
Research Article
High Efficiency Secure Channels for a Secure Multiparty
Computation Protocol Based on Signal

Yunqi Yang 1,2 and Rui Zhang1

1State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Correspondence should be addressed to Yunqi Yang; yangyunqi@iie.ac.cn

Received 6 February 2023; Revised 13 March 2023; Accepted 9 April 2023; Published 19 April 2023

Academic Editor: Chien-Ming Chen

Copyright © 2023 Yunqi Yang and Rui Zhang.Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Secure multiparty computation (MPC) requires the messages transmitted in secure channels which can provide encryption and
authorization to the messages. To implement a secure channel for MPC protocols, researchers have tried some communication
protocols, such as TLS and Noise. However, these methods have some limitations. Tese protocols need a trusted certifcation
authority to provide identity authorization which is difcult for an MPC protocol, and how participants manage the key of each
party and how to use the key to establish communication is also a problem. A Signal protocol is an end-to-end encryption
communication protocol, which is known as the most secure communication protocol in the world. Based on the Signal protocol,
we implemented a signal-based secure multiparty computation protocol, which can run the MPC protocol and transmit messages
through a signal-based secure channel. Compared with previous research on the MPC protocol over Signal secure channels, the
new MPC client adds group communication of the Signal protocol to transmit messages, which signifcantly improves the
communication efciency of broadcast messages of MPC protocols. To test the communication efciency of the new MPC client,
we implemented a concrete BLS threshold signature protocol on the new client, comparing the elapsed time of key generation and
signing on the new client to that on the client only using Signal end-to-end communication. According to our experiment result,
we found that the new client run at least 37.48% faster than the old client on the BLS threshold signature whose number of parties
ranges from 3 to 5, if the parties have sent Signal group messages to each other. Te more parties in the MPC protocol, the higher
the proportion of broadcast messages and the more obvious the performance improvement of the new client. Our work improves
the performance of MPC secure channels based on the Signal protocol, especially for complex MPC protocols with many
participants.

1. Introduction

Secure multiparty computation (MPC) is a cryptographic
problem, which can be expressed as a group of parties, who
do not trust each other and need to protect their privacy
information but want to perform collaborative computing
without a trusted third party. MPCwas frst proposed by Yao
in 1982, who raised a classic millionaire question. To defne
the security of MPC, researchers constructed an ideal world,
in which there is a trusted third party (TTP), who receives
information from other parties and then computes the
agreed function and sends the result to other parties.
However, in the real world, TTP does not exist. Te security

of MPC in the real world is to be the same as the MPC in the
ideal world. If adversaries cannot complete the attack on the
protocol in the real world that cannot be achieved in the
ideal world, the protocol is considered secure.

Assume n indicates the number of parties and t indicates
the upper limit of the number of possible adversaries. For
t< n/3, it means that the number of adversaries does not
reach 1/3 of the total number of parties. In this case, an MPC
protocol with fairness and guaranteed output delivery is to
be implemented for any function with computational se-
curity, provided that there is an authenticated secure
channel in an end-to-end synchronous network. Moreover,
the channel should be assumed that it is private and

Hindawi
Security and Communication Networks
Volume 2023, Article ID 7123175, 10 pages
https://doi.org/10.1155/2023/7123175

https://orcid.org/0009-0000-1144-2064
mailto:yangyunqi@iie.ac.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7123175

information-theoretic security. Terefore, to implement
a MPC protocol, fnding a secure channel is most important.

To implement a secure channel for MPC, previous re-
searchers have tried many methods, such as TLS and the
Noise framework [1]. However, these methods still have
some disadvantages. For example, parties of MPC need
a trusted certifcation authority (CA) if they want to build
a secure channel with TLS. Te Signal protocol is an end-
to-end encryption communication method, which provides
functions such as identity authorization, key agreement, and
encrypted communication. Te Signal protocol [2–4] is
widely used in many applications, such as Signal and
WhatsApp. Some previous studies tried to establish a secure
channel for MPC using the Signal protocol. For example, the
Zengo-X group implemented BLS threshold signature [5–8]
based on the secure channel [9] established by the end-
to-end communication function of the Signal protocol.

Our goal is to establish an efective secure channel with
Signal for the MPC protocol, such as BLS threshold. Besides
end-to-end communication, the Signal protocol also sup-
ports group communication, which can increase the com-
munication efciency of broadcast information of the MPC
protocol. A previous secure channel of Signal for MPC only
used the function of end-to-end encrypted communication,
which transmitted a broadcast message by transmitting
a broadcast message into many end-to-end encrypted
messages for each receiver and transmitting them in turn. By
using the function of group communication in the Signal
protocol, we signifcantly improve the performance of the
MPC secure channel with Signal in transmitting broadcast
messages. In our new MPC clients based on Signal, end-
to-end messages are still sent by Signal end-to-end en-
cryption communication and broadcast messages are sent by
Signal group encryption communication which sends
messages of multireceiver to the server only once for one
round of MPC protocol communication. To measure the
communication efciency of the new MPC client based on
Signal, we implement the BLS threshold signature protocol
on the client and compare the elapsed time of key generation
and signing to the previous secure channels based on Signal.
Te communication efciency of our client is much higher
than the clients that the Zengo-X group implemented in
most situations. In our experiment environment, our new
client runs at least 37.48% faster than the old client only
using Signal end-to-end communication. Te advantages of
our clients increase with the growth of number of parties and
round of broadcast messages.

2. Background

2.1. SecureChannels forMPC. For almost all MPC protocols,
establishing secure channels for round communications
between each two parties is necessary. A secure channel
provides encryption and authorization, which means that
messages transmitted in it will not be obtained by adver-
saries, nor tempered with or forged by adversaries. Existing
MPC protocols have used some method to establish the
secure channels, such as TLS and Noise [9]. For example,
SCALE-MAMBA [10] is a general purpose MPC framework,

which used OpenSSL implementation of TLS to establish
secure channels. SCALE-MAMBA sets up a small public key
infrastructure (PKI) to implement the authorization of the
secure channels. Each party needs to create keys and cer-
tifcates for the main CA. However, using TLS for the secure
channels of MPC still has some problems to be solved.
Firstly, the CA in SCALE-MAMBA should be trusted by
other parties. In an MPC protocol, it is a problem that who
setups the trusted CA. Secondly, every party need to store
a lot of public keys and certifcates of other parties. If some
private keys or certifcates lost or change, it is difcult to deal
with these accidents. Tirdly, TLS often used in secure
client-server communication in Internet, such as the HTTPS
protocol. For two-party secure computation, one party can
play the role of a web server and the other party plays the
client. However, it is not to be applied on a multiparty case.

Te Noise framework [1] is also able to establish an end-
to-end secure channel for the MPC protocol, which is
fexible and allow users to choose a set of security properties.
Te handshake of Noise is based on Dife–Hellman (DH)
[11] key exchange. Noise has been used in some popular
applications to provide end-to-end encryption, such as the
Lightning Network and WireGuard. It is feasible to use the
Noise framework to establish a secure channel for an MPC
protocol. However, the developers need to choose appro-
priate patterns from a set of handshake patterns based on
DH key exchange which enables a specifc combination of
security properties and implements it from a low-level li-
brary which provides the basic crypto algorithm. In addition,
the Noise framework still does not solve the problem for-
which party plays the role of CA, and how to choose the
Noise pattern is a new problem. Choosing an unsuitable
pattern may impact the performance of the MPC protocol.

2.2. Signal Protocol. Signal is an end-to-end encryption
communication application, in which the Signal protocol
used is known as the most secure communication protocol
in the world. No third party, including the server, can view
the communication content. Signal protocol includes key
generation, key agreement, symmetric encryption, digital
signature, and other functions. It can be applied on two-
party and group communications to ensure the encryption
transmission of text, image, voice, video and other data. Te
Signal protocol has good forward and backward security,
ensuring that even if the key used in single communication is
leaked, the content of messages sent before or after will not
be obtained by adversaries. Te Signal protocol uses a server
to route messages among clients, which will not participate
in MPC protocol if we use Signal to establish the secure
channels in it. While users start using Signal, they frst need
to register on the server with their phone number. Phone
number and UUIDwill be used as the identity of the user.

Users generate identity keys and some prekeys for the key
agreement when they register on the server and store the public
keys on the server. Te Signal protocol uses the Double
Ratchet algorithm [3] as the key agreement algorithm, which is
divided into two parts, DH ratchet and key derivation function
(KDF) ratchet. DH ratchet uses the X3DH protocol [4, 12–14]

2 Security and Communication Networks

to generate shared secret between two parties. Te sender
requests the public keys of the receiver from the server and
executes three times the elliptic curve Dife–Hellman (ECDH)
key exchange protocol to combine the result of ECDH into
a share secret. Ten, the KDF ratchet generates message keys
used in symmetric encryption from the secret key with SHA-
256. For the Signal protocol, DH ratchet provides forward
security and KDF ratchet provides backward security. In the
process of symmetric encryption, the Signal protocol uses
AES256-CBC as the symmetric encryption algorithm and uses
SHA256 to add the message authentication code (MAC) for
ensuring the integrity of the message.

2.3. BLS Signature. Te BLS signature algorithm was de-
livered by Boneh et al. [6]. Te BLS signature uses new hash
functions whose results are a point on the elliptic curve and
uses a bilinear mapping function e, which maps two points
(P, Q) on a bilinear elliptic curve to a number and for a given
number x, e(x∙P, Q) � e(P, x∙Q). An important property of
the BLS signature is that signatures can be aggregated. Te
signatures of multiple signers on the same message can be
aggregated into one signature. Te aggregated BLS signature
algorithm [6–8] is as follows:

Assume the parameters par � (q, G1, G2, Gt, e, g1, g2) is
a bilinear group, where G1, G2, Gt are groups of prime order
q, e is a bilinear map e: G1 × G2⟶ Gt, and g1, g2 are
generators of groups G1, G2. Assume H0 and H1 are two
collision-resistant hash functions H0: 0, 1{ }∗ ⟶ G2 and
H1: 0, 1{ }∗ ⟶ Zq.

(1) Key Generation and Aggregation: Each signer i

chooses ski from Zq, compute pki←g
ski

2 .
For pk1, . . . , pkn , compute

apk←
n
i�1pk

H1(pki, pk1 ,...,pkn{ })

i .
(2) Signing: Each signer computes si←H0(m)ai∙ski ,

where ai←H1(pki, pk1, . . . , pkn). Signers send the
signatures to other signers and compute the aggre-
gated signature σ←

n
j�1sj.

(3) Verifcation: Te verifer computes the following
formula to verify the signature. If
e(σ, g−1

2)∙e(H0(m), apk) � 1, output 1. Te signa-
ture is valid.

Based on the BLS signature, an MPC protocol of the BLS
threshold signature [6, 7, 15] is to be constructed. Te
number of the parties joining the protocol is n, and t+ 1
(1< t≤ n− 1) signers of the group can sign a signature on
behalf of the group. Any t + 1 parties in the group sign the
same signature for the same message. Te main commu-
nication process of the BLS threshold signature protocol to
be used in this paper is introduced as follows:

(1) Key generation: the process of key generation needs
four rounds of communication.

(i) Each party generates his key pair sk and pk and
sends the hash commitment of pk to other
parties. Tis round uses broadcast
communication.

(ii) Each party sends his pk and the commitment
parameter to other parties. Tis round uses
broadcast communication.

(iii) Each party shares his sk by Feldman verifable
secret sharing (VSS). Other parties will receive
diferent shared secret. So, this round uses end-
to-end communication.

(iv) Each party sends the proof of sk and generates
the keys. Tis round uses broadcast
communication.

(2) Signing:Te process of signing only needs one round
communication.

(i) Each party generates his partial signatures and
sends to other parties. Tis round uses broadcast
communication.

3. Materials and Methods

3.1. Secure Channels Based on Signal. Based on the rust li-
brary of the Signal protocol, we implement an MPC client
which can run an MPC protocol as one of the parties of the
protocol and transmit the messages among the clients using
secure channels. Compared with previous research [9], our
client adds support for the group communication in the
Signal protocol, which can improve the performance of the
secure channels in transmitting broadcast messages.

Before using the MPC client, the user needs to register
a Signal account on the server.Tis step needs an Android or
iOS Signal client which connects the same Signal server as
the MPC client. Signal app opened its source codes on
GitHub, so it is easy to change the server address in the open-
source codes of the Signal client and compile them to obtain
the client. When the user registers a Signal account on the
Signal server, the client generates an identity key and some
prekeys with the signatures [2, 16, 17] signed by the identity
key, and then stores their public key on the server.Te phone
number and UUID are the identifcations of the user. A
Signal account can be bound with one phone client and
several desktop clients. Te MPC client requests registration
from the server as same as the desktop client, and the server
returns a message including some necessary information for
registration. Te phone client scans the QR code showed by
the MPC client using the function of adding new device and
establishes a temporary encrypted communication to the
MPC client. Te MPC client obtains the identity key and
some other information, and then requests the server for
creating a new device, generates its own prekeys, and stores
the public key on the server. Ten, the MPC client fnishes
logging in the Signal account.

To run an MPC protocol with the MPC clients who have
logged in the Signal account, a group JavaScript Object
Notation (JSON) fle with Signal addresses and public keys
of all the parties is necessary. After logging in a Signal ac-
count, the MPC client can show this information of the
device in the JSON format. Users combine them into a fle
and add the same fle to every client to join the MPC client.
Difering from the ofcial Signal client sending messages to
all the device of the signal account of the sender and the

Security and Communication Networks 3

receiver, the MPC client only sends messages to the target
device which is the MPC client joining the MPC protocol.
Each party in the group fle only represents a device of
a Signal account. When the MPC client sends messages to
the server, the packages only include the ciphertext of the
target device, and the ciphertexts of other devices in the
packages are empty. Tis design can simplify the in-
formation sending process in the Signal protocol and reduce
the amount of the process of requesting receiver information
from the server.

When the MPC client running an MPC protocol, the
client establishes a secure WebSocket connection to send
outcoming messages and listen for incoming messages. Te
key agreement and symmetric encryption algorithm are
implemented in the rust library of Signal. When the client
wants to send an end-to-end message through the secure
Signal channel, it checks if the key session exists. If the sender
and the receiver have not sent messages before, the sender
needs to request for the prekeys of the receiver from the server
and runs the key agreement protocol (X3DH) [3, 4] to build
a new session. Ten, the message will be encrypted by the
message key generated by X3DH and be sent to the server
using the Signal server API. When the receiver obtains the
encryptedmessage, it handles the message in a process similar
to that of the sender, transmitting the decrypted message to
theMPC protocol as the incomingmessage. To flter theMPC
protocol messages, the cipher messages sent by the MPC
client are added a fxed tag at the beginning. When the MPC
client receives Signal messages, it checks the tag and drops the
messages without the tag.

3.2.GroupCommunication. Group communication is a new
function in the Signal protocol. Compared with previous
research of secure channels of Signal for MPC, we imple-
ment the group communication function of Signal on the
MPC client for handling broadcast messages. In fact, early
version of Signal APP also has the group function (Group
v1). Group v1 is similar to the secure channels for MPC of
the ZenGo-X team [9], which stores the group member
information locally and sends group messages by several
end-to-end messages. New version group communication of
Signal (Group v2) is based on the function of the sealed
sender.Te sealed sender [18] is to hide sender’s information
from the server. After the encryption of the normal Signal
protocol, the Signal APP client encrypts the ciphertext once
more with the identity key of the sender and the receiver. To
prevent spoofng of sender’s identity, the sender certifcates
are added and be encrypted with the ciphertext of normal
Signal encryption. Te Signal client requests the sender
certifcates from the server. When a Signal client receives
a sealed sender message, it can check the sender certifcate’s
validity. Another important data for sealed sender are the
unidentifed access key which prevents the abusing of the
server. Without identity authentication, some clients may
request to send messages frequently. Te unidentifed access
keys are derived from profle keys, which are exchanged with
contacts or other people that the user have conversation
with. A signal account can be set on the sender to allow

anyone to send sealed sender messages to it, which set the
unidentifed access key of the account to all zero.

Group v2 [19, 20] is frst to solve the problem of the store
of group member’s information. Store the information lo-
cally in every party’s device is hard to manage the in-
formation. In Group v2, the group member’s information is
encrypted by the master key and stored on the server
[20, 21]. When a new member is invited in the group, the
inviter shares the group master key via Signal end-to-end
message. In fact, we do not focus on the group member
management of Group v2 in this paper.

Another important function with Group v2 is sending
multireceiver messages, which is based on the sealed sender.
In Group v2 conversations of Signal APP, encrypted mes-
sages are sent by this function.When the client wants to send
multireceiver messages, it needs to generate a distribution id,
which is a random UUID. Te distribution id is used to
identify the sender key.Te sender key is similar to the chain
key in normal encryption of the Signal protocol, which can
generate message keys by KDF ratchet. After encrypted by
the sender key, the messages will be encrypted with mul-
tireceiver sealed sender encryption. Te pseudocode of
multireceiver sealed sender encryption is shown in Algo-
rithm1. Firstly, the client generates a random number M,
and an ephemeral asymmetric key pair E and a one-time
symmetric key K are derived from M. Te messages
encrypted by sender keys before will be encrypted with AES-
GCM-SIV (AEAD_Encrypt in Algorithm 1) by the sym-
metric key for the second-round encryption. For each re-
ceiver, the shared secret is generated with key agreement
between the ephemeral key and the identity key of the re-
ceiver.Ten, the encryptedmessage keys C_i are obtained by
XOR M and shared secret. Te authentication tags of the
encrypted message keys AT_i are obtained by HMAC (hash-
based message authorization code)-based KDF (HKDF)
[22, 23] of the keys and the shared secret that the key
agreement is the result of two parties’ identity key. Finally,
the results of multireceiver sealed sender encryption contain
the UUID, encrypted message key, authentication tag for
each receiver, the public key of the ephemeral asymmetric
key, and the ciphertext.

In our MPC client, we implement the group commu-
nication of the Signal protocol for the MPC protocol. Before
sending group communication messages, the MPC client
checks if the available distribution id and sender key session
exist. If they do not exist, the MPC client generates them and
sends a sender key distribution message to other parties in
theMPC protocol, ensuring every party has the sender key of
the sender device and the distribution id. Sender certifcates
are necessary information in sealed sender messages. Te
MPC client requests the sender certifcates before sending
the group communication messages by the same server API
that the Signal APP uses. Te Signal accounts of the MPC
clients are set to allow anyone to send sealed sendermessages
to them on the server, so the values of unidentifed access
keys of them are all zero. For simplifying the process of
communication, we ignore the abusing of sealed sender
messages so that the MPC clients need not to exchange their
profle keys.

4 Security and Communication Networks

3.3. BLS Treshold Signature on Secure Channels of Signal.
BLS threshold signature includes key generation, signing, and
verifying three steps, in which key generation and signing
need to send end-to-end or broadcast messages to other
parties. Key generation has four rounds of communication, in
which round 1, 2, and 4 are broadcast communication and
round 3 is end-to-end communication. Signing has only one
round broadcast communication. In our MPC client for the
BLS threshold signature, the end-to-end messages are sent by
normal end-to-end encrypted communication of the Signal
protocol and broadcast messages are sent by group com-
munication of the Signal protocol. We did not build a real
group of Group v2, only using the multireceiver messages
function of Group v2 to send broadcast messages.

Te fow chart of theMPC client is shown in Figure 1.Te
frst two steps of both two kinds of communications are the
initial steps which register the client on the server and collect
the information of the devices of parties. Completing these
steps, the MPC clients can send secure messages through the
secure channel base on the Signal protocol and know other
parties’ addresses in the Signal protocol of the MPC protocol.
Ten, the BLS threshold signature can run by theMPC clients.
In BLS threshold signature module, the receivers of messages
are expressed as the order in member list, and for broadcast
messages the receiver is none. When the messages are
transmitted into the Signal protocol module, the client re-
places the receivers of the messages with the real Signal
address. For broadcast messages, the receiver addresses are
lists of all the parties except the sender.Ten, according to the
type of the messages, the MPC client sends these messages by
end-to-end secure channels or group secure channels.

Depending on the message type, the client sends mes-
sages in diferent ways. If the message is an end-to-end
message, such as the round 3 of the key generation of the BLS

threshold signature, the message is sent as shown on the
right side of Figure 1.When a Signal client sends messages to
someone at frst time, it needs to require the receiver’s keys
and some necessary information from the server. Ten, the
client generates new chain key sessions using two parties’
keys if the sessions does not exist or gets the chain key
sessions from the local store if the available sessions exist.
Te messages to be sent will be encrypted by the message
key, which is generated by the chain key session, and then
the encapsulated ciphertext is sent to the server.

If the message is a broadcast message, such as the round
1 of signing and round 1, 3, and 4 of key generation of the
BLS threshold signature, the messages are sent as shown on
the left side of Figure 1. In previous research of MPC over
Signal [9], the broadcast messages are divided into several
end-to-end messages and sent successively. However, in our
MPC client, the broadcast messages are sent by group
communication of the Signal protocol. Te sender certifcate
is used to verify the identity of the sender in group com-
munication of the Signal protocol, which is generated by the
server and is valid for a short time. Te MPC client requires
the sender certifcate of the sender from the server before
sending a Signal group message. When the client sends
Signal group messages to new parties, it also needs the keys
of the receivers from the server. Compared to the end-to-end
communication, group communication needs the in-
formation of all the devices of the receivers instead of the
devices of the MPC clients. Ten, the MPC client generates
a sender key session if no sender key session is available or
loads a sender key session from the local store. Te in-
formation of the sender key session is distributed to other
parties of the MPC protocol by end-to-end messages before
sending group messages at the frst time of sending to them.
One-time steps in the sending process are marked with

ENCRYPT(message, R_i):
M�Random(32)
r�KDF(label_r, M, len� 64)
K�KDF(label_K, M, len� 32)
E�DeriveKeyPair(r)
for i in num_recipients:
C_i�KDF(label_DH, DH(E, R_i) ||E.public ||R_i.public, len� 32) XOR M
AT_i�KDF(label_DH_s, DH(S, R_i) ||E.public ||C_i ||S.public ||R_i.public, len� 16)

ciphertext�AEAD_Encrypt(K, message)
return E.public, C_i, AT_i, ciphertext

DECRYPT(E.public, C, AT, ciphertext):
M�KDF(label_DH, DH(E, R) ||E.public ||R.public, len� 32) xor C
r�KDF(label_r, M, len� 64)
K�KDF(label_K, M, len� 32)
E′�DeriveKeyPair(r)
if E.public !�E′.public:
return DecryptionError

message�AEAD_Decrypt(K, ciphertext)//includes S.public
AT′�KDF(label_DH_s, DH(S, R) ||E.public ||C ||S.public ||R.public, len� 16)
if AT !�AT′:
return DecryptionError

return message

ALGORITHM 1: Te pseudocode of the multireceiver sealed sender (from the rust library code of the Signal protocol).

Security and Communication Networks 5

a dashed border in Figure 1 and will not be executed after the
frst time of sending messages. Te plaintext of the group
message is encrypted two rounds, as shown in Figure 1.
Ten, the ciphertext is sent to the server using the API of
multireceiver message.

Te MPC client handles the received messages as the
type of the messages. End-to-end messages are decrypted
using the chain key sessions and the plaintexts are sent to the
MPC protocol module for calculation. Te group messages
are received as the sealed sender messages. Te client needs
to decrypt the sealed sender messages to obtain the in-
formation of the sender of the message, and then decrypts
the messages using corresponding sender key sessions to
obtain the plaintext for the MPC protocol.

4. Results and Discussion

4.1. Experiment Environment. Te MPC clients are installed
on the Aliyun Cloud Server, which connects the Signal
ofcial staging server (https://chat.staging.signal.org). As
shown in Table 1, the operation system of the cloud server is
Ubuntu 20.04 and the server is located in Singapore.Te size
of the memory of the cloud server is 4GB and the system
disk is 80GB. Te Rust version to compile the MPC client is
nightly-2021-09-16. Te original version of the Signal
protocol library is 0.17.0, and we implement our MPC client
based on the original version of the Signal protocol.

In our experiment, ourMPC clients connected the Signal
ofcial staging server. In fact, we do not recommend

BLS Signal client Signal
server

Registration Registration
create device

registration information

manage
member list

send
broadcast
messages

find Signal
address of
receivers

messages

get sender
certificate

get sender
certificate

request

response

get or create
sender key

sessions

distribute
sender keys

distribute
sender keys

sender key distribution
messages

encryption
with sender

keys

multi-
receiver
sealed
sender

encryption

send group
messages

send group
messages

multi-receiver
messages

get receiver's
keys

get receiver's
keys

request

response

group encryption

(a)

BLS Signal client Signal
server

Registration Registration
create device

registration information

manage
member list

send
end-to-end

messages

find Signal
address of
receivers

messages

get receiver's
keys

get receiver's
keys

request

response

get or create
chain key
sessions

encryption
with

message
keys

send
encrypted
messages

send
encrypted
messages

encrypted messages

(b)

Figure 1: Flowchart of the MPC client, including (a) group communication and (b) end-to-end communication.

6 Security and Communication Networks

https://chat.staging.signal.org

connecting the clients to the ofcial server in practical ap-
plications. Te version of the ofcial server is uncontrolled
and the server may monitor and prohibit abnormal use. For
purposes other than research, we recommend using the
server source code to build the server.

4.2. Experiment Method. Te goal of the experiments is to
compare the operational efciency between the MPC clients
using Signal group communication and the MPC clients
only using end-to-end communication. In the BLS threshold
signature, key generation and signing need to use the secure
channels to transmit information. In the process of key
generation, clients send and receive 3 rounds broadcast
messages and 1 round end-to-end messages. In the process
of signing, clients only send and receive 1 round of message.
By using Signal group communication, we signifcantly
improve the communication efciency of broadcast mes-
sages. To study the impact of the number of participants on
the operational efciency, we, respectively, tested three kinds
of the BLS threshold signature protocol, that is, we set “t� 2,
n� 3,” “t� 3, n� 4,” and “t� 4, n� 5.”

To run the MPC protocol, multiple clients need to run at
the same time. Diferent starting time of diferent clients will
lead to diferent elapsed times because the MPC client send
next round messages after receiving all the messages of the
previous round. As a result, the elapsed time of the last
started client is the shortest because it needs not to wait for
other parties’ messages at the frst round. We choose the
elapsed time of the last started client as the experiment
result. At least 5 tests will be conducted for each environ-
ment, and the average value will be taken to evaluate the
operating efciency. When the client sends messages to
other parties for the frst time, whether it is group com-
munication or end-to-end communication, it needs to
perform some additional steps, such as requiring receivers’
keys and distributing sender keys. Tese steps will not be
performed when subsequent messages are sent and these
steps in group communication are more complex than these
in end-to-end communication. In this paper, we mainly
focus on the operational efciency of subsequent rounds
communication. For the frst-time communication, we
tested some typical situation of MPC protocols to show the
impact on the communication efciency of new and old
clients. Before running the MPC protocol, the MPC clients
have acquired necessary information. Te time of the
preparation steps will not be considered.

4.3. Experiment Result

4.3.1. Key Generation. Te elapsed time of key generation of
the BLS threshold signature is shown in Figure 2. Group
represents the MPC clients using both Signal end-to-end
communication and group communication, and Zengo
represents the MPC clients that the Zengo-X team imple-
mented [9] using only end-to-end communication. Signal
group communication requires at least 3 parties, so the
experiments start with 3 party protocols. In Figure 2, the
elapsed times do not include the time of one-time steps and

the JSON fle of parities information has been added into the
clients.

According to the experiment result of key generation,
compared to the Zengo client, the Group client has sig-
nifcant performance advantages, even if the number of
parties is only three. In “t� 2, n� 3” protocol, compared with
the Zengo client, the operational efciency of the Group
client is improved by 37.48%. With the growth of number of
parties, the elapsed time of both Group and Zengo increase,
and compared with Zengo client, the advantages of the
operational efciency of Group increases more signifcantly.

4.3.2. Signing. Te elapsed time of the signing of BLS
threshold signature is shown in Figure 3. In Figure 3, the
elapsed times do not include the time of one-time steps and
the JSON fle of parities information has been added into the
clients. Compared with key generation, the process of
signing is simpler, only transmitting one round broadcast
messages. Terefore, the elapsed time of signing is much
shorter than that of key generation, and the elapsed time of
group hardly increase with the growth of the number of
parties. For an t+1 parties signing protocol, if only using
end-to-end communication, every client needs to send and
receive t end-to-end messages. Te encryption of group
messages is more complex than end-to-end messages, but
the encryption time of group messages increases little with
the growth of the number of parties. In “t� 2, n� 3” pro-
tocol, compared with the Zengo client, the operational ef-
fciency of the Group client is improved by 68.83%. With the
growth of number of parties, compared with Zengo client,
the efciency advantage of Group increases rapidly.

4.3.3. First-Time Communication. Te elapsed time of frst-
time communication of some typical situation is shown in
Table 2. Te three situations are “t� 2, n� 3, signing,” “t� 2,
n� 3, key generation,” and “t� 4, n� 5, key generation.”
According to the result, we can see that the communication
efciency of the new MPC client using group communi-
cation is not as good as that of the Zengo client in some
situations. 3 parties signing includes only one round of
broadcast messages and the elapsed time of Group is nearly
twice as that of the Zengo client. With the growth of the
number of parties and the rounds of broadcast messages, the
MPC client of Group performs better than the Zengo client.
5 parties key generation include 3 rounds broadcast mes-
sages and the elapsed time of Group is shorter than that of
the Zengo client even if the clients have not sent group
messages to other parties.

Table 1: Experiment environment.

Operation system Ubuntu 20.04
Server location Singapore
Memory 4GB
System disk 80GB
CPU cores 2
Rust version Nightly-2021-09-16
Libsignal-client version 0.17.0 (edited)

Security and Communication Networks 7

4.4. Discussion. According to the experimental result, the
MPC client using both Signal end-to-end communication
and group communication has signifcant advantages over
the MPC client by only using Signal end-to-end commu-
nication in the BLS threshold signature protocol. Actually,
compared with other steps, the encryption of multireceiver
sealed sender and receiving messages costs little time be-
cause in the signing process the number of parties has little
impact on the elapsed time of group clients. To send

a broadcast message using Signal end-to-end communica-
tion, the client needs to send the messages to the server
several times, one receiver at a time, and the elapsed time of
old clients increases rapidly with the growth of the number
of parties. As a result, sending requests to the server takes
a lot of time. Although generating a group sealed sender
message is more complex than generating a normal Signal
message, as its process mainly runs locally. Using Signal
group communication, the MPC client only sends a message
to the server once, no matter how many receivers there are.
For any MPC protocol sending broadcast messages, using
Signal group communication can efectively reduce the
elapsed time of the protocol if the parties have sent group
messages to each other before.

Our experiment still has some limitations. We assume
that theMPC clients have sent groupmessages before so that
some one-time steps were not included in performance

5392
6407

7839 7413

11008

14792

t=2,n=3

Elapsed times of key generation

t=3,n=4 t=4,n=5
0

2000

4000

6000

8000

10000

12000

14000

16000

tim
e (

m
s)

Group
Zengo

Figure 2: Elapsed time of key generation, including “t� 2, n� 3,” “t� 3, n� 4,” and “t� 4, n� 5.”

1139 1181 1239

1923

2854

3668

t=4,n=5

Elapsed times of signing

Group
Zengo

t=2,n=3 t=3,n=4
0

500

1000

1500

2000

2500

3000

3500

4000

tim
e (

m
s)

Figure 3: Elapsed time of signing, including “t� 2, n� 3,” “t� 3, n� 4,” and “t� 4, n� 5.”

Table 2: Elapsed time (ms) of frst-time communication.

Clients t� 2, n� 3 signing t� 2,
n� 3 key generation

t� 4,
n� 5 key
generation

Group 4226 8759 13356
Zengo 2145 7747 15300

8 Security and Communication Networks

comparison, such as sending sender key distribution mes-
sages and getting receivers’ keys from the server. Although
Signal end-to-end communication also has some one-time
steps, the one-time steps of Signal group communication
obviously take more time than those of end-to-end com-
munication. Te MPC clients distribute sender keys using
Signal end-to-end messages, which actually add an addi-
tional round of end-to-end messages. In addition, Signal
group communication requires the keys of all the devices of
receivers, which means the clients need to request at least
twice the keys from the server. As a result, in some extreme
cases, using group communication may reduce communi-
cation efciency: (1) the parties of the MPC protocol have
not sent Signal group messages to each other, (2) the pro-
tocol is simple, including only one round broadcast mes-
sages to be sent, and (3) the number of the parties of the
MPC protocol is very small, such as 3 parties. When the
above three points are met, the use of group communication
may not improve communication efciency of the MPC
protocol. We tested three typical frst-time communication
situations of MPC protocols, and the group client actually
performs worse in some cases where there are few parties
and rounds situation. However, when there are many parties
and rounds of broadcast, the Group client performs better
than the Zengo client even in frst-time communication.

5. Conclusions

Our research established secure channels of MPC protocols
based on Signal group communication and end-to-end
communication and tested the communication efciency of
the secure channels in running the BLS threshold signature
protocol. Compared with the MPC client only using Signal
end-to-end communication, our new MPC client has sig-
nifcant improvement of communication efciency in the
key generation and signing of the BLS threshold signature
when the number of parties is greater than 3 and they have
previously sent Signal group messages to each other. In our
experiment environment, our new client runs at least 37.48%
faster than the old client only using Signal end-to-end
communication. Te secure channels based on the Signal
protocol provide encryption and authorization to the
messages which are required by the MPC protocols. Our
research improves the performance of the MPC secure
channels based on the Signal protocol on the complex
protocols of multiple parties. Te improvement of com-
munication efciency increases with the number of parties
and the rounds of broadcast messages.

Tere are also some points that can be improved for our
research. Our MPC clients still need to collect the in-
formation manually. Wementioned that the Group v2 in the
Signal protocol can store the encrypted members’ in-
formation on the server which can manage the members’
information easily. Combining the function and MPC can
simplify the preparation steps. Our research studies have not
considered the time cost of the sender key update. For long-
term use, sometimes, the process of generating new sender
keys may increase the elapsed time of the MPC protocol.
Tese points can be studied in future research.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Key R&D Program
of China under Grant no. 2017YFB1400700.

References

[1] T. Perrin, “Te Noise protocol framework,” 2018, https://
noiseprotocol.org/noise.pdf.

[2] T. Perrin, “Te XEdDSA and VXEdDSA signature schemes,”
2016, https://signal.org/docs/specifcations/xeddsa/xeddsa.
pdf.

[3] T. Perrin and M. Marlinspike, “Te Double
ratchet algorithm,” 2016, https://signal.org/docs/
specifcations/doubleratchet/doubleratchet.pdf.

[4] M. Marlinspike and T. Perrin, “Te X3DH key agreement
protocol,” 2016, https://signal.org/docs/specifcations/x3dh/
x3dh.pdf.

[5] Stepan, “BLS signatures: better than Schnorr,” 2018, https://
medium.com/cryptoadvance/bls-signatures-better-than-schn
orr-5a7fe30ea716.

[6] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” Journal of Cryptology, vol. 17, no. 4,
pp. 297–319, 2004.

[7] B. Dan, M. Drijvers, and G. Neven, “Compact multi-
signatures for smaller blockchains,” in Proceedings of the
International Conference on the Teory and Application of
Cryptology and Information Security, Springer, Berlin, Hei-
delberg, October, 2018.

[8] D. Galindo, L. Jia, M. Ordean, and J.-M. Wong, “Fully dis-
tributed verifable random functions and their application to
decentralised random beacons,” in Proceedings of the 2021
IEEE European Symposium on Security and Privacy
(EuroS&P), vol. 96, Vienna, Austria, September 2020.

[9] O. Shlomovits, “MPC-Over-Signal,” 2021, https://medium.
com/zengo/mpc-over-signal-977db599de66.

[10] A. Aly, K. Cong, and D. Cozzo et, “SCALE–MAMBA v1.14:
documentation,” 2021, https://homes.esat.kuleuven.be/%
7Ensmart/SCALE/.

[11] T. Okamoto and D. Pointcheval, “Te gap-problems: a new
class of problems for the security of cryptographic schemes,”
in Proceedings of the 4th International Workshop on Practice
and Teory in Public Key Cryptography, Public Key Cryp-
tography, Berlin, Heidelberg, June 2005.

[12] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for
security,” Jan-2016, http://www.ietf.org/rfc/rfc7748.txt;Inter-
net Engineering Task Force; RFC 7748 (Informational); IETF.

[13] C. Kudla and K. G. Paterson, “Modular security proofs for key
agreement protocols,” in Proceedings of the Advances in
Cryptology - ASIACRYPT 2005: 11th International Conference
on the Teory and Application of Cryptology and Information
Security, Berlin, Heidelberg, December 2005.

[14] S. Blake-Wilson, D. Johnson, and A. Menezes, “Key agree-
ment protocols and their security analysis,” in Proceedings of

Security and Communication Networks 9

https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716
https://medium.com/zengo/mpc-over-signal-977db599de66
https://medium.com/zengo/mpc-over-signal-977db599de66
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
http://www.ietf.org/rfc/rfc7748.txt

the Crytography and Coding: 6th IMA International Confer-
ence Cirencester, London, UK, December 1997.

[15] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “DiSE:
distributed symmetric-key encryption,” in CCS, pp. 1993–
2010, ACM, New York, NY, USA, 2018.

[16] C. Cremers and M. Feltz, “One-round strongly secure key
exchange with perfect forward secrecy and deniability,” 2011,
https://eprint.iacr.org/2011/300.

[17] J. P. Degabriele, A. Lehmann, K. G. Paterson, N. P. Smart, and
M. Strefer, “On the joint security of encryption and signature
in EMV”, cryptology ePrint archive,” 2011, https://eprint.iacr.
org/2011/615.

[18] jlund, “Technology preview: sealed sender for signal,” 2018,
https://www.signal.org/blog/sealed-sender/.

[19] jimio, “Technology preview: signal private group system,”
2019, https://www.signal.org/blog/signal-private-group-
system/.

[20] M. Chase, T. Perrin, and G. Zaverucha, “Te signal private
group system and anonymous credentials supporting efcient
verifable encryption,” 2019, https://eprint.iacr.org/2019/1416.

[21] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic MACs
and keyed-verifcation anonymous credentials,” in ACM CCS
2014, G.-J. Ahn, M. Yung, and N. Li, Eds., pp. 1205–1216,
ACM Press, New York, NY, USA, 2014.

[22] H. Krawczyk and P. Eronen, “HMAC-Based extract-and-
expand key derivation function (HKDF),” 2010, http://www.
ietf.org/rfc/rfc5869.txt.

[23] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: keyed-
hashing for message authentication,” 1997, http://www.ietf.
org/rfc/rfc2104.txt.

10 Security and Communication Networks

https://eprint.iacr.org/2011/300
https://eprint.iacr.org/2011/615
https://eprint.iacr.org/2011/615
https://www.signal.org/blog/sealed-sender/
https://www.signal.org/blog/signal-private-group-system/
https://www.signal.org/blog/signal-private-group-system/
https://eprint.iacr.org/2019/1416
http://www.ietf.org/rfc/rfc5869.txt
http://www.ietf.org/rfc/rfc5869.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt

