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The advent of the Internet and portable devices, including smartphones and watches, has brought unprecedented opportunities
for embedded application systems developments. Along with these developments, there is an increasing need for embedded
devices to handle important services, such as the ability to pay bills or manage bank accounts remotely via mobile phones. Such
applications and developments have also highlighted the issues of cyberattacks and computing network security--these de-
velopments have made mobile phones a potential target for malware, trojans, and viruses, so it is critical to design a set of security
technologies for embedded devices. In fact, security has become an essential requirement in the process of embedded system
design. Thus, ARM has proposed system-level security solutions based on TrustZone technology. TrustZone technology is tightly
integrated with Cortex™-A processors and extends the system through the AMBA® AXI bus and specific TrustZone system IP
blocks to protect peripherals such as secure memory, encryption blocks, keyboards, and screens from software attacks. It divides
the system into TEE (Trusted Execution Environment) and REE (Rich Execution Environment) by hardware and provides
intrinsic software security services and interfaces. More precisely, it has built system security by combining hardware and
software. It is worth noting that it does not influence performance, power consumption, and area as much as possible. Owing to
such characteristics, the technology has gained the wide attention of researchers worldwide. There is lack of systematic doc-
umentation of the technology. Therefore, this paper documents the significant progress achieved in the field. In particular, this
article mainly analyses the primary mechanism implementation, and how to build the Trusted Execution Environment in different
environments. Then, this paper discusses the related research works in the academic field and business applications of the
technology. Furthermore, the advantages and weaknesses of the TrustZone technology as well as the proposed possible solutions
aiming at the deficiency are outlined. Finally, a comparison of TrustZone technology with another mainstream commercial SGX,
and future directions are presented.

1. Introduction

Recently, due to the rapid development of mobile Internet
technology, people are more frequently using mobile devices
in daily life. In this situation, the development of embedded
systems places a critical position. With the development and
deployment of various Internet applications, the use and
facility requirement of the embedded system becomes more
complex. People can use embedded devices to make pur-
chases, to make reservations, and even now to make large
transactions, and to manage bank accounts has become very
common, so protecting sensitive private data and its

operation processes in an adverse environment have become
a hot research point. In [1, 2], some approaches to the
cybersecurity protection of basic networking facilities are
proposed. Thus, developing a set of security solutions for
embedded systems becomes more urgent together with their
deployments. In this security solution, design should be
avoided to add conditions and components to supply a gap
several times. This can avoid the embedded system not being
too complex on the one hand. On the other hand, it can
prevent more and more complicated designs. Meanwhile, on
account of various security threats on the Internet, when
devices with embedded systems connect to the Internet, it
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should be ensured that the devices can perform normal
operations and protect sensitive data and processes under
a malicious attack and exploitation. This design should
cooperate mutually with hardware and software because
pure hardware design will lead to an increase in power,
bigger cost, and being weak to newly rising security prob-
lems. Conversely, refined software design will lead to (I) an
increase in system complexity, (II) decline in operating
efficiency, and (III) unable to avoid the security problem that
is being demolished [3]. In 2002, embedded processor IP
supplier ARM corporation came up with TrustZone tech-
nology to provide a comprehensive system security solution,
which is a system-wide security approach targeting a wide
range of applications on high-performance computing
platforms, including secure payments, digital rights man-
agement (DRM), enterprise services, and Web-based ser-
vices [4]. It achieved security through only minor design
tweaks in hardware. In 2009, Apple adopted TrustZone to
protect its Touch ID data in iPhone 5s [4]. It is worth noting
that even when IOS is fully compromised, the Touch ID data
will be still safe through this technique. From that, lots of
Major vendors started to use TrustZone technology. In 2017,
Google coerced TEE as a necessary component on any An-
droid device with a fingerprint scanner [4]. As the extension
support of TEE in the ARM platform, TrustZone divides the
resources into two parts: Trusted Execution environments
(TEEs) and Rich Execution Environment (REE). TEE gives
applications a Trusted Execution Environment to store sen-
sitive data and process them. REE is the execution envi-
ronment for normal applications. TEE and REE are isolated
by hardware which guarantees the effectiveness of security.
Meanwhile, TrustZone also divides applications into two
parts: TA (Trusted Application) and CA (Client Application)
[5]. TA runs in TEE, containing storage and execution of
sensitive data. CA only runs in REE and can invoke sensitive
data only by calling TA applications.

In a word, TrustZone is an excellent technology. Most
security-related functions on embedded devices are imple-
mented based on TrustZone, including runtime security,
secure storage, secure computing, private key signature,
fingerprint comparison, authentication, authorization
management, and DRM authentication.

The remainder of this article is organized as follows.
Section 2 presents an analysis of the basic system architecture
of TrustZone and its environment. Section 3 discusses build
Trusted Execution Environment (TEE) based on TrustZone.
The analysis of research works based on TrustZone is outlined
in Section 4. Whereas advantages and disadvantages of
TrustZone security technology are explored in Section 5. The
security performance optimization is provided in Section 6. A
comparative analysis between ARM TrustZone and SGX is
explained in Section 7. Future directions are discussed in
Section 8. Finally, the conclusion is drawn in Section 9.

2. TrustZone Security Technology
Architecture Overview

In order to introduce the architecture of TrustZone tech-
nology more clearly and completely, this article will analyze

Security and Communication Networks

the hardware architecture, software architecture, and
Implementation of the TZ security mechanism in detail.

2.1. Hardware Architecture. The core idea of TrustZone’s
hardware architecture is isolation. These hardware isolations
include interrupting isolation, on-chip, oft-chip RAM and
ROM isolation, peripheral hardware isolation, and external
RAM and ROM isolation. To realize various isolation at the
hardware level, the hardware and processor need to be
expanded accordingly.

First, one aspect of the TrustZone hardware architecture
is implementing hardware expansion in the CPU. Figure 1
shows the TrustZone hardware architecture, which isolates
the existing core of the CPU and divides the CPU core into
the security world and the normal world [6]. The physical
sense of a single processor core is composed of two virtual
processor cores: the security processor core and the normal
processor core. Therefore, a single processor core in the
physical sense can use its isolated two generated virtual cores
to execute programs in the normal world and the security
world, respectively, and simultaneously. This isolation op-
eration can ensure that secure memory and peripherals can
deny nonsecure processes by hiding them in the operating
system to achieve hidden security defense. In addition,
virtual isolation also eliminates the need to design a par-
ticular CPU security core. Thus, it allows the CPU’s normal
world operating environment and security protection
software to run simultaneously and saving chip size, power
consumption, and design and manufacturing costs.

To manage and switch the state of the two processors,
TrustZone introduces a unique mechanism-the monitoring
mode. The primary function of this mode is similar to the
context switching function on the traditional operating
system, i.e., ensuring that the processor can safely and ac-
curately save its working environment before switching and
correctly restoring the system operation in the changing
climate. Entering the monitoring mode from the normal
state, requesting to switch to the security state in the normal
state, is strictly limited by TrustZone. It can only be entered
through an interrupt, external interrupt, or direct call of
SMC instruction. There are no strict restrictions on entering
the monitoring mode from the security state. Insecurity state
can switch to normal way through the exception handling
mechanism or directly override the Current Program Status
Register.

The second aspect of TrustZone hardware architecture is
the hardware expansion in memory. To separate all the
hardware and software resources of SOC into two parts, the
TrustZone extends the hardware in memory. Such separa-
tion isolates the memory and divides it into two parts: the
normal world for storing all other content resources and the
secure world for storing security systems. The CPU has
independent physical address Spaces when running pro-
cesses in Trusted Execution Environment (TEE) and Rich
Execution Environment (REE) [7]. Under TEE, the CPU can
access resources in the corresponding address space of the
two environments. While under REE, the CPU can only
access its own address space. Therefore, when a process is
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FIGURE 1: TrustZone technology system architecture [6].

running in REE, it cannot view or modify resources in TEE
memory space, whereas a process running in TEE can view
help in both areas [7].

To realize the physical division of memory, TrustZone
designs two controllers: TrustZone Address Space Controller
(TZASC) and TrustZone Memory Adapter [6]. TrustZone
Address Space Controller can divide the memory address
space of the device into multiple memory spaces. These
intervals can be configured as the address space of TEE or
REE through the security software running in TEE. Trust-
Zone Storage Adapter is responsible for partitioning the
static RAM or ROM of the device and extends some co-
processors. These coprocessors can extend the core func-
tions by expanding the instruction set or providing
configuration registers. Some coprocessing registers have
one in TEE and one in REE. These registers only work in the
corresponding environment and can be modified only in the
corresponding environment. Other registers are global
registers, but the restrictions on these registers are stringent.
They can only be read and written in TEE, and only read-
only permission is provided in REE [6, 8].

The last aspect of TrustZone hardware architecture is the
extension of the interrupt control system. The interrupt is an
essential part of TEE. It can prevent malicious software from
attacking the system by entering the interrupt vector. In
TrustZone, TEE and REE use interrupt input FIQ and IRQ as
interrupt sources. If the interrupt occurs in the corre-
sponding environment, switching the execution environ-
ment is unnecessary. For example, suppose the interrupt
does not appear in the corresponding environment. If IRQ
interrupts input is received in TEE, the monitor must switch
the execution environment and close the interrupt. Trust-
Zone uses a CP15 coprocessor [9] to ensure the safe in-
terruption of internal resources. It contains a control register
that the software can only access in TEE, thus preventing the
software in REE from modifying the F bit and A bit in CPSR
(F bit is used to mask FIQ interrupt, and Abit is used to
mask external interrupt). In this way, CP15 can effectively

prevent malware running in REE from shielding interrupts
in TEE.

The hardware expansion of the above three aspects is the
functional foundation of the TrustZone system architecture.
We can see that TrustZone integrates security measures into
SOC at design time and improves security without com-
promising previous chip designs. Similar hardware-based
security technologies include XOM developed by Stanford
University, and AEGIS developed by MIT. The core of the
XOM system is its assumption that the internal units of the
processor can defend against all kinds of malicious attacks.
Namely, its TEE applies only to the CPU and not to the
entire operating system. We can roughly think of XOM as
the first aspect of TrustZone’s hardware architecture for ease
of understanding. AEGIS system is a security startup
structure that provides multi-level security verification to
prevent the invasion of malicious software during system
startup.

2.2. Software Architecture. TrustZone hardware architecture
extensions embed security into the processor, which pro-
vides the basis for separating security from the normal
operating system (Rich OS, ROS) [8], i.e., a new secure
operating system (Trusted OS, TOS) [10] can be imple-
mented. In addition, the monitoring code area is added to
realize the switch between TOS and ROS. TOS and ROS run
on the same physical CPU simultaneously, and their in-
teractions are limited to messaging and shared memory
passing data [6]. TOS has independent exception handling,
interrupt handling, scheduling, application, process, thread,
driver, and memory management page tables [8]. The
monitoring code area provides a virtual hypervisor that
connects these two systems and stores and restores registers’
states in both environments during the transition between
these two systems. It ensures that the system can be re-
executed during the transition to the new environment. To
ensure the entire system’s security, it must be guaranteed



from the start of the system boot. Many attackers attempt to
erase or modify system mirrors stored in FLASH during
system power outages. Because of this, TrustZone is started
securely. The process is as follows: After the device is
powered on and reset, a security boot program is run from
the ROM of SOC. The boot program will first enter the
initialization stage of TEE and start TOS. The critical codes
in each stage of TOS startup are checked step by step to
ensure the integrity of TOS and prevent the operation of
unauthorized or maliciously tampered software [11]. Then,
running the REE boot program and starting ROS are per-
formed to complete the safe boot process for the entire
system. ARM also defines the standard application program
interface (TrustZone API-TZAPI). Such standard applica-
tion program interface ensures that the applications written
by software and hardware developers can be applied to
devices on different security platforms and allows client
applications to access TOS to achieve the purpose of
managing and using security services.

2.3. Implementation of TrustZone Security Mechanism.
TrustZone technology introduces the concept of TEE
through the hardware expansion of the CPU core and
memory system. The nonsecure (NS) bit is a crucial ex-
tension of the system, which indicates whether the current
system is in a secure area or not. When the NS bit is set to 1,
it means the current area is nonsecure and 0 means secure
[6]. NS bit acts on the CPU core and memory system and
affects the work of system peripherals. The monitor switches
between the security state and the normal state by modifying
the NS bit. Moreover, the monitor also extends the functions
of cache and MMU (Memory Management Unit) in the
memory system and adds their control logic to realize
memory management. The monitor adds an NS bit to the tag
of each cache line so that the data in the cache can be marked
as secure and normal by the NS bit. The monitor creates two
virtual MMUs for the two virtual processor cores and adds
an NS bit to each page table. The tag of each Translation
Lookaside Buffer (TLB) corresponding to the page table is
also increased by one NS bit. So far, all memory (except the
preset shared memory) has realized the security and normal
marking through the NS bit. All NS bits are combined for
dynamic verification to ensure that only authorized oper-
ations can access the resources marked as security by NS bits.

To ensure the stability of the boundary security between
TEE and REE (i.e., ensuring the processes in REE cannot
access any resources in TEE), TrustZone adds unique control
signals to each read-write channel on AXI-BUS: Bus Write
Transaction Control Signal (AWPORT) and Bus Read
Transaction Control Signal (AIRPORT) [6]. Therefore, when
the CPU requests to access the resources in memory, it
should send the target memory address to AXI-BUS and
send the AWPOER and ARPORT to the bus to indicate
whether the access is a secure transaction or a nonsecure
transaction [8].

AXI-BUS protocol will set these two signals to 0 or 1 to
indicate the security transaction. Then, the address decoder
of the system will identify these two signals and use these
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signals to generate different address mappings according to
the security status of the CPU. There are two situations:
When both AWPORT and ARPORT are 0, the CPU is in
a safe state. At this time, the CPU can access all registers in
the normal world and security world. When AWPORT and
ARPORT are 1, the CPU is in the normal state. At this time,
the CPU can only access registers in the normal environ-
ment. When it attempts to access a register in a secure
environment, the address decoder will refuse access and
generate an error message that “The peripheral does not exist
with this address” [8]. At the same time, TrustZone uses the
AXI-to-APB bridge to protect peripherals and ensure that
peripherals are connected safely. Therefore, the peripherals
in the normal world cannot access the secure world, which
firmly separates the peripherals in the two environments.
TrustZone ensures the security of TEE and REE boundaries
in terms of data and peripherals. Store essential data re-
sources in a secure environment and use these data in the
secure processor core to ensure that these data can be
protected from malicious software attacks that may occur in
the normal world. At the same time, sensitive peripherals are
isolated in the hardware to defend against malicious attacks
through peripherals. For the peripherals, recent research
[12] propose a lightweight framework named TEE-
Watchdog, which establishes MPU protections for secure
system peripherals in TrustZone. TEE-Watchdog can ensure
prevention of unauthorized peripheral accesses and use
a manifest file to log the application misbehavior running in
the TEE. TEE-Watchdog introduces a compact CBOR-
encoded manifest file template for device vendors or
manufacturers to use for specifying access policies. It also
enables efficient behavioral logging of misbehaving software.
But TEE-Watchdog still has disadvantages; according to the
researcher’s benchmark test, there is a 1.4% delay in latency
of peripheral access due to TEE-Watchdog protections.

TEE implemented by TrustZone technology enables
security measures applicable to many layers of a complex
embedded system. Normal operations will run entirely in
ROS (Rich OS) [7] without TrustZone providing security
assistance. To achieve security in ROS, TrustZone uses the
following three steps to build TOS [10] to perform opera-
tions that need to be encrypted. First, TrustZone executes the
boot program to complete the configuration of TOS, and
only the modules that pass the security verification are
allowed to be loaded. Second, during the operation of the
system, the security code area provided by TrustZone
technology will process the security requests of the normal
code area, save the security requests in the shared memory
before processing, and only the requests that pass the se-
curity detection will be processed. Finally, processes marked
as safe can be executed in TOS away from ROS.

3. Build Trusted Execution Environment (TEE)
Based on TrustZone

This part will cover the TEE built based on TrustZone in
detail. Global Platform developed the TEE standard based on
TrustZone security technology. As introduced in Section 2,
TrustZone is a system security solution that combines
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hardware and software but is mainly based on hardware. It
isolates the system into two simultaneous operating envi-
ronments (i.e., security and normal) and provides compli-
mentary applications through software architecture. TEE
developed by Global Platform can be used as an independent
execution environment to reside in the security zone on the
processor supporting TrustZone [6]. To ensure the safe
storage and use of sensitive data in TEE. The structure of
TEE and REE built by the Global Platform based on
TrustZone is shown in Figure 2 [13].

We can see in Figure 2 that in this system architecture,
TEE is an independent running environment running si-
multaneously with REE in the system. Its purpose is to
provide security services to REE and ROS in REE. TOS in
TEE is responsible for managing the software and hardware
resources of TEE, and it also includes monitors responsible
for switching TEE and REE. TEE ensures the safe operation
environment of TA (Trusted Application) and protects TA’s
resource integrity and access rights. Each TA in TEE is
independent and cannot access without TEE’s authorization.
TEE must pass dynamic multi-level verification during its
startup and maintain its independence from ROS. TEE client
API is the underlying communication interface for client
applications running in ROS to access data and services. TEE
functional API encapsulates TEE client API to access se-
curity services in a programming model familiar to de-
velopers, such as encrypted storage and trusted storage [13].
TEE Internal API provides TA’s programming interface,
mainly including APIs for key management, secure storage,
and trusted UL Trusted Ul means that when critical in-
formation is displayed, or key information data (bank
password and account password), hardware peripheral re-
sources such as screen display and keyboard input are en-
tirely controlled and accessed by TEE, and the software
running in ROS does not have access at this time. A typical
and similar example is that when using iPhone to input
a password, the IOS system will force the user to use the
input method provided by IOS to prevent the third-party
input method from stealing the password when the user
enters the password. Finally, REE Communication Agent
provides a bridge between TA and CA (Client Application).

TEE built by TrustZone is generally based on the TEE
architecture standard of Global Platform. Wang [14] from
the University of Electronic Science and Technology of
China built TEE for the Android system as ROS, as shown in
Figure 3. From this TEE architecture, we can see that TOS
running in a safe state manages the software and hardware
resources in TEE. Moreover, TOS is started up before the
whole system is started, and then the security attributes of
the device are configured and set, and the secure storage
space is allocated. REE Communication Agent is imple-
mented in the form of the TrustZone driver, while the TEE
Communication Agent is a daemon. Shared memory is
allocated in the memory area of REE. Its function is to
transfer data between TEE and REE. REE transfers com-
mand parameters to TEE and receives the data returned by
TEE. The whole Android system runs in REE, so the An-
droid system cannot directly access the sensitive data stored
in TEE and the peripherals marked as security. This can

protect the security of sensitive data of system users, pre-
venting the whole Android system from being attacked by
malware.

4. Research Works Based on TrustZone

Aiming at the rising security problem of embedded systems
and applications, companies have successfully launched
a security solution based on TrustZone technology. Re-
searchers also pay much attention to this technology.

4.1. Construct Security Platform Based on TrustZone.
TrustZone (TZ) technology gives a basic frame of security.
Developers can utilize TZ technology to construct a new
security platform to fulfil different security requirements,
such as payment, fingerprint identification, and DRM. In
2013 MWC, Samsung company released a new mobile se-
curity platform KNOX based on the Android system and
TrustZone technology. It utilized Android SE to execute
enforce access control policies to isolate applications and
data on the platform, thus satistying the requirement of
security guarantee [15]. The system frame is shown in
Figure 4 [16].

Android SE security mechanism should guarantee the
integrity of the system kernel, or it will lose efficacy. In the
KNOX system frame, the TrustZone-based Integrity
Measurement Architecture (TIMA) is responsible for this
gap [6]. It utilized the TrustZone hardware frame to ef-
ficiently divide memory and CPU resources into security
and normal worlds. TIMA runs in a safe area and cannot
be forbidden. TIMA continuously monitored the integrity
of the kernel in real time. When it detects the kernel’s loss
of innocence, it will announce the company IT by Mobile
Device Management (MDM). In this situation, it can
cooperate with the safe launch and Android SE to es-
tablish the first security defense of kernel and core helper
process.

Also, AMD company in 2013 introduced a new AMD
Secure Technology called Platform Security coprocessor
(PSP). It utilized TrustZone technology to divide the CPU
into two virtual spaces to create a safe space for processing
sensitive data on PSP. Other tasks were processed in normal
world space. This method guarantees the safety of the storage
and process of sensitive data and trusted applications and
can protect the integrity and confidentiality of critical re-
sources [17]. The PSP design architecture is shown in
Figure 5 [17].

In Jan 2014, AMD published the first ARM frame server
processor, Opteron A1100. It was a complete SoC with an
integrated functional design rather than a CPU. Moreover,
it’s also the first server processor supporting the TrustZone
security module, which plays a vital role in increasing the
security on the server.

Apple company designed a highly-utilized TrustZone
security frame and further published a Secure Enclave
module based on it, which significantly solved the problems
of how to encrypt, store and protect the user’s fingerprint
biological information. It was also responsible for verifying
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fingerprint information from Touch ID. The only match will
permit visit or purchase. Secure Enclave module was the
coprocessor internally built-in Apple A7 chip, with a secu-
rity startup and software update mechanism independent of
the central processor [15]. Companies’ published security
platforms and frames are based on a hardware security
isolation environment supported by TrustZone to process
sensitive data and security services. Their security is guar-
anteed because sensitive information processing, secure
storage, and services are protected by TrustZone hardware
and wholly isolated from ROS.

Nowadays, most security platforms in the industry are
based on the hardware security isolation environment
provided by TrustZone, which are widely being used to
process and store sensitive information securely and design

security services to meet application requirements. The
TIMA in Samsung KNOX completes the integrity check of
the Linux kernel, the PSP of AMD handles sensitive ap-
plication information, and the Secure Enclave of Apple
handles fingerprint biological information. They are all
based on this idea, since sensitive information processing,
secure storage, and security services are protected by
TrustZone hardware isolation and completely isolated from
ROS, its security can be adequately guaranteed. But KNOX
uses TrustZone more as a monitoring system, constantly
judging whether the kernel is intact, to confirm whether it is
under attack. PSP and Secure Enclave module use TrustZone
as the overall system architecture framework, which dis-
tinguishes the overall system environment into TEE
and REE.



4.2. Construct Secure System Environment Based on
TrustZone. With rapid development, system functions be-
come more complicated. Code lines become larger. This
increases many gaps, for which hackers can exploit them to
gain sensitive data in the system. Utilizing the hardware
security isolation advantage of TrustZone can guarantee the
safety of the ROS system. Research [18] proposed a Trust-
Zone-based real-time kernel protection (TZ-RKP) mecha-
nism, such as the one shown in Figure 6 [18]. In the ROS
kernel, control operations and page table update function
will check in TOS rather than modify in ROS. It mainly
coerces some privilege system functions in the kernel to
review and authorize in a safe environment first, then
permits processing. This mechanism can efficiently prevent
the attack of modifying and adding kernel files. However,
this paper did not implement the corresponding detection
mechanism and processing mechanism in TZ-KRP for the
attack that decoys the kernel to modify its data, and this kind
of attack can hijack the kernel control flow and make it
seriously damaged.

Research [19] focused on embedded systems and pro-
posed a high-security system primitive platform, which
combined TrustZone, TPM, and programmable security
control logic (PSCL). This platform improved system per-
formance and security. PSCL mainly consisted of three
components: security finite state machine (SFSM), pro-
grammable security data path (PSD), and programmable
security processing module (PSPM). TPM only interacted
with secure kernel and provided secure storage, kernel in-
tegrity measurement, and system security integrity report.
When the system processes trusted applications, it will
deploy SFSM to check used and then define PSD to notify
secure CPU based on SFSM. Secure CPU will choose suitable
parameters and load them into the register. SFSM then
constructs PSPM based on these parameters. When PSD and
PSPM are created, SFSM will continually detect system
status from the secure CPU. As long as the status turns
unsafe, the secure CPU will reset SESM and refresh PSD and
PSPM. However, the security strategy, performance, and
secure communication agreement between the security CPU
and the SFSM were not anal yzed in depth. Research [20]
constructed a security enhancement frame based on
TrustZone and Linux systems. The structure consisted of an
access control mechanism and a security enhancement
method. The access control mechanism was implemented by
Domain and Type Enforcement (DTE) module and im-
proved Bell-La Padula (BLP) module. Furthermore, the
security enhancement method employed the Linux Security
Module (LSM) frame to provide vital protection for the
system. The normal world used BLP and DTE policies
provided by secure Linux to avoid malicious attacks and
ensure the integrity and confidentiality of the system. At the
same time, secure applications were processed by invoking
security services within the TrustZone-isolated security
environment. This prototype design can provide a secure
execution environment for open embedded systems and
various applications, but this paper did not combine specific
application scenarios, and there was no specific imple-
mentation of security services.
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4.3. Construct Trusted Computing Environment Based on
TrustZone. TrustZone needs a trusted computing environ-
ment for its isolated environment to provide trusted com-
puting functions for the system platform. Using this
technique to construct MTM is a common way to build
a trusted mobile platform, providing security for MTM [6].
The research work in [21] combined the trusted computing
concept of TCG and a Linux-based embedded trusted
computing platform. It built a virtual framework in the
security zone of TrustZone, designed a trusted mobile
platform prototype based on this, and implemented secure
startup. This prototype implemented MTM in pure software
aspect with no adding hardware and verified the feasibility of
realizing embedded trusted computing software platform by
utilizing hardware security mechanism. The work in [22]
discussed two isolation environment construction software
MTM by TrustZone, and other security components (such as
JavaCard). With analysis, TrustZone can provide security
protection similar to hardware MTM. The study in [23] put
out a mobile trusted computing module TEEM, giving
a trusted computing function for different platforms such as
PCs or mobile devices. In this design, TEEM was settled as
a TPM service running in the secure zone of TrustZone. This
module didn’t isolate TEEM and ROS, the same as TEEM
running on the whole Linux OS, resulting in a vast TCB.
From a trust computing perspective, the authors in [24]
proposed and implemented a static measurement method of
Android system trust based on TrustZone. In this method,
the ARM Trusted Firmware (ATF) bll.bin image is con-
sidered the root of trust, and the TrustZone technology is
combined with the Android system knowledge base. Kernel
modules and executable files are statically measured in the
system boot process. Finally, the trust root is extended to the
application framework layer of the Android system, pro-
viding a reliable underlying environment for detecting the
application layer of the Android system. This method can
detect the privileged attack promoted at the system layer of
Android, and find the rootkit that undermines the integrity
of the Android kernel in time during the boot process. In
addition, the performance loss of this method is within an
acceptable range.

The above technologies take advantage of the isolation
environment of the TrustZone and build virtualization
frameworks in secure world to establish trusted computing
platforms. However, most of the above researches were not
discussed in detail, and there were no effective testing and
verification methods. TrustZone-based MTM, as mentioned
in [22], did not have a valid MTM test suite to confirm that
their implementation is fully compliant with the TCG
specification. Meanwhile, TEEM mentioned in [25] was not
isolated from ROS and had no effective verification results
on the development board, so it cannot be combined with
specific credible application scenarios. In addition, running
TEEM on the entire Linux OS results in a large Trusted
Computing Base (TCB). For method in research work [26],
the researchers did not give different weight values to dif-
ferent files based on the boot relationship existing in the
actual Android system. All these technologies need to be
further studied and explored.
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FIGURE 6: TZ-RKP design diagram [18].

4.4. Construct Security Service Based on TrustZone. With the
enriching requirement of embedded systems, new applica-
tions aiming at different needs occur. Applications that
collect and process sensitive information from users have
serious security problems. Based on the TrustZone security
isolation environment, constructing a security service to
protect sensitive data from malicious attacks is feasible. The
research work in [23] utilized TrustZone technology to
create a new mobile online ticket purchase system. Payment
involves various sensitive information. In this system,
sensitive information will be stored in secure zone of
TrustZone hardware, which greatly guarantees the security
problem when purchasing. The work in [24] aimed at low
protection of privacy in payment system, proposed
TrustZone-based privacy protection platform. It is suited in
the online payment (such as NFC), with applications
needing privacy protection. During online payment, ap-
plications can communicate with trusted applications
through the internal TrustZone API mechanism and store
sensitive data such as privacy during payment in a secure
environment isolated by TrustZone. Meanwhile, security
monitors will monitor these data to prevent privacy leakage
caused by malicious attacks. However, the prototype design
proposed in this paper was not implemented on the specific
development environment, and the performance load will be
very large which need to be discussed. The research work in
[27] is focused on remote attestation, a mobile remote
authentication solution based on ARM TrustZone (TZ-
MRAY) is proposed, which builds a probe-based model for
dynamic monitoring of system kernel and program integrity
(ProbeIMA), which dynamically detects unknown finger-
prints generated during kernel and process execution. Thus,
it prevents attackers from using time-of-check-to-time-
of-use (TOC-TOU) defect to create attacks. Compared with
existing solutions, this solution is more secure, efficient and
versatile, and more suitable for low-cost heterogeneous
systems.

4.5. Construct Secure Startup Based on TrustZone. To achieve
system safety, the secure startup is the base. This way, it can
ensure that the system’s operating environment is genuinely
trustworthy. Because of this, there are a lot of studies on
secure startup based on TrustZone. The authors in [28]
reconstructed trusted root for the TrustZone platform to
ensure startup security based on SRAM PUF [9]. The
concrete implementation was as follows. Firstly, the building
block is implemented in SRAM on-chip, which is mainly
responsible for extracting the original seed (PS) and random
number seed (TRS) from the initial response of SRAM.
Where, PS is used to generate a unique device key, TRS is
used to build a secure random number generator (RNG) for
TOS. They are all based on the construction of fast roots. The
building block also provides secure startup of TOS and
security services. After that, the device key is used to provide
encryption/decryption primitives for security services in
TEE, and the TPM service of pure software is integrated into
the TEE environment to provide rich TPM services for ROS,
which effectively protects ROS from software attacks as the
secure root of ROS. Thus, a trust chain is formed from
system startup to normal operation, and ROS applications
can use TPM service to extend the trust chain to the ap-
plication layer. At the same time, the overall design effec-
tively protects the system’s security. This research was based
on the memory isolation mechanism provided by Trust-
Zone, which completely isolated the trusted root from ROS
and avoided software attacks from ROS. However, its main
memory was not implemented outside the SoC, so the
designed trust root cannot resist physical attacks directly
attacking the hardware platform.

With growing wireless sensor network applications, such
as intelligent home systems, transportation systems, and
long-distance military systems, security issues have become
increasingly prominent. The most important is the physical
attack during the startup stage of the device. Based on this,
research work in [29] analyzed that most working wireless
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sensor nodes rely on software to protect system security.
But with its development in military and medical aspects,
security protection based on software seems lacking and
insufficient. Therefore, this research is based on the features
of hardware isolation and secure memory configuration
provided by TrustZone and proposed a new secure startup
system for wireless sensor nodes. However, the research did
not implement and analyze security specifically. Another
research in [30] also analyzed secure and trusted startups’
existing problems. The secure startup was designed for
particular devices, and users cannot choose software.
Moreover, trusted startup lacked a check mechanism when
processing. Based on TrustZone technology, which can
support security hardware isolation, this research proposed
twice start validation architecture, which significantly
solved the above two weaknesses. Specifically: phase 1
startup verifies the boot program and OS image and reg-
isters them; phase 2 running applications verify startup
traces and if the running software meets security
conditions.

4.6. Construct Virtualization Platform Based on TrustZone.
System virtualization (VMM/hypervisor) provides an ex-
cellent isolation processing environment for applications
with many problems. From a generalized aspect, TrustZone
is also a kind of virtualization technique. Compared with
VMM, TrustZone provides hardware isolation and a mem-
ory protection mechanism [6]. Thus, utilizing TrustZone can
enhance the security of existing software virtualization
techniques, overcoming the weakness. The work in [31]
focused on the percent virtualization technique that simu-
lates critical instruction leading to high load. Based on
TrustZone’s privilege mode and user mode in the normal
zone and secure zone, ViMoExpress was proposed.
ViMoExpress is a lightweight virtualization solution for
embedded systems. It will run in Monitor mode, which
significantly decreases the load. This design highly increases
the efficacy of a single-core ARM processor with few code
lines. The load is about only two break times of system
switch. Research in [32] is based on TrustZone security, an
expanding implemented asymmetric virtualization layer that
supports a single-core processor simultaneously runs RTOS
and GPOS. This implementation does not need to modify
GPOS or use privilege instruction to decrease processing
load. At the same time, another research in [33] is based on
TrustZone virtualization, where authors proposed a new
software framework SafeG as a monitor without modifying
the normal operating system (GPOS), as also shown in
Figure 7 [33]. This framework implemented GPOS and
RTOS processing simultaneously on a single processor.
Inside RTOS will process tasks with the high real-time re-
quirement, while GPOS process user normal tasks. SafeG
isolates external devices to allocate them to the required
operating system in real-time, which reduces the isolation
load of RTOS and increases its operational reliability. This
design is incredibly suitable for scenarios such as car nav-
igation systems, mobile phones, and machine tools from
these advantages.
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4.7. Brief Conclusion. The commercial applications and
academic research on TrustZone technology have been in-
volved in all aspects of embedded systems, providing a re-
liable guarantee for the system security of embedded
systems. Based on research and development works, whether
the commercial application or academic research is critical
to solve the security problems existing in the embedded
system. Based on the system-level security framework
provided by this technology, we can develop a security
platform to meet specific needs and design a new security
policy.

5. Analysis of Advantages and Disadvantages of
TrustZone Security Technology

This part compares TrustZone with several other technol-
ogies related to improving system security, focuses on the
advantages and disadvantages of TrustZone, and introduces
the optimization scheme in the next part.

5.1. TrustZone Security Architecture Analysis. TrustZone
technology constructs a security isolated operating envi-
ronment for the system, isolating the potential security
threats of untrusted software, running the isolated software
normally, and monitoring its behavior. It solves the security
threat of the system against untrusted software. At present,
there are three main methods to establish security measures
in mainstream embedded systems: SOC external hardware
security module, SOC internal hardware security module,
and software virtualization technology. The advantages and
disadvantages of the three solutions are analyzed in detail
and compared with TrustZone.

The first method is the external hardware security
module. Its core is to add a particular security hardware
module externally in the system design, such as the SIM card
in the mobile phone or the smart card with access conditions
in the TV set-top box. This method can protect sensitive data
in a solid physical device. Due to the completely independent
design and production process of separate modules, more
advanced tamper-proof and physical security technologies
can be fully considered in the design and production pro-
cess. However, this method increases the design cost of SOC,
increases the system’s power consumption, and has the
probability of reducing the comprehensive performance of
the processor. Another disadvantage of this method is also
apparent. It only provides the functions of secure processing
and secure storage. Still, when the software runs outside of
the secure hardware module to process sensitive data, it is
easy to make the data attacked by malware.

The second method is to build a hardware security
module in the system, which mainly has two forms: one is to
add a hardware module to manage encryption operation and
secret key storage, and the other is to build a hardware
security module on the general processing engine in the
central processor. The former prevents unauthorized ap-
plications from accessing sensitive resources using internal
security hardware logic. Compared with the first method,
this method sacrifices hardware security but reduces the chip



Security and Communication Networks

11

Non-Trusted TrustZone Trusted
Protection
Privilege Inforfnat‘ion Control
Level 2 Application Application
J—
( Security Hole
N Attack
Privilege
Level 0
VTR
Privilege L)
GPOS
Level 1 GS. RTOS
\ Tllegal Access is
A Forbidden
SafeG mnllegal

\ Accesses

Allowed

Processor Core

m
4
Control System info. system
Peripherals Peripherals

FIGURE 7: VMM design framework based on TrustZone [33].

design cost and facilitates integration. The latter provides
a particular general-purpose processor for the security
subsystem. This method is similar to the hardware security
solution in TrustZone, but it also has shortcomings. The first
point is that the design requires a separate physical security
processor, which will increase the power consumption of the
system and the area of the chip. At the same time, because
the communication between the security processor and the
general processor needs to refresh the data in the shared
memory frequently, and the shared memory is usually ex-
ternal for security reasons, it needs to occupy a lot of ex-
ecution time. The method of internal hardware safety
module can only ensure the safety of system functions but
does not consider the system safety of SOC in debugging
mode and test mode. The system is particularly vulnerable at
this time, but turning off the debugging mode and test mode
will inevitably make it very difficult to diagnose software and
system problems [8].

The third approach is software virtualization, which
provides an isolated execution environment. The working
principle of software virtualization is based on special
software called VMM. Multiple virtual machines managed
by VMM run independently in an isolated environment and
will not be disturbed and destroyed by other virtual ma-
chines. Therefore, security-sensitive software can be moved
to run in a secure environment running in VMM, while
normal software can run in a nonsecure environment.
However, VMM technology ignores the attacks related to
hardware attacks, such as those suffered in debugging mode
and test mode. To ensure the security of the virtual system,
debugging must be disabled, and the test must be completely
invisible, which makes it very difficult to develop software

and diagnose software defects. In addition, some bus
masters, such as DMA engines [34] and GPU, can bypass the
protection mechanism provided by VMM. At the same time,
virtualization technology also faces many vulnerabilities
because it needs to do a lot of work in system management
and resource allocation. It also increases the system exe-
cution load because it needs to simulate critical instructions.

5.2. Analysis of Advantages and Weakness of TrustZone.
In the above comparison, we find that TrustZone has ap-
parent advantages over these three security solutions. We
can summarize the advantages of TrustZone. TrustZone
technology is a highly secure system architecture designed
through a reasonable combination of hardware and soft-
ware, which hardly affects the system’s actual power con-
sumption and performance. Therefore, this technology has
many technical and commercial advantages in improving
embedded system security, mainly divided into the following
aspects. First, it can provide a secure isolation environment
for on-chip confidential data, and this processing method is
also the best way for confidentiality. For example, suppose
you want to use a CPU on the SOC to process the key in the
SIM card. In that case, you must ensure a completely secure
area in the SOC environment, and an operating system with
low security cannot complete this operation [3]. Secondly,
performance has always been an insurmountable problem in
some security systems, especially the frequent transmission
of encrypted information between the on-chip processor
and off-chip memory. At this time, TrustZone can play a role
because it can ensure complete bus bandwidth for the whole
storage space, while the data in its security buffer can be
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stored in clear text to achieve fast access. The encrypted data
can be ordinarily stored in flash memory so that some cheap
and flexible storage methods with large capacity can be used.
In addition, TrustZone system architecture is a reasonable
combination of software and hardware. Even after the SOC
design is completed, it can still ensure that users can flexibly
customize and upgrade the security system. Finally, Trust-
Zone defines a secure isolation environment in the em-
bedded system, containing some direct peripheral channels,
such as user interface, Sim card, Smart card, and audio
output. TrustZone provides security for all aspects of SOC
devices through integrity checking mechanisms for un-
secured parts. For example, decoded DRM audio data
transmitted to an unsecured area can be protected by in-
tegrity detection of relevant components of the operating
system [3].

However, TrustZone is not omnipotent, and its short-
comings are also undeniable, mainly reflected in the fol-
lowing aspects. First, it can only defend against various
software attacks, but it is challenging to prevent physical
attacks, such as physical tampering with the device’s main
memory. In addition, while it can ensure the security of
isolated kernel code through a metric mechanism and pe-
riodically checks the integrity of the ROS kernel, there is no
absolute protection against malicious attacks on the system
at this point because attacks have already occurred. Sec-
ondly, it only provides an isolated execution environment
without proving the credibility of the environment to users
or remote users. Finally, providing a reliable, trusted root for
the system platform is the cornerstone of the whole system’s
security. At present, this technology is based on solidifying
the device key as the root in the system on chip, which will be
difficult to update the key. Once the critical leaks, the whole
platform will become unusable. TrustZone needs to store the
device key on the device for a long time, so its security is
difficult to guarantee, such as how to defend against bypass
attacks, fault attacks, reverse engineering, and other types of
attacks.

Therefore, the following key consideration should be
how to provide a trusted root that can defend against both
physical attacks and software attacks without adding
hardware to TrustZone’s existing hardware security in-
frastructure to ensure that the system runs in a trusted
execution environment from device startup to operation. Of
course, facing the increasingly stringent security re-
quirements in the embedded field, it is also essential to
ensure that the execution environment based on TrustZone
security isolation not only provides various sensitive data
processing and security services but also ensures that its TCB
is as tiny as possible, to ensure the security of TOS. Although
Trusted Computing Group (TCG) combined hardware and
software to achieve a more secure computing environment,
it released Trusted Platform Module (TPM) suitable for PC
platforms [35]. Both Intel and AMD specify TPM as the
trusted root of Late Launch, but the TPM hardware module
is not eligible for embedded fields with strict chip area and
power consumption requirements. Subsequently, TCG re-
leased the Mobile Trusted Module (MTM) for the embedded
system and introduced trusted startup. Unfortunately, the
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function of MTM is not hardware implementation [24].
Some literature studies have also reassessed the performance
of MTM and found that MTM will increase the power
consumption of the system and reduce the performance of
the encryption function. Therefore, taking MTM as the
trusted root of embedded systems is not ideal. However,
SRAM PUFs (Physical Unclonable Functions) could be
more effective to extract the key as trusted root. It directly
integrates the physical characteristics of the device SRAM, so
no additional hardware resources are required, and the TCB
of the device can be reduced. In addition, as a critical ex-
traction and secure storage, SRAM PUF technology can
resist various hardware and software attacks, such as reverse
engineering and effective cloning prevention, to solve the
problem that TrustZone is difficult to defend against physical
attacks to some extent. In addition, it can also be used to
construct a random number generator without the influence
of hardware construction cost, performance, and power
consumption. However, TEE isolated by TrustZone tech-
nology does not provide users or remote users with evidence
that the software running in TEE does not tamper with
malicious codes. Combined TrustZone can realize this
technology with the small proof function provided by MTM
software. TrustZone ensures that the software MTM runs in
a secure, isolated environment, and MTM remotely proves
that TOS is trusted. In addition, it can also provide rich
delegated computing functions for the system platform, such
as secure storage, identity authentication, and platform
security protection. Of course, while considering the system
security, it is necessary to fully assess the application re-
quirements and design for specific application scenarios to
ensure that the TCB of TOS is small enough to realize the
system security in the real sense.

6. Security Performance Optimization

This section discusses possible ways to optimize the security
performance of TrustZone technology. In order to find the
direction of optimization more precisely, this section first
analyses the formula for the total delay of the program
calling TA in the TrustZone technique. After that, find the
factors that affect the performance and propose the opti-
mization methods through the formula analysis. Finally, this
section explores the state of the art and analyses the feasi-
bility and effectiveness of the mentioned performance op-
timization methods.

6.1. Problem Analysis. The TrustZone-based application
structure has been changed compared with the previous
single-core system. The code has been divided, and the two
worlds have been added. The process of calling TA from CA
is shown in Figure 8 [5]. In the program execution process,
mathematical modelling is carried out for the TA process of
the CA call. Considering that the program execution needs
to go through several TA calls, the number of calls is related
to the size of shared memory allocated by registration; Mg is
the size of shared memory allocated by registration; M is the
size of data transferred. N is the number of times a CA
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FIGURE 8: Service request process from CA to TA [5].

executes TA during program execution. These three satisfy
the following [5]:

M

To decompose the specific call process, it is necessary to
register shared memory and data copy for input and output
data, respectively, before calling the command, which will
undergo world switching and data copy. T is the execution
world switching time, T, is the data copy time. If the exe-
cution time of the two shared memory registration and data

copy processes is T, and Ty, respectively, then [5]
Tsl = qu + Tcl’
Ty=Tpy+Te

(2)

After registering the shared memory and completing the
data copy, the CA calls the TA program, which will go

through world switching, performing external interrupts,
and executing the TA program. Assume it costs T, when CA
calls the TA program. The break time in the outer part of TA
is denoted as T;, and the specific execution time of TA is
indicated as T,, then [5]

T, =Tp+T+T,. (3)

After CA calls and executes the TA program,
data copy, and shared memory destruction are required.
T and T,, are the execution time of the first and
second shared memory destruction, respectively. They
satisty [5]

Txl = Tq4 + Tc3’

(4)
Tx2 = Tq5 + Tc4'

Therefore, the total delay T of program calling TA sat-
isfies [5]
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T=nx(Ty+To+T.+T, +T,). (5)

6.2. Optimization Methods. From the above analysis, to
guarantee the security of the program execution process,
compared with the program in normal system, the appli-
cation based on TrustZone technology adds additional
procedures, e.g., registering and destroying shared mem-
ory, data copying and interrupt execution and world
switching. Consider the formula analyzed, to improve the
performance of the call, it is necessary to ensure the exe-
cution time of TA while reducing Ty, T, Ty1s Txas T, and
T;, which are non-TA execution times, and also reducing
the execution times N of calling TA and reducing the world
switching times.

Therefore, researchers in [5] proposed the following
methods to optimize and improve TrustZone security
application performance: (1) reasonably configure pa-
rameters to reduce unnecessary calls and redundant ex-
ecution as much as possible; (2) configure flexible
interrupt processing modes, fully consider the re-
quirements of different application execution processes,
respectively provide shielding and unshielding interrupt
request interrupt processing modes in TA execution
process; (3) optimize the shared memory allocation mode,
providing “one-use” and “one-multi-use” memory allo-
cation mode; and (4) reduce the internal storage copy
shell, use pointer to transfer data.

6.2.1. Reasonably Configure Parameters to Reduce Un-
necessary Procedure Calls. Improper parameter setting will
introduce unnecessary state switching or redundant pro-
cedure calls and execution, which will affect program per-
formance. During parameter configuration, minimize the
number of calls. From formula (1), the calling times are
mainly reduced from the following three aspects: (a) In-
crease the value of Mg. When transferring the same data, the
requested shared memory increases and the data transfer
capacity increases, thus reducing the number of calls. (b) The
applications shall request shared memory equal to the
amount of encrypted data or an integer multiple of the
required data size. That is

M =nx Mg,

(6)
M =n=x*Mg.

This reduces the waste of shared memory space on the
one hand and reduces the time to execute redundant pro-
cesses on the other hand. (c) Reduce the number of calls in
other links as much as possible. Consider registering and
destroying shared memory only once. Thus, in formula (5),
the T, between CA invocation and TA is unchanged, the
shared memory time Tj; and T, for two times of registering
become the shared memory time T for one time, and the
shared memory time T, and T, for two times of destroying
become the shared memory time T, for one time, which
reduces the number of invocation execution and improves
program execution efficiency. New formula:
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T=nx(Ty+T.+T,). (7)

6.2.2. Configure Flexible Interrupt Handling Modes.
According to problem analysis, responding to interrupt
requests will reduce system performance. When performing
TA, blocking interrupts also face the situation where other
applications in the REE wait too long and starve to death.
This article takes a flexible approach to address different
application requirements. The two interrupt response exe-
cution modes are Execution 1: CPU shields interrupt re-
quests from REE before entering the TEE system and loading
security application TA thread. After implementing the
security application program TA, open the middle fault
request from the REE system. For the interrupt request from
the REE system, the CPU suspends the execution of the safe
application TA and saves the thread state and TEE system
state of the secure application TA. Then, switch to the REE
system to perform the interrupt request. After the execution,
the system state of TEE is restored, the saved thread of safe
application TA is loaded, and the safe application sequence
TA continues to run. After all security application programs,
TA is executed, switched to REE system and executed
common application program CA in user mode. In this way,
for TA programs that are implemented for a long time and
have low priority, the CPU requirements of REE end ap-
plications in the execution process are considered, and the
situation of “starvation” of REE programs is avoided. Ex-
ecution 2: the CPU shields interrupt requests from REE
during the entire process of calling the secure application
TA. Until the completion of TA execution, switch to the REE
system and return to the execution of common application
CA in user mode. The normal application CA reads the
execution results produced by the security application TA
from the shared memory. The response interrupt time is
removed in the TA execution process, and the program
execution efficiency is improved. This execution mode is
suitable for the TA program with short execution and high
priority, as shown in the following formula:

T, =Ty+T,. (8)

6.2.3. Optimize the Shared Memory Allocation Mode.
Through problem analysis, the application program using
TA frequently has a lot of repetitive system world switching
and data copy problems. However, the system does not want
the TA application program to occupy the shared memory
resources for a long time. Therefore, two shared memory
allocation and reclamation methods can be optimized: One
with One-Use and One with Multi-Use. In One with One-
Use mode, the shared memory is not allocated in advance
when the CA calls the TA. The system registers and allocates
the shared memory based on program requirements. After
the secure application TA is executed, the system auto-
matically copies the result data from the shared memory to
the common application CA data area and destroys the
shared memory automatically. In this way, the CA code of
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common application programs is reduced. Users do not
need to pay too much attention to the allocation and rec-
lamation of shared memory. The situation of occupying
shared memory resources for a long time is avoided. This
works well for cases where the secure application TA does
not need to be called multiple times. In One with Multi-Use
mode, the user registers the shared memory according to the
requirements of the secure application TA before invoking
the shared memory. After the secure application TA is
executed, the user decides whether to destroy the shared
memory. In this way, it reduces the situation of repeated
registration allocation and destruction of shared memory in
calling multiple secure application TA. Moreover, it also
reduces the case of multiple copies of data in shared
memory, especially suitable for a general application pro-
gram CA, which needs to repeatedly call secure application
TA and deal with large data volume.

6.2.4. Reduce Memory Copy. Through problem analysis,
when data is transferred to each other through shared
memory, it faces the situation of multiple data copies.
Improve program performance by changing to use pointer
through the data-calling procedure. Essentially, after a CA
registers and allocates shared memory, the original data is
read directly into the shared memory. Only Pointers to data
blocks in shared memory are passed when a call is made to
the executing TA pass parameter number. When the en-
cryption process is performed in TEE, the data is read di-
rectly from the shared memory. After the encryption, the
resulting information is also put directly into the shared
memory. This reduces the number of in-memory data copies
and improves program execution efficiency.

6.3. Experimental Results. In [5], the authors conducted the
experimental verification in the following environment:
Hikey 960 development board, 4-core CortexA73 plus 4-
core CortexA53 processor, 4 GB RAM, Linux kernel version
4.13.0, OP-TEE version 3.3.0, 2 MB of REE and TEE shared
memory. The test procedure was recorded and organized by
using Ubuntu 16.04. Research [5] implemented the AES
encryption procedure in OP-TEE, and tested the correctness
of the problem analysis and the effectiveness of the im-
provement method by testing the number of CPU cycles
consumed by the CA in the AES encryption procedure when
calling the TA to perform encryption. The validity of the
problem analysis and improvement method is verified by
testing the number of CPU cycles consumed by the CA in
calling the TA to perform encryption in the AES encryption
program. The CPU cycles consumed during the execution of
AES calls are also tested in detail with the help of a CPU
performance monitoring unit (PerformanceMonitorUnit).
By analyzing the experimental results reported in [5], we
can state that: (a) System world switching affects program
execution efficiency. If the parameters are not set properly,
the CPU cycles consumed in the world switchover phase
account for 49% of the entire execution process, which
seriously affects the execution efficiency of the program. By
adequately setting parameters, reducing world switching,
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eliminating procedure calls and redundant execution, you
can achieve up to a 31% improvement in performance. (b)
Responding to external interrupt requests will cause un-
certainty in program execution and reduce the conductance
energy by 60%. The maximum performance of interrupt
requests can be increased by 4.5%. (c) Register and destroy
shared memory includes memory allocation and reclama-
tion, as well as the copy of memory data. In the case of no
memory overcommitment, the number of CPU cycles
consumed in the phase of registration and destruction of
shared memory accounted for 27% of the entire execution
process, which reduced the sequential performance of the
program. Memory overcommitment can achieve a maxi-
mum performance improvement of 37% for extensive
computation services. (d) Reducing in-memory data copies
can achieve a maximum performance improvement of 39%.

7. Analysis between ARM TrustZone and SGX

ARM TrustZone and Intel SGX are mainstream TEE
technologies that aim to create a secure and isolated envi-
ronment for sensitive task computing and private data
storage to prevent attackers from obtaining data and
harming system security. They are used on different plat-
forms and application scenarios, so they adopt other design
concepts, making a massive difference. This section analyses
the security protection of ARM TrustZone and SGX from the
perspectives of their design concepts, isolation protection
principles and operation mechanism.

7.1. Design Concept. ARM TrustZone and SGX both guar-
antee a trusted execution environment at runtime, so that
malicious code cannot access and tamper with the protected
content of other programs at runtime, enhancing the se-
curity of the system, but they adopt different design con-
cepts, as shown in Figure 9 [36]. The design concept of
TrustZone is based on the CS model design, which con-
structs two separate worlds, set the Trusted Execution en-
vironment for the secure world. The SGX is based on the P2P
model design, as shown in Figure 10 [36]. The CPU in
TrustZone works in the secure world and the normal world,
and the two worlds communicate with each other through
SMC instructions. But in SGX, a CPU can run multiple
secure enclaves and can run parallelly, and the memory
occupied by the enclave will encrypt the hardware. These two
different design models cause a massive difference in the
design concept between TrustZone and SGX, which is re-
flected in Trusted basis design, Security service design and
Task scheduling [36].

7.1.1. Trusted Basis Design. The TrustZone uses the entire
secure world as the trust base, including security compo-
nents, secure operating systems, and secure applications.
Normal world applications share the same trust base. The
secure world is configured by device manufacturers, thereby
simplifying user development and use. However, there is
alack of effective isolation between secure applications in the
secure world. The failure of any secure application will lead
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FiGure 10: SGX schematic design diagram [36].

to the loss of the entire trust base. SGX regards enclave as an
independent, trusted base, which corresponds to applica-
tions one by one. Enclave does not pose a threat to the
system and other enclave security but increases the difficulty
of user development and maintenance.

7.1.2. Security Service Design. TrustZone deploys vendor-
designed secure code in the secure world ahead of time, and
normal world applications can only request fixed generic
security services through vendor-provided security in-
terfaces. TrustZone can not provide dedicated services for
the normal world beyond secure code. SGX security service
is more specialized. SGX applications are divided into secure
part and nonsecure part, which are developed by users. The
secure part is deployed in the enclave and runs in isolation,
creating different secure codes according to different
functions.

7.1.3. Task Scheduling. TrustZone and SGX are designed for
multi-core systems and support virtual machines. The

TrustZone processor makes only one secure call at a time per
core, supported by the Monitor module for world state
switching. SGX endorses the execution of multiple enclave
threads, and the running process processor can respond to
interrupt execution, so the task scheduling is more flexible
than TrustZone.

7.2. Isolation Protection Principle. ARM TrustZone and SGX
adopt different Isolation protection principles. TrustZone
provides a secure world that operates independently of the
host which contains all secure operations. Since TrustZone is
only divided into secure world domain and normal world
domain, TrustZone only needs to formulate isolation pro-
tection policies around the secure world, which uses soft-
ware and hardware to divide resources between the secure
world and the normal world. In software, a dedicated op-
erating system in the secure world is a complex, but pow-
erful, design. It can simulate concurrent execution of
multiple independent secure world applications, runtime
download of new security applications, and secure world
tasks that are completely independent of the normal world
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environment. Secure bits are extended on hardware to
isolate resources such as memory and I/O using auxiliary
controllers such as Adavanced eXtensible InterfaceAXI,
TrustZone Address Space ControllerTZASC, TrustZone
Memory AdapterTZMA, and TrustZone Protection Con-
troller to provide hardware resources required for the op-
eration of the secure world. The Monitor is a security critical
component, as it provides the interface between the two
worlds. The Monitor module runs in the highest privileged
state. The Monitor module runs in the highest privileged
state. It connects the normal world and the secure world,
isolates access between different worlds, and provides
system-level secure protection.

SGX allows users to actively create and maintain en-
claves, deploy and apply secure code and private data, and
provide application-level protection. Each enclave acts as an
independent secure environment. Unlike TrustZone, SGX
needs to protect different enclaves, so SGX adopts different
isolation protection methods. SGX offers a set of instructions
that applications can use to create a private region of
memory that is isolated from all other processes, even those
with higher privilege levels. Thus, even if a malware or an
insider has access to operating system (OS) root privileges,
or if the virtual machine manager (VMM) or BIOS are
compromised, the SGX-protected application can still
operate with integrity and be able to help protect both its
code and data.

7.3. Operating Mechanism. The operating mechanism of
ARM TrustZone is shown in Figure 11 [36]. The normal
world and secure world are two independent environments.
A secure service request in normal world contains two
procedures:

(1) World state switch, which includes switching from
the normal world to the secure world and from the
secure world to the normal world.

(2) Execute secure operations: The Monitor module
switches to the secure world when the normal world
sends a secure service request. After that, the secure
world responds to the normal world request, exe-
cutes secure operations, and returns the result to the
normal world.

The operation mechanism of SGX is shown in Figure 12
[36]. Users create enclaves and deploy secure codes and
private data in the enclave. SGX protects them from being
accessed by external software. Enclave can prove its identity
to remote authenticators and provide the necessary func-
tional structure for securely providing keys. Users can also
request a unique key, which is unique by combining the
enclave’s identity with the platform’s identity, and can be
used to protect keys or data stored outside the enclave. The
application requests the secure enclave operation when
executing, which needs to set the processor to the enclave
model. The processor executes the secure operations and
returns the processing results.

Compared to TrustZone, SGX executes enclave
switching with fewer costs. Although frequent encryption
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Ficure 11: ARM TrustZone secure service request invocation
diagram [36].

and decryption steps are involved in SGX, the complete
hardware design reduces the encryption and decryption
time. However, besides normal, secure operations, Trust-
Zone also executes world status switching and save a large
amount of context information, which results in a long time
for a single secure request. In [5], the switching cost of
TrustZone is tested, which shows that switching from the
REE user state to the TEE user state takes 50,000 to 90,000
CPU cycles per operation. While switching from the TEE
user state to the REE user state takes 16,000 to 40,000 CPU
cycles per operation. The experimental evaluation has been
conducted using Hikey 960 development board, 4-core
Cortex A73 plus 4-core CortexA53 processor, 4 GB RAM,
Linux kernel version is 4.13.0, OP-TEE version is 3.3.0,
configuration REE and TEE shared memory size is 2 MB. In
[37], the single switching cost of the SGX enclave is tested,
which shows that calling an invalid function from an
untrusted part to a trusted part takes 7000 CPU cycles per
operation, which is about 35 times of the normal system call.
The deployed experimental environment is 4-core Intel Core
i5-6200U SGX CPU running at 2.4GHz with 8 GB od
1600 MHz DDR3 RAM. The system type is 64 bit Windows
Server 2016 Technical Preview 5. Overall, the single
switching cost of the TrustZone world state is about seven
times of the single switching cost of the SGX enclave.

8. Future Directions

Although TrustZone technology is widely recognized by
mobile terminal security applications, but it still faces several
security challenges, mainly include the following:

(1) Trusted computing base is too large.

Current TrustZone solutions all contain a powerful
security core. Overly complex security cores may
contain security vulnerabilities. An adversary can
obtain the highest privileges of the system through
these vulnerabilities and implement high-intensity
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attacks. Several Qualcomm QSEE security vulnera-
bilities have already been exposed, threatening sev-
eral Android commercial systems. Therefore, how to
narrow the system trusted computing base is an
important research direction to follow.

(2) Trusted user interaction expenditure is insufficient.

The current TrustZone mainly completes sensitive
computing operations such as password calculations,
and does not support enough trusted user in-
teractions. This contradicts with the highly person-
alized mobile applications. Also, subsequent research
needs to consider the constraints of low user
computing power.

(3) Interaction with common operating systems has
security risks.

Currently, TrustZone solutions provide access to
security functions for common applications by
adding client APIs and TEE drivers to common
operating systems. However, the APIs and TEE
drivers in ordinary operating systems may be subject
to kernel-level malicious code attacks from ordinary
systems. In addition, TrustZone cannot do effective
identification of applications. This is also the di-
rection that can be further explored.

9. Conclusion

This paper is focused on the system-level security solutions
using TrustZone technology proposed by ARM. This article
systematically documented the progress and open issues in
the field. Specifically, this article discusses four aspects of the
technology, i.e., TrustZone technical framework, related
research works, advantages and weaknesses with optimi-
zation scheme, and comparison with mainstream com-
mercial SGX technique. We have first introduced this
technology’s hardware and software architecture. Also, its
security extension is analyzed in detail. Then, the security

mechanism is investigated together with how to realize
system-wide security based on hardware and software ar-
chitecture. The significant achievements of various academic
research in the field are summarized. Moreover, an analysis
of the advantages and weaknesses of this technology, and the
optimization schemes are detailed. Finally, we compared this
technology with another mainstream commercial SGX
technique and presented some viable future directions.
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