costs of paths, only one is zero, that is, the corresponding
path is the decision process and the classifcation of the leaf
node in this path is detection result.

As described in Protocol 2, the process of evaluation
contains three key steps: feature selection, comparison, and
path evaluation.

4.4.1. Feature Selection. For each node Ni � ti, vi􏼈 􏼉, ti is
stored in S0 and S1 in the shared form [ti]. [ti] will be
extended to 〈ti〉 � (ti)0, (ti)1, 0􏼈 􏼉, and S2 holds 0. Ten, run
3-party shared OT mentioned above to get the feature
value 〈xti

〉.

4.4.2. Comparison. Comparison depends on the DICF
scheme, where S2 generates keys and S0, S1 are evaluators. S2
generates a pair of keys for each non-leaf nodeNi � ti, vi􏼈 􏼉 to
compare corresponding feature value of input with a ran-
dom value μi, such that servers cannot obtain vi. Ten, S0, S1
get a value ∆xi � xti

− vi + μi by jointly computing. Next, S0
and S1 jointly get comparison result [bi] by evaluating DICF
keys with ∆xi, as bi � 0 if (xti

− vi)≤ 0 and bi � 1 otherwise.

4.4.3. Path Evaluation. S0 and S1 generate random value r_i
together for each non-leaf node Ni in the tree. Ten, S0 and
S1 locally compute the left out-going edge cost [ei,lef t] �

[bi · ri] and the right-going edge cost [ei,right] � [(1 − bi) · ri]

for node Ni. Ten, as depicted in Figure 4, S0 and S1 jointly
get path costs [P], where P: � (p0, p1, . . . , pL− 1) and only
one path cost in P is 0. To obliviously get classifcation result
according to the position of 0 in P, S0, S1 jointly pick
a random value δ⟵ZL, and cyclic shift L and P to the

σk⟵ (σk)0 + (σk)1 + (σk)2;
end

(β0,μj+1
)1, (β1,μj+1

)1, . . . , (βn− 1,μj+1
)1􏼚 􏼛⟵DPF.EvalAll(1, (Fμj+1

)1);

(β0,μj+2
)0, (β1,μj+2

)0, . . . , (βn− 1,μj+2
)0􏼚 􏼛⟵DPF.EvalAll(0, (Fμj+2

)0);

(y)j⟵􏽐
n− 1
k�0((xk+σj+1

)j · (βk,μj+1
)1 + (xk+σj+2

)j+1 · ((βk,μj+2
)0);

ψj⟵PRFZ2l
φj

(sid), ψj+2⟵PRFZ2l
φj+2(sid);

Return (y)j:� (y)j + ψj − ψj+2 (mod 2l);
end

PROTOCOL 1: 3-party shared OT protocol.

l3

l2l1

l0

l0 l0 l1 l2 l3 l3 l3 l3

Figure 3: Padding binary tree.
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Figure 4: Each edge is set to 0 or random value ri(i � 0, 1, 2, . . .).
Each path to a leaf node has a cost Rj(j � 0, 1, 2, . . .) by summing
up all costs of edges in the path, and only one’s cost is 0.
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right δ position to obtain L′ � (l0′, l1′, . . . , lL− 1′ ) and
P′ � (p0′, p1′, . . . , pL− 1′ ). Ten, they generate a random
vector Q: � (q0, q1, . . . , qL− 1)⟵ (Z2l)L, and jointly
compute L″ � L′ − Q (li″: � li′ − qi is the element with index i

in L″). Subsequently, S0, S1 reveal P′, L″ to S2. After obtaining
P′,L″, S2 generates a pair of DPF keys for point function
fω,1(x), where ω is the index of pω′ � 0. Lastly, S0, S1 serve as
evaluators and jointly compute [qω] � 􏽐

L− 1
i�0 (qi·

Initialization:
for each j ∈ Z3 do

Sj and Sj+1 agree on the same random seed φj⟵ 0, 1{ }τ ;
end

Preparing:
ε � 2l− 1 − 1;
for each i ∈ ZN do

S2 generates μi⟵Z2l ;
S2 generates keys ((Fμi

)0, (Fμi
)1) for F0,ε,μi ,0: Z2l⟶ Z2τ ;

S2 sends (sid, (Fμi
)0) to S0, (sid, (Fμi

)1) to S1;
end

for each Sj do
for each i ∈ ZN do

ri,j⟵PRFZ2l
φj

(sid, i), ri,j+2⟵PRFZ2l
φj+2(sid, i);

(ti)2⟵ 0, (vi)2⟵ μi;//feature selection
Run 3-party shared OT protocol to get (xti

)j;
(∆xi)j⟵ (xti

)j − (vi)j + ri,j − ri,j+2 (mod 2l);//comparison
end
(∆x)j: � ((∆x0)j, (∆x1)j, . . . , (∆xN− 1)j);
Send ((sid, (∆x)j) to S0, S1;

end
for each j ∈ 0, 1{ } do

Sj receives (sid, (∆x)1− j) from S1− j, (sid, (∆x)2) from S2;
for each i ∈ ZN do
∆xi⟵ (∆xi)0 + (∆xi)1 + (∆xi)2 (mod 2l);
(bi)j⟵DICF.Eval0,ε(j, (Fμi

)j,∆xi);
ri⟵PRFZ2τ

φ0
(sid, i);//path evaluation

(ei,right)j⟵ (1 − j − (bi)j) · ri, (ei,left)j⟵ (bi)j · ri;
end
δ⟵PRFZL

φ0
(sid, 0);

for i ∈ ZL do
(pi)j⟵ Sum up the share of edge costs along i-th leaf node’s path;
(pi
′)j⟵ (pi− δ (mod L))j;

(qi)0⟵PRFZ2l
φ0 (sid, i, 0), (qi)1⟵PRFZ2l

φ0 (sid, i, 1);
(li″)j⟵ (li− δ (mod L))j − (qi)j (mod 2l);

end
(P′)j: � ((p0′)j, (p1′)j, . . . , (pL− 1′ )j), ((L″)j: � (l0″)j, (l1″)j, . . . , (lL− 1″)j);
Send (sid, (P′)j, (L″)j) to S2

end
S2 receives (sid, (P′)0, (L″)j) from S0, (sid, (P′)1, (L″)1) from S1;
for each i ∈ ZL do

if (pi)0 + (pi)1 � 0 (mod 2τ) then
ω⟵ i;
((Fω)0, (Fω)1⟵DPF.Gen(1τ , fω,1)) for point function fω,1: ZL⟶ Z2l ;
Send (sid, (Fω)0) to S0, (sid, (Fω)1) to S1;
Return lω″: � (lω″)1 + (lω″)2 (mod 2l);

end
end
for each j ∈ 0, 1{ } do

Sj receives (sid, (Fω)j);
(β0)j, (β1)j, . . . , (βL− 1)j􏽮 􏽯⟵DPF.EvalAll(j, (Fω)j);

(qω)j⟵􏽐
L− 1
i�0 (((qi)0 + (qi)1) · (βi)j) (mod 2l);

Return (qω)j;
end

PROTOCOL 2: Constant-round evaluation protocol.
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[fω,1(i)]) (mod 2l). S0, S1 send [qω] to ICS and S2 sends lω″
to ICS, so that the system admin of ICS gets classifcation
result. Note that the result lω′ � qω+ lω″ (mod 2l).

4.5. Security Analysis. Te main building block of our
privacy-preserving decision tree evaluation protocol is the
3-party shared OT (cf. Section 4.1). Te construction of
the 3-party shared OT protocol is inspired by Paul et al.
[14]. At high level, in turn, each of the three servers plays
the role of a DPF generator, and the other two servers play
the role of DPF evaluators to obtain the i-th position value
of their (2, 3)-replicated shared data x. In particular, for
instance, when S0 is the DPF generator, it generates a pair
of DPF keys for a random position μ ∈ Zn. Let the shared OT
choice be [i]. In the online phase, the servers jointly open δ:�

i − μ (mod n) to S1, S2. Tey can then shift the shared data x
by δ position such that the μ-th position of the shifted data x′
is xi.

We now analyze the security of this part. First of all,
revealing δ: � i − μ (mod n) leaks no information about i,
as i is masked by μ information theoretically. Moreover,
assuming that the underlying DPF scheme is secure, S1 and
S2 obtain the shared form of xi. Repeating the above process
for all three servers, we obtain the fnal result. Note that, for
efciency, we use PRF to generate shares of 0 without
communication; assume that the underlying PRF is secure,
and the generated shares are computationally in-
distinguishable from uniformly random ones. Terefore,
when any of the three servers is semi-honest corrupted, its
view is computationally indistinguishable from a few ran-
dom shares (and the DPF keys).

When the model is not a full binary tree, we pad the
model to a full binary tree by adding dummy nodes;
therefore, the tree evaluation process does not leak any
information about the tree structure to theMPC players.Te
security of the feature selection phase can be reduced to the
security of the 3-party shared OT. In addition, we adopt the
DICF scheme for secure comparison, and its security is
proven in [11]. Finally, with regard to the path evaluation, we
designed an encoding scheme for the tree such that we can
evaluate the path within one multiplicative round. As a re-
sult, after evaluation, only the output label will be 0, and the
remaining labels are uniformly random. Since each tree uses
diferent fresh random encoding instances, the three severs
cannot learn any additional information other than the
intended output label.

5. Implementation and Benchmark

5.1. Dataset Description and Experiment Setup. In the ex-
periment, we adopt CICIDS2017 [15] as dataset. It captures
normal packages and attacks in simulated network envi-
ronment that is similar to the real-world network. Te
dataset contains several CSV fles, and each of them includes
a kind of attack. We perform experiment on the CSV fles
corresponding to DDoS, DoS, botnet, port scan, and web
attacks, as described in Table 2. Each entry in CSV fle
contains a feature vector and a class label. Te feature vector

includes 78 features, such as timestamp, source IP, desti-
nation IP, package length, and protocol.

We evaluate the performance of the GBDT model and
CART model for the binary classifcation task with
CICIDS2017 dataset. Te samples of DDos, DoS, botnet,
port scan, and web attacks are labeled as attack, and the
others are labeled as normal. We randomly select 80% of this
dataset as our training set and the remainder as
validation set.

5.2. Evaluation Metrics. To evaluate the performance of
intrusion detection, we adopt some evaluation metrics, such
as Precision, Recall, and F1. Tese metrics depend on four
parameters. (i) True Positive (TP) denotes the number of
attack samples that are correctly classifed. (ii) False Negative
(FN) denotes the number of attack samples that are wrongly
classifed. (iii) True Negative (TN) denotes the number of
normal samples that are correctly classifed. (iv) False
Positive (FP) denotes the number of normal samples that are
wrongly classifed.

(i) Precision indicates how many samples that are
classifed as attacks are real attacks.

Precision �
TP

TP + FP
. (8)

(ii) Recall indicates how many attack samples are
correctly classifed. Since the proportion of attack in
the total sample is small and the attack will cause
severe consequence, we need to identify as many
attacks as possible. Terefore, Recall is an important
evaluation metric.

Recall �
TP

TP + FN
. (9)

(iii) F1-score is calculated based on Precision and Recall
and shows the trade-of between Precision and
Recall.

F1 �
2 × Precision × Recall
Precision + Recall

. (10)

5.3. IntrusionDetectionResult. In our experiment, we utilize
GBDT mentioned in Section 2.2 as our detection model
frstly. We set the regularization coefcients c � 1 and λ � 1
and learning rate as 0.1. In the GBDT model, each tree’s
maximum depth is set to 9. Figure 5 shows the performance
of GBDT model, when the iterations are 5, 10, 15, 20, 40,
and 60.

Table 2: Description of CSV fles of CICIDS2017.

Attack type Normal samples Attack samples Total samples
DoS 440031 252661 692692
DDoS 97718 128027 225745
Botnet 189067 1966 191033
Port scan 127537 158930 286467
Web attacks 168186 2180 170366
Total 1022539 543764 1566303
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We use regularization item to prevent overftting. As
shown in Figure 5, the metrics Recall and F1-score notably
enhance as the number of iterations increases. When the
number of iterations reaches 60, the GBDTmodel performs
good on three metrics (99.84%Recall, 99.90%Precision, and
99.87%F1).

Ten, we use a CART decision tree model as detection
model to evaluate its performance on CICIDS2017 dataset.
We set the maximum depth of decision tree to 9 and obtain
its evaluation result (99.09%Recall, 94.32%Precision, and
96.65%F1). By adopting multiple decision trees for iterative
learning, the GBDT model obtain stronger classifcation
ability than single CART decision tree.

5.4. Time Efciency. We run our platform in diferent
network environments to evaluate its time efciency. Te
network environments are simulated, including LAN (0.1ms
RTT, 1Gbps bandwidth), MAN (6ms RTT, 100Mbps
bandwidth), and WAN (80ms RTT, 40Mbps bandwidth).
We set the depth of full decision tree to 5, 7, 9, 11, and 13.We
evaluate the time efciency of our proposed platform when
the platform evaluates one tree and evaluates one thousand
trees. Each tree is a full binary tree. Our benchmarks are
executed on a desktop with Intel(R) Core i7 8700 CPU @
3.2GHz, and the operating system is Ubuntu 18.04.2 LTS
with 6 CPUs, 32GB memory, and 1 TB SSD.

As shown in Table 3, our platform performs good in
diferent simulated network environments. Our platform
can evaluate one thousand trees whose depth is 9 in
11 seconds when the network environment is LAN (0.1ms
RTT, 1Gbps bandwidth). However, the increasing depth of
decision tree results in more communication cost because
the constant-round protocol’s communication cost is O(2d),
where d is depth of full tree. Terefore, the proposed pro-
tocol is not suitable for the tree model whose depth is greater
than 9. As GBDT uses multiple trees, the GBDT model is

signifcantly slower than the CART model. Each tree of
GBDT can be evaluated independently, and fnally client
sums up trees’ evaluation result to obtain classifcation re-
sult. Terefore, we can improve the parallel computing
capability of the proposed platform to enhance time ef-
ciency of the GBDT model.

6. Related Work

Anomaly detection has been developed for decades and is
widely used as defensive method in conventional network.
However, since ICS is diferent from conventional network
system, anomaly detection technique cannot be used in ICS
directly. Availability and real-time performance are required
in ICS-specifc IDS [16]. Tere are a large number of works
on ICS-specifc IDS. With the development of machine
learning (ML) and deep learning (DL) algorithms, most
recent works use them to detect anomaly in ICS.Te authors
in [17] evaluated several machine learning models on an ICS
dataset called Power System Dataset, such as Nearest
Neighbor, Random Forests, Naive Bayes, SVM, AdaBoost,
and JRip. In [18], the authors evaluated diferent ML and DL
algorithms using their generated ICS dataset Electra. Tese
algorithms contain One-Class SVM, SVM, Isolation Forest,
Random Forest, and Neural Network. In [19], the authors
used the Pearson Correlation Coefcient (PCC) to select
packet features and used the Gaussian Mixture Model
(GMM) to transform important features for privacy pres-
ervation. Ten, they used the transformed features as input
of a Kalman Filter to detect anomaly. In [20], they utilized
Bloom flter to store the signature database for packet-based
intrusion detection and applied an LSTM model to learn
temporal features.

In private branching program (BP) and decision tree
evaluation with constant communication round, there have
been several works. Te work in [21] evaluates BP with input
encrypted by homomorphic public-key cryptosystem.
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Figure 5: Te anomaly detection result using GBDT model with diferent number of iterations to detect samples in validation set.
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However, it is impractical when the input feature vector is
too large. After that, some evaluation protocols with con-
stant communication round are proposed. In [22], the
authors utilized additive homomorphic encryption (AHE)
and OT for obliviously feature selection and converted the
BP model into a secure program with Garble Circuits for
comparison. Bost et al. [23] evaluated a decision tree with
costly fully homomorphic encryption (FHE) by treating
decision tree as a high-degree polynomial. Te authors of
[24] used OT to select leaf node and DGK protocol based on
AHE instead of FHE for comparison. Raymond et al. [25]
improved the work in [24] by representing decision tree as
linear functions instead of high-degree polynomial form.
Tey computed “path cost” of each leaf node and used it to
decide which leaf node contains classifcation result. In [26],
they reviewed prior constant-round approaches and pro-
posed a modular construction from three constant-round
sub-protocols: private feature selection, secure comparison,
and oblivious path evaluation.

7. Conclusion and Future Work

In this paper, we proposed a privacy-preserving anomaly
detection platform for industrial control system. It depends
on two main components, detection model and MPC
protocol. We use GBDT and CART as anomaly detection
models, which are able to detect anomaly with high ac-
curacy. As information privacy is protected by laws and
regulations in many countries, we adopt a MPC protocol
that can detect network packages from ICS based on de-
cision tree when sensitive data are invisible. Te experi-
mental results indicate that the proposed platform can
detect anomaly on package level in real time with high
accuracy.

Our platform can be developed in several ways in the
future. Firstly, we plan to evaluate the performance of our
platform in a simulated environment that resembles real
environment. In addition, to make detection model more
practical, it is necessary to use real data of ICS as training set.
Lastly, we will utilize a privacy-preserving machine learning
approach in training stage to ensure training data privacy.
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