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Elasticity capability is one of the most important capabilities of cloud computing, which combines large-scale resource allocation
capability to quickly achieve minute-level resource demand provisioning to meet the elasticity requirements of diferent scale
scenarios. Te elasticity capability is mainly determined by the container start-up speed and container scaling strategy together,
where the container scaling strategy contains both vertical container scaling strategy and horizontal container scaling strategy. In
order to make the container scaling policy more efective and improve the application service quality and resource utilization, we
briefy introduce Kubernetes’ horizontal pod autoscaling (HPA) strategy, analyze the existing problem of HPA, and develop
a container scaling strategy based on reinforcement learning. First, we analyze the problems of Kubernetes’ existing HPA
container autoscaling strategy in the scale-up and scale-down phases, respectively. Second, the Markov decision model is used to
model the container scaling problem. Ten, we propose a model-based reinforcement learning algorithm to solve the container
scaling problem. Finally, we compare the experimental results of the HPA scaling strategy and the model-based reinforcement
learning strategy with the results from the resource utilization of the application, the change of the number of pods, and the
application response time; through the experimental analysis, we verify that the reinforcement learning-based container scaling
strategy can guarantee the application service quality and improve the utilization of the application resources more efectively than
the HPA strategy.

1. Introduction

Te vigorous development of IoT cannot be achieved
without the support of edge computing technology, which is
needed for data fusion, data analysis, network security, and
data security at the edge of the network [1]. Meanwhile, in
the face of the growing data transmission and computation
demands of IoT [2], edge computing can efectively cope
with the lack of computing power of IoTdevices themselves
and fully alleviate problems such as network congestion [3].
For example, in a real industrial application scenario, real-
time control of the production foor site is achieved by
placing edge gateways inside the workshop. It is also possible
to build an industrial control platform through the edge
cloud and use the data analysis and decision-making ca-
pabilities provided by the platform to provide a basis for
real-time control decisions [4]. In many felds such as

industrial control, most of the services are deployed to the
platform as containers. Considering the problems of scat-
tered IoT devices, network heterogeneity, and limited
computing node resources [5], it is important to design
a reasonable and efective container resource scheduling
mechanism in order to provide guaranteed application
services to IoT devices.

Kubernetes, as the industry’s leading container orches-
tration management system [6], is widely used in edge
computing scenarios [7, 8]; however, the native container
scaling policy and container scheduling policy of Kubernetes
are too simple to meet the fne-grained resource scheduling
requirements in edge computing scenarios. Te HPA con-
tainer scaling service implements container scaling mainly
by measuring CPU and memory utilization, which has
problems such as response delay and poor scaling timeliness
and cannot meet the business requirements in edge
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computing scenarios. Te resource scheduling policy only
collects the remaining CPU and memory metrics of nodes
and calculates the priority of nodes with uniform weight
values to complete container scheduling. Te scheduling
mechanism considers only a single indicator, and the
weighting method is too simple, and it sufers from low
utilization of cluster resources and resource scarcity, which
cannot meet the individual resource requirements of ap-
plications in edge computing scenarios.

Te operation of application container instances in
a cluster consumes certain costs, including those caused by
application response times exceeding the maximum
threshold value, in addition to the cost of memory and CPU
resources that the containers themselves need to consume.
Terefore, a reasonable and efective container scaling op-
eration afects the application service quality as well as re-
source utilization.

In recent years, with the rapid development of Internet
technology, the number of network edge devices has been
growing exponentially. Traditional centralized cloud com-
puting exhibits various problems such as high latency, low
bandwidth, and high energy consumption when dealing
with these massive edge data, for which edge computing is
proposed. Before the birth of edge computing, to make up
for the shortcomings of traditional centralized cloud com-
puting, the industry proposed various computing models,
such as cloudlet [9], fog computing [10], and mobile edge
computing [11], which have diferent architectures but all
aim to make up for the shortcomings of cloud computing,
meet the growing demand for data processing with the
development of the Internet, and guarantee the quality of
service for users [12].

In terms of energy consumption reduction and cost
considerations, Wang and Wang [13] proposed a novel
cluster-level control architecture to achieve coordination of
energy consumption and performance of virtualized server
clusters, and experimentally demonstrated that the approach
can provide efective control of both application-level per-
formance and underlying energy consumption. Chen et al.
[14] proposed a premigration strategy based on three load
dimensions, combining a hybrid genetic algorithm and
knapsack problem to achieve multiple adaptations, and
experimentally demonstrated that the algorithm can efec-
tively improve resource utilization and reduce energy
consumption. Jeong et al. [15] proposed an energy-efcient
service scheduling algorithm for federated edge clouds,
which aims to minimize service migration overhead and
energy consumption, and experimentally demonstrated that
the algorithm improves energy efciency by 21% and re-
duces service violation rate by 80%. Feng et al. [16] studied
the application of heterogeneous computing (HC) and
wireless power transfer (WPT) to federated learning to
address the performing efcient learning tasks on the devices
and achieving longer battery life. Feng et al. [17] explored
a min-max cost-optimal problem to guarantee the con-
vergence rate of federated learning in terms of cost in
wireless edge networks. Te literature [18] proposes a task
ofoading scheme by exploiting multihop vehicle compu-
tation resources in VEC based on mobility analysis of

vehicles. Tis ofoading scheme can achieve signifcant
improvement in terms of response delay by at least 34%
compared with the other algorithms (e.g., local processing
and random ofoading). In mobile edge computing, Mao
et al. [19] proposed a reconfgurable intelligent surface
(RIS)-assisted secure MEC network framework to enhance
the task ofoading security. Wei et al. [20] designed a pre-
processing approach to convert raw trafc data into available
datasets for deep learning-based trafc classifers, which
tailors raw trafc data as training datasets by resolving its
structure and content and pruning redundant information.
Te literature [21] model the resource allocation in vehicular
cloud computing (VCC) as a multiobjective optimization
with constraints that aims to maximize the acceptance rate
and minimize the provider’s cloud cost.

In terms of energy reduction and cost considerations,
Wang and Wang [13] proposed a Co-Con cluster control
architecture based on the feedback theory control to min-
imize cluster power consumption while ensuring the quality
of service of applications in the cluster. Chen et al. [14]
present a multiadaptive genetic algorithm-based resource
policy for premigration scheduling of virtual machines,
which efectively reduce the energy consumption of the
cluster. Wu et al. [22] proposed Green Scheduling algorithm
based on DVFS dynamic voltage frequency scaling tech-
nique and job priority, which can prevent overuse of re-
sources and efectively reduce power consumption while
meeting the minimum resource requirements of applica-
tions. Rossi et al. [23] proposed an interesting approach to
solve the container scaling problem by constructing the state
space and action space of the container scaling problem and
used reinforcement learning to merge horizontal and ver-
tical scaling. However, they did not consider the charac-
teristics of the Kubernetes’ environment.

Te distinctive features of this work are as follows:

(1) We model the container scaling problem by the
Markov decision process (MDP), which includes the
design of state space, action space, and cost function.

(2) Based on model-basedreinforcement learning algo-
rithm to realize the iteration of the cost value and
container scaling strategy in the process of container
scaling, we evaluate the best container scaling
strategy by solving the optimal Q-value function in
the iterative process.

(3) Simulations are executed with diferent system pa-
rameters to show the efectiveness of the proposed
algorithm. Simulation results reveal that the re-
inforcement learning-based container scaling strat-
egy can efectively guarantee the application service
quality and improve the application resource utili-
zation compared with the HPA strategy.

Te remainder of this paper is organized as follows. In
Section 2, we analyze the shortages of Kubernetes’ own
container scaling strategy in the changeable edge computing
environment. In Section 3, we leverage the Markov decision
model to describe the problem of container scaling policy
mode. In Section 4, we propose the construction of the
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Markov decision model. In Section 5, we present how to
solve the optimal Q-value function in the iterative process of
reinforcement learning, based on which the optimal con-
tainer scaling policy is evaluated to achieve the optimal
scaling of containers. In Section 6, we test and discuss the
efect of two container scaling strategies in the same ex-
perimental environment. We conclude this paper in
Section 7.

2. Kubernetes Autoscaling Strategy

Te edge computing environment is characterized by low
latency and large connections. Te existing Kubernetes
autoscaling policy cannot adjust to dynamic application load
changes in a timely manner in an edge computing envi-
ronment, and the application itself does not have high re-
source utilization.

In this section, we focus on the scaling strategy that
comes with Kubernetes. First, we introduce the Kubernetes
autoscaling service. Ten, we study the scaling strategy and
analyze the problems that exist in the expansion and scaling
phases.

2.1. Kubernetes Autoscaling Service. Te fow of a pod in
Kubernetes from resource allocation to service access is as
follows: the application uses a user-defned YAML fle to
fetch the corresponding image from the image repository;
allocates the CPU, memory, and other resources required for
its operation; and deploys the application to Kubernetes in
the form of a pod. Based on diferent application scenarios,
users can adjust the policy manually by adjusting the re-
quests’ and limits’ parameters.Te CPU is allocated in a lean
confguration by default. When CPU resources are over-
subscribed, if there are not enough resources on the host
node, there will be a preemption phenomenon. Getting the
entry address of an application requires creating a Service
API object, where Ingress is an API object in the Kubernetes
cluster that plays the role of a router, through which we can
customize routing rules for forwarding, managing, and
exposing services. Te user distributes the route to the pod
represented by the Service object through Ingress to access
the application, and the specifc request fow diagram is
shown in Figure 1:

Te Kubernetes autoscaling service, designed as a control
loop, can be controlled periodically by the controller (Kube-
controller-manager), and the period time can be modifed
with the horizontal-pod-autoscaler-sync-period fag (default
is 30 seconds). During each cycle, Kubernetes’ Control
Manager queries the cluster for current resource utilization
based on each specifc metric defned by HPA. Te control
manager obtains the basic metrics from the resource metrics
API or from user-defned APIs (including other metrics).
For each pod resource metric value (e.g., CPU), the con-
troller obtains data from the HPA policy for each pod
targeted by the resource metric API. If target utilization is
given, the controller will calculate the current utilization as
a percentage of the resource requests for the containers in
each pod. If the target raw value is defned, the raw metric is

used directly. Ten, the controller obtains the utilization on
all target pods or the average of raw values (depending on the
specifed target type) and generates the ratio used to scale the
number of copies required.

2.2.KubernetesAutoscalingStrategy. Kubernetes comes with
a container scaling policy, HPA, which requires the def-
nition of an HPA object when creating automatic scaling
behavior for a Pod replica set. To defne an HPA object, you
need to specify the parameters to ensure that the HPA works
as intended, the main parameters are shown in Table 1.

Currently, the ofcial version of Kubernetes only sup-
ports CPU as a scaling metric, and other types of scaling
metrics are still in the testing stage. Te automatic scaler
HPA calculates the desired number of replicas by checking
the CPU utilization of the corresponding Pod replica set and
comparing it with a predefned target value, as shown below:

(1) Get the CPU usage of each replica in the replica set at
the current time and sum up to calculate the CPU
usage of the replica set, which is an absolute value,
that is, how many units of CPU are used, and the
usage unit is one thousandth

(2) Obtain the CPU allocation of each replica in the
replica set, sum up and calculate the CPU allocation
of the replica set, and calculate the CPU utilization of
the replica set, which is calculated as the ratio of CPU
usage to CPU allocation

(3) Calculate the desired number of replicas
(4) Check if the expected number of copies is greater

than the upper limit MaxReplicas, and if it exceeds
the upper limit, MaxReplicas will be the expected
number of copies

(5) Check whether the expected number of replicas is
less than MinReplicas, and if it is lower than the
lower limit, MinReplicas is used as the expected
number of replicas

In addition, to avoid system bumps caused by frequently
triggering the scaling function, Kubernetes sets an energy-
cooling time for autoscaling. By default, the interval between
expansions is not less than 3minutes, and the interval be-
tween scaling is not less than 5minutes.

2.3. Problem Analysis of the Scale-Up Phase. Kubernetes
requires a series of components to collaborate with each
other to complete the scaling work, and the initialization
time of pod tinit is calculated as follows:

tinit � 
4

i�1
ti. (1)

When the application faces a large increase in requests,
Kubernetes triggers the expansion and creates pods, and the
time tinit is needed for the newly created pods to accept requests
from users, as shown in Figure 2. At the moment of s1, the
autoscaler checks that the load status of the pod replica set
reaches the expansion standard and triggers the scale-up. At the
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moment of s4, the scale-up is completed and the newly created
replicas receive service requests. During the time of pod ini-
tialization, the replicas are overloaded and accumulate a large
number of user requests, increasing user request time.
Terefore, it is necessary to take the time of pod initialization
into account when scale-up and prepare for the scale-up before
the arrival of the load peak to reduce the response time of user
requests, and thus ensure the stability of service quality.

2.4. Problem Analysis of the Scale-Down Phase. Te purpose
of the Kubernetes scale-down is essential to release the occupied
resources by removing redundant pod nodes to improve the
overall resource usage efciency and reduce the overall appli-
cation deployment resources. But in reality, although the ap-
plication pod nodes are freed, the process only destroys the
applications running on them, but the resources are not freed, as
the underlying resource nodes are still within the Kubernetes
resource pool. In a traditional private server room, the hardware
purchased for the deployment of applications needs to go
through preacquisition and shelving actions. Terefore, when
the pod running on it is destroyed, it does not reduce the
deployment and operation cost of these resources, and the only
way to improve the overall utilization is to deploy other ap-
plication services. In a public cloud environment, users only
need to pay for these running resource instances, and when
these idle nodes are higher than expected, they can efectively
reduce operational costs by releasing these remaining nodes.

Kubernetes’ fexible scaling is a natural ft with the public
cloud’s autoscaling, and Kubernetes’ existing scaling strategy
selects replicas to be deleted based on the priority of the
replica state, unlike the preselection and preference process
during expansion, which ignores the impact of deleting pods
on cluster resources and actual business scenarios.

In order to achieve the scale-down of resource nodes, we
expect to be able to concentrate as many pods as possible on
certain nodes when scaling down and to shut down or delete
the nodes of those pod nodes where fewer pod nodes are
deployed by evicting the current node and calling the public
cloud interface on it when it is in an unused state.

3. Container Scaling Policy Mode

Te problem description for reinforcement learning using
the Markov decision process consists of two main elements:

(1) Modeling the container scaling problem based on
Markov decision models

(2) Based on reinforcement learning algorithm to realize
the iteration of the cost value and container scaling
strategy in the process of container scaling, we
evaluate the best container scaling strategy by solving
the optimal Q-value function in the iterative process

Te model is shown in Figure 3.

3.1.Modeling theContainer Scaling ProblemBased onMarkov
DecisionModels. Markov decision processes are discrete-time
stochastic control processes that provide a mathematical
framework for modeling decision problems. Markov decision
models are usually represented by fve tuples S, A, P, C, c . S
denotes the state space, here the state refers to the container
state. A denotes the action space, here the container scaling
action. P denotes the state transfer function. P(st, at) denotes
the probability that the state st+1 is at the next moment after the
intelligence executes the action at in the current state st. C
denotes the immediate payof function. C(st, at) denotes the
reward received by the intelligence after the execution of action
at. c denotes the discount factor, where cϵ[0, 1]. When the
discount factor is closer to 0, it indicates that the intelligence
places more importance on the short-term cumulative reward
value; when the discount factor is closer to 1, it indicates that
the intelligence places more importance on the long-term
cumulative reward value.

TeMarkov model for container scaling consists of three
steps: state space design, action space design, and cost
function design.

3.2. Iteration of Cost Values and Container Scaling Policies
during Container Scaling Based on Reinforcement Learning.
Te process of an agent interacting with the environment in
reinforcement learning can be viewed as a time sequence.
Te agent has a starting state st, then does an action at, the

Table 1: HPA object parameters description.

Parameter name Parameter value
MinReplicas Minimum number of copies
MaxReplicas Maximum number of copies
ScaleTargetRef Scaling object
Target Scaling indicators and target values

s1 s2 s3 s4

tinit

Figure 2: Scale-up time.

Client Ingress Service

Pod

WebApp

kubernetes

Figure 1: Web request workfow.
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environmental state changes to st+1 and feeds back a reward
rt+1, and such interaction can go on forever.

In the reinforcement learning process, the change of
state and the execution of a strategy have corresponding
probabilities, indicating that they are all random events. Te
cumulative reward value obtained for each strategy execu-
tion trajectory is diferent, and the goal of reinforcement
learning is to maximize the cumulative reward value by
improving the strategy.

4. Construction of Markov Decision Model

4.1. State Space Design. Te applications in the cluster are
deployed and run in containers. Te reinforcement learning
intelligence perceives the state changes of the applications in
the cluster environment and performs container scaling
actions to efectively guarantee the quality of application
services.

Defne the state of the application at moment i as
si � (ki, ui, ci), where ki denotes the number of containers,
and the range of k values is 1, 2, · · · , Kmax ; Kmax denotes the
maximum number of copies of the application; ui indicates
the CPU utilization; and ci indicates the amount of CPU

computation granted to the container. Although ui and ci are
real numbers, the discrete factors are set to disperse them for
later strategy implementation. Assuming ui ϵ 0, u, · · · , Lu{ }

and ci ϵ 0, c, · · · , Mc{ }, u and c are suitable discrete factors.
Defne the state space S to store the state of all applications,
which can be formulated as follows:

S � s1, s2, . . . , sn . (2)

4.2. Action Space Design. Te reinforcement learning
intelligence senses the state of the application,
performs container scaling operations, and optimizes the
container scaling policy with the goal of minimizing
expected costs.

For each state s in the application state space S(s ϵ S),
there is a corresponding set of container scaling actions
A(s)⊆A that represent the container scaling actions per-
formed by the intelligence in the application state s. A is the
action space, defned as A � −r, −1, 0, +1, +r{ }, consisting of
5 actions, where +r indicates an increase in the amount of
CPU resources and −r indicates a decrease in the amount of
CPU resources, i.e., +1 indicates a horizontal expansion to
increase the number of container copies and −1 indicates
a horizontal contraction to decrease the number of container
copies, and a� 0 means to make no decision; action A(s) is
defned as follows:

A(s) � −r, −1, 0, +1, +r{ }. (3)

Te action space A can be represented as follows:

A � A s1( , A s2( , . . . , A sn(  . (4)

4.3. Cost Function Design. After a reinforcement learning
intelligence makes an action a based on the current ap-
plication’s state s, the cost that the environment feeds the
intelligence is also greatly related to the application’s state
s′ at the next moment. We combine the diferent costs into
a single weighted cost function, with diferent weights
allowing us to express the relative importance of each cost
term. Tus, we propose the immediate cost function
c(s, a, s′) as a weighted value of several costs, representing
the immediate cost spent to transform from state s to state
s′. Te weights of the immediate cost function range from
[0, 1], Te mathematical expression of c(s, a, s′) is as
follows:

c s, a, s
′

  � wadp

1 vertical−scaling{ }cadp

cadp

+ wperf

1 R k+a1 ,u′ ,c+a2( )>Rmax{ }cperf

cperf

+ wres
k + a1(  c + a2( cres

Kmax∙cres
,

� wadp1 vertical−scaling{ } + wperf1 R k+a1 ,u′ ,c+a2( )>Rmax{ } + wres
k + a1(  c + a2( 

Kmax
,

(5)

Designing Markov Decision Models

Get container status

Cost function State transfer
probability

Calculation of Q-value function based
on ε-greedy algorithm

Optimal container scaling strategy

Perform optimal scaling actions

Update the state transfer function

Scheduling completed

Evaluate the
best container

scaling
strategy

Container
Scheduling

Figure 3: Container scaling policy mode.
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where cadp is the adaptation cost of the application to cover
the cost of the application being unavailable when a certain
container scaling operation is performed. cperf denotes the
cost of lost application performance, which is the cost to be
paid when the response time of the application exceeds the
response time limit Rmax. cres is the cost of the resources used
to run the application. Te expense of this cost is pro-
portional to the number of instances of the application and
the share of CPU allocated to the container application. 1 ...{ }

is an indicator function. wadp, wperf , and wres are non-
negative weights of diferent costs and wadp + wperf+

wres � 1. In this paper, we consider these three weight set-
tings are equally important; so, we have wadp � wperf �

wres � 0.33. R(k, u, c) is the application response time at
state s(k, u, c). In addition, the container scaling action a is
decomposed into a horizontal scaling operation a1 and
a vertical scaling operation a2.

5. Solving the Optimal Q-Value Function
Based on the Iterative Process of
Reinforcement Learning

When solving container scaling using reinforcement
learning, the most important thing is how to solve the
optimal Q-value function to evaluate the best container
scaling policy to achieve optimal container scaling.Tere are
many kinds of container scaling policies combining con-
tainer state space and container scaling action space, and it is
obviously not efcient enough to evaluate the policies by
calculating the function values of each state-action pair one
by one.Tis section focuses on computingQ-value functions
using reinforcement learning algorithms.

First, we rely on the abovementioned system model and
calculate the Q-value function directly using the Bellman
equation:

Q(s, a) � 

s′ϵS

p s
′
|s, a  c s, a, s

′
  + c min

a′ϵA si( )
Q si+1, a

′
 ⎡⎣ ⎤⎦∀sϵS,∀aϵA(s), (6)

where c is the discount rate. Te unknown transfer probability
and unknown cost consumption can be estimated empirically.

Estimating the transfer probability p(s′|s, a) can be
translated into estimating the transfer probability of CPU
utilization p(ui+1 � u′|ui � u), so the transfer probability
can be written as the following expression:

p s
′
|s, a  � P si+1 � k

′
, u
′
, c
′

  si

 � (k, u, c), ai � a 

�
p ui+1 � u

′
ui � u

  k
′

� k + a1∧ c
′

� c + a2,

0 otherwise,

⎧⎪⎨

⎪⎩

(7)

where a � (a1, a2) refers to the container scaling operation,
including horizontal scaling operation and vertical scaling
operation, which is defned based on the updated number of
containers (a1) and the updated CPU share (a2). Since the
CPU utilization u is taken in a discrete set, we will briefy
denote the transfer probability as Pj,j′ � P[ui+1 � j′u|ui �

ju]. j, j′ϵ[0, . . . , L].Defnition ni,jj′ stands for the number of
CPU utilization changes when the application changes from
state ju to j′u in time interval 1, . . . , i{ }, where j and
j′ϵ[0, . . . , L]. Te estimated value of the transfer probability
in time interval i can also be noted in the form
Pj,j′ � ni,jj′/

L
l�0ni,jl. Ten, we can estimate the direct esti-

mation of p(s′|s, a) by (5).
When we estimate the immediate consumption cost

c(s, a, s′), we observe that the immediate consumption cost
is composed of two components, known and unknown costs,
which can be written as follows:

c s, a, s
′

  � ck(s, a) + cu s
′

 , (8)

where ck(s, a) is a known cost depending on the current state
and operation, and in this paper, it takes into account the
adaptation cost and resource cost. cu(s′) denotes the un-
known cost, which depends on the next state s′. cu(s′) is
determined by the performance loss because our assumed
application model is unknown and we estimate the un-
known cost cu(s′) online.Tus, at time i, the RL intelligences
can directly acquire the costs ci and estimate the immediate
cost cu,i(s′) of the next state at time i, which can be rep-
resented as follows:

cu,i s
′

  � ci + ck,i(s, a). (9)

Ten, update the unknown cost cu,i(s′) using cu,i(s′),
which can be formulated as follows:

cu,i s
′

 ←(1 − α)cu,i−1 s
′

  + αcu,i s
′

 . (10)

Te estimate of the unknown cost cu,i(s′) is calculated
based on the operation a in state s in (8). When the number
of containers decreases, the CPU utilization increases and
the CPU share decreases the cost spent to violate Rmax is the
expected cost of going from state s � (k, u, c) to the next
state s′ � (k′, u′, c′). When updating cu,i(s′), ∀s ∈ S, the
following properties can be enforced:

cu,i(s)≤ cu,i s
′

 ∀k ≥ k′, u≤ u
′
, c≥ c
′
,

cu,i(s)≥ cu,i s
′

 ∀k ≤ k′, u≥ u
′
, c≤ c
′
.

(11)

From the above, the state transfer probabilities and
cost functions can be obtained by estimation, so the
Markov decision model for the container scaling problem
in this paper is known. In other words, the reinforcement
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learning intelligence is “fully observing” the environment with
known changes in the environment. Te Q-value function is
then computed using the policy iteration algorithm in model-
based reinforcement learning to evaluate the optimal container
scaling action.Te core idea of the policy iteration algorithm is
to use dynamic programming to solve the problem, so this
paper chooses the greedy method to implement the calculation
of the Q-value function and evaluate the container scaling
strategy by the Q-value function. Te ε-greedy strategy idea is
that the selection behavior of an individual in a state is such that
it can reach the state with the largest state value among all
possible subsequent states. Te state value here refers to the
container scaling cost. In the ε-greedy strategy algorithm, the
intelligence randomly selects the action with probability ε and
chooses the best container scaling action with probability 1 − ε.
Te strategy probability distribution can be written as follows:

π st(  �
argmax

at

Q st, a(  p≤ q,

arandom otherwise,

⎧⎪⎨

⎪⎩
(12)

where arandom means a randomly selected action,
p, q ∈ [0, 1] and p value determines the probability of ex-
ploration of the intelligence; the larger p value is, the smaller
the probability of exploration by the intelligence. Finally, the
reinforcement learning update strategy algorithm is given as
the Algorithm 1.

Te abovementioned pseudocode briefy describes the
whole process of learning and updating the container scaling
policy. Firstly, the current container state s is obtained, and
the state transfer probability P and immediate cost function c
are estimated based on the container state s. Ten, for each
state s is refned to the specifc container scaling operation,
the Q-value function is calculated with the goal of mini-
mizing cost consumption and the optimal container scaling
policy is evaluated to achieve optimal container scaling.

6. Simulation Results and Discussion

6.1. Experimental Environment. Te hardware environment
is a PC with i5 processor and 16G RAM. Te software
environment is Windows 10 operating system, and the
programming language is Python 3.0. Te container Cloud
Platform cluster environment is a Kubernetes cluster, which
contains one master node and three node nodes. Te open
source edge computing framework EdgeX Foundry is
deployed on top of the Kubernetes cluster as a container.

6.2. Container Expansion Experiment. Te efects of the two
container scaling strategies are tested in the same experi-
mental environment. Te experimental parameter settings
we used and the observed metrics of the fnal experimental
results mainly include the change in the number of pod
copies, the change in application CPU utilization, and the
change in application response time.

6.2.1. Implementation of HPA Container Scaling Policy.
Te HPA autoscaling policy is chosen as the comparison
policy to achieve automatic scaling of php-apache container

applications in a clustered environment by creating HPA
objects. HPA works under dynamic random workload re-
quests, increasing or decreasing the number of replicas based
on CPU resource metrics. Implementing container scaling
using HPA policies requires confguring HPA parameters
and creating HPA objects.

Tis command contains the scaling object parameter, the
CPU utilization target value parameter, the maximum
number of copies parameter, and the minimum number of
copies parameter. Te HPA object parameters are shown in
Table 2.

6.2.2. Implementation Process of RLS Policy. Te policy
implementation process requires setting several parameter
values for implementing policy learning and updating,
which are the application response time limit value, the
scaling time interval, the range of the number of container
instances, and the greedy policy exploration probability.

We reasonably assume that applications receiving a large
number of requests in the edge computing environment have
high requirements for real-time response to requests, so this
paper sets the response time limit value Rmax to be no more
than 140ms at maximum; the automatic scaling service of
Kubernetes, which is designed as a control loop, has a cycle
time setting of 30 s in the controller (kube-controller-manager).
In the comparison experiment, we test the efect of two
container scaling strategies (RLS vs. HPA) in three aspects:
resource utilization of the application, change in the number of
pods, and response time of the application, so the execution
time interval of both HPA and RLS is set to 30 s; considering
the size of the state space of the reinforcement learning al-
gorithm, the range of the container instances number is set to
the maximum value of 10 and the minimum value is 1, which
can satisfy the optimization goal of reinforcement learning and
also alleviate the problem of state space explosion.

Te specifc learning and updating process of the policy
is listed as follows:

(i) Continuously obtaining the number of real-time
container instances, CPU utilization, and applica-
tion response time for the container during the time
interval to determine the current state.

(ii) Te selection of the best action is solved using
a greedy algorithm, where the high probability of
exploration determines whether the best action can
be selected quickly.Te container scaling strategy of
reinforcement learning aims to obtain the best
container scaling action in the process of contin-
uous learning and exploration, with emphasis on
the later exploitation efect. Tus, using smaller
exploration probabilities will result in the best ac-
tion obtained by exploration, which is more likely to
be exploited the next time, and small probabilities
may be slow to explore upfront, but the best action
selection will be better as time grows.

(iii) After executing the optimal scaling action, the
current state, i.e., the number of container instances,
CPU utilization, and application response time, is
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recorded as a way to update the state transfer
probability and the record of the cost spent.

(iv) After each update of the state transfer probability,
all the actions and state records need to be updated.

Te abovementioned implementation process, with
continuous cyclic learning at time intervals, and as time
grows, the efective information increases thereby enhancing
the efectiveness of the container scaling strategy. Te rel-
evant parameter values are shown in Table 3.

6.3. Experimental Results and Analysis. Container scaling is
used to improve the CPU utilization of the application, to
ensure the quality of service of the application with the least
cost of pod containers, and to avoid taking up too many
cluster resources.

Te reinforced learning container scaling strategy can
better adapt to dynamic load changes, the allocation of pod
resources can respond quickly compared to HPA, the early
stage is a continuous learning phase, the number of pod
changes varies greatly, but later tends to be a smooth state,
and can ensure the quality of service of the application, and
does not occupy too many resources. But HPA for the re-
quest reduction, the number of containers cannot be re-
duced in time, occupying too many cluster resources, and
the application itself has low CPU utilization.

To observe the diference in container scaling results under
two container scaling policies with the same application request
load. Te experiments are conducted according to the pa-
rameters designed above to achieve container scaling under the
HPA container scaling strategy and reinforcement learning-
based container scaling, respectively. Te efects of the two
container scaling strategies are compared by observing the
change in the number of instances of container applications,
the change inCPUutilization of container applications, and the
change in response time of container applications under the
application request load.

Figure 4 shows the trend of the number of container
instances. From Figure 4, it can be seen that the container
application load requests are randomly and dynamically

changing and have a tendency to rise and fall sharply. In this
random dynamic trend, the HPA container scaling policy
has a more stable trend to meet the application load request
withmore container instances throughout. At the same time,
the red box in Figure 4 also shows that the HPA policy has
a time lag problem when scaling up and down, while the
container instances under the reinforcement learning policy
can fexibly adapt to dynamic workload changes in a timely
manner, and with more valid information, the container
scaling is more efective.

Figure 5 shows the trend of CPU utilization of container
application. In Figure 5, it is obvious that the overall CPU
utilization of the application is low under the HPA container
scaling policy, and under the RLS container scaling policy,
the dynamic change is obvious in the early stage due to less
efective information, and it tends to be stable and high in
the later stage.

Table 2: HPA object parameters.

Parameter name Parameter value
MinReplicas 1
MaxReplicas 10
scaleTargetRef Php-apache
Target 50%

Table 3: Reinforcement learning parameter.

Parameter name Parameter value
Greedy strategy exploration probability 0.06
Rmax 140ms
Time interval 30 s
Range of container instances Rounded from 1 to 10
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Figure 4: Trend of the number of container instances.

(1) Update estimates Pj,j′ and cu,i(si)
(2) for all s ∈ S do
(3) for all a ∈ A(s) do
(4) Q(s, a)←s′∈S p(s′|s, a) · [c(s, a, s′) + c min

a′∈A(si)
Q(s′, a′)]

(5) end for
(6) end for

ALGORITHM 1: Update strategy algorithm based on reinforcement learning.
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Figure 6 shows the trend of container application re-
sponse time. In the early stage of RSL strategy, because the
intelligent body does not interact with the environment for
a long time, the efective information obtained is very little,
and the optimal container scaling action is not obviously
enough, so the application response time fuctuates a lot. In
the later stage, with the continuous interaction and learning
between the intelligence and the environment, the efective
information obtained increases and the container scaling
strategy is gradually optimized to select the container scaling
action more accurately, thus meeting the application re-
sponse time requirements.

Considering the limited resources in the edge computing
environment, it is clear from the abovementioned analysis
that the RLS strategy proposed in this paper has more ad-
vantages than the HPA strategy, which takes too much
cluster resources as a condition to ensure the quality of
service, and its timeliness is slightly lagged, its fexibility is
poor, and its resource utilization is low. In contrast, the
reinforcement learning strategy gradually optimizes the
policy through continuous learning and decision making
and fnally guarantees the application service quality with
less occupied resources, and it has high timeliness and high
fexibility, which is more suitable for handling dynamic and
randomly changing workloads in the edge computing
environment.

7. Conclusions

Tis paper designs and implements a reinforcement
learning-based container scaling strategy based on Edge-
XFoundry, an edge computing framework, and Kubernetes,
an open source container cloud platform, in conjunction
with container scaling scenarios. Finally, we analyze the
experimental results to prove that the reinforcement
learning-based container scaling strategy can efectively
guarantee the application service quality and improve the
application resource utilization compared with the HPA
automatic scaling strategy.
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