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Covert channels based on the CPU front-end typically utilize time or power diferences caused by contention. Tis requires
that the sender and receiver are located on the same and quiet physical core. We propose one channel exploiting the macro-
op fusion in the front-end, called MFCC, which has cross-core and robust properties. Macro-op fusion is one of the
optimization strategies in x86 microarchitecture, which aims to fuse two macro-ops and decode them into a single micro-op.
We reverse the constraints of macro-op fusion and fnd that decoders stop decoding after two macro-op fusions in one cycle.
Tus time diferences appear in two identical loops with diferent virtual addresses, represent-ing one and zero, respectively.
We build two types of MFCC: the sender and receiver running in the same thread but operating at diferent privilege levels,
and the two running in two diferent processes. Te accuracy within a single thread is almost independent of the CPU load,
while the accuracy of interprocess transmission maintains more than 0.8 even when the CPU load is 100%. Finally, we
propose three possible protection strategies: eliminating the macro-op fusion mechanism, adding noise to the hardware
counters, and making the events delivered at a defned point in time. Tis paper demonstrates that even minor optimizations
in the front-end can lead to covert transmission.

1. Introduction

Covert channels use nonstandard methods to transmit in-
formation, violating system security policies. Recently, there
has been renewed interest in side-channel and covert
channel attacks against microarchitecture due to the
rediscovery of optimization in it. Te CPU micro-
architecture is the underlying implementation of the in-
struction set architecture (ISA), providing details like
pipelinization, instruction parallelism, out-of-order execu-
tion, and branch prediction. It can be divided into three
parts: front-end, backend, and memory. Te front-end is
responsible for fetching, decoding, and delivering in-
structions to the backend. DSB and IDQ/LSD can store
decoded instructions and deliver them to the backend di-
rectly when hitting to improve performance. Te goal of the
backend is to execute instructions and write the results back

to memory if necessary. We will cover the front-end
decoding path in Section 2.

Since the frst caches attack on the AES algorithm [1], it
has been attracting a lot of interest [2–5]. Spectre [6] and
Meltdown [7] proposed in 2018 broke memory isolation,
showing that briefy accessed secret information can be
leaked to the attacker. Te two attacks triggered a huge
amount of innovative scientifc inquiry into the backend
components because the front-end will not become a bot-
tleneck in most cases.

Early works in the CPU backend tended to target specifc
execution units. Wang and Lee demonstrate that processes
running on the same core interfere with each other when
using multiplication units, which allows an attacker to
identify the victims multiplication instructions [8]. Aciicmez
and Seifert go further to complete the distinction between
multiplication and squaring operations and propose a side-
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channel attack against the RSA implementation in the
OpenSSL [9]. Te foating-point units can also be exploited
similarly, but unfortunately these instructions are less ap-
plied in cryptographic algorithms [10]. Due to the con-
tention of foating-point units, new speculative execution
instructions may delay logically older nonspeculative exe-
cution instructions. Some researchers have thus constructed
a high-bandwidth low-noise covert channel [11].

Contention between two threads is noticed after hyper-
threading appears, which allows two threads to share specifc
components on the same physical core. When contention
happens, the execution time increases. Aldaya et al. [12] and
Bhattacharyya et al. [13] show how to implement side-
channel attacks using the contention of the backend exe-
cution engine.

Recent trends in microarchitecture security have led to
a proliferation of studies focused on the front-end decoding
components, with no backend stalling guaranteed. Ren et al.
[14] reverse the organization of DSB and exploit the idea that
when the attacker and victim run on the same physical core;
the attackers’ instructions, evicted from the DSB, will difer
concerning the virtual address of the victims instructions,
which causes diferent execution times of the attacker. Deng
et al. [15] demonstrate a causal relationship between
decoding paths in the front-end and the programs execution
time. Puddu et al. [16] show signifcant diferences in exe-
cution time of balanced branches, blocks with the same
instructions but diferent virtual addresses, through repeated
interrupts in SGX, but it has not been able to provide
a convincing explanation for the timings exploited by the
attack.

However, since most of the front-end components can
not be shared across cores, previous studies based on
contention have been limited to transfer information on the
same core and sufered from CPU noise. Noise means that
another normal program may corrupt the attackers’ care-
fully designed contention conditions. Terefore, we have
designed a robust cross-core covert channel based on the
front-end macro-op fusion, called MFCC.

Macro-op fusion combines two macro-op into a single
one before or during decoding, which are later decoded into
one fused micro-op, which also remains fused in the
backend and gets executed on port 0 or 6. Tis technique is
used in many modern microarchitectures and will be dis-
cussed more in Section 3.

Because the decoder will stop decoding after two macro-
op fusions in one cycle, the sender can use the time variation
to create a covert channel, and the receiver measures the
time variation to receive the secret message. Slight time
diferences may occur in two identical loops with diferent
virtual addresses due to diferent positions where they stop
decoding. Our covert channel uses two identical code blocks
to convey secret information to the receiver, which improves
the resistance to the code audit. We propose two kinds of
attacks. In the frst attack within the same process where the
sender and receiver operate at diferent privilege levels, we
demonstrate our channels feasibility. In the multiprocess
attack, the sender and receiver are in diferent processes,
closer to reality.

In summary, we make the following contributions:

(1) We validate the disclosed mechanism of macro-op
fusion and reverse the unknown part of macro-op
fusion in the Intel Skylake microarchitecture. Our
conclusions can be applied to other modern x86
microarchitectures.

(2) We design the frst cross-core robust covert channel
in the front-end. Based on macro-op fusion, our
channel achieves more than 0.95 accuracy within
a thread and 0.8 between processes when the CPU
load is 100%. It can be applied to all Intel micro-
architectures with macro-op fusion, from the Core 2
to the Alder Lake.

Cross-core means that the sender and receiver do not
need to locate on the same core, which is required by
previous works [14–16]. Robust means that the attacker does
not have to carefully set up the caches status or create
contention, which could get disturbed by a normal program
at any time. Our channel can work when the CPU is 100%
loaded.

Te remaining part of the paper proceeds as follows.
Section 2 includes the necessary background knowledge. We
reverse restrictions on macro-op fusion in Section 3. Based
on that, we propose a covert channel that works robustly and
across cores in Section 4. Section 5 analyses the results of our
work and discusses the possible defenses.

2. Background

Te x86 decoding pipeline, i.e., the front-end, is primarily
responsible for fetching x86 instructions, decoding them,
and delivering the decodedmicro-ops to the backend. In this
section, we will introduce three decoding paths, MITE
(microinstruction translation engine), DSB, and LSD, as
shown in Figure 1.

2.1. MITE. Instructions are frst prefetched from the L2
cache to the L1 cache. Ten, up to 16 bytes of instructions
can be fetched from the L1 cache per cycle to the pre-
decode bufer, in which their boundaries and prefxes get
detected and marked. After that, predecoded instructions
are sent to the Instruction Queue, waiting for being
decoded into micro-ops in decoders. Tere are one
complex decoder and four simple decoders in Intel
Skylake. Te complex one is capable of emitting from one
to four micro-ops per cycle while the simple one can only
emit one micro-op. Agner argues that it has been im-
possible to get a throughput of more than four micro-ops
per clock cycle when decoding [17]. Our hypothesis is that
for every micro-ops issued by the complex decoder, one
less simple decoder is activated. Te micro-ops are stored
in the IDQ (Instruction Decode Queue), waiting for
backend execution.

2.2. DSB. DSB (decoded stream bufer) was formally in-
troduced in the Sandy Bridge microarchitecture [1]. It can
store the decoded instructions, making it possible to transfer
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them directly to IDQ when hitting. DSB can provide an
average hit rate of 80%, higher in some specifc cases, which
reduces the impact of the complex x86 decoding [18].

2.3. LSD and IDQ. LSD (loop stream detector) detects eli-
gible loops in the IDQ and lock them down. With the MITE
and DSB turned of, these micro-ops will be streamed to the
backend directly until a branch is incorrectly predicted. In
the erratum SKL 150, Intel disabled the LSD on client
processors through a microcode update [19].

3. Analysis of Macro-Op Fusion

In this section, we will describe how macro-op fusion causes
time diferences. Firstly, we verify and reverse the conditions
and restrictions for performing macro-op fusion. Based on
that, we complete our front-end cross-core robust covert
channel. Te experiments are conducted on a Skylake CPU,
Intel i7-10700, with Ubuntu 20.04.

3.1. Macro-Op Fusion Causes Time Diferences. Macro-Op
fusion is a hardware optimization used in many modern
microarchitectures. In Skylake, the decoder fuses an
arithmetic or logical instruction and a subsequent jump
instruction into a single compute-and-jump micro-op,
which remains fused in the backend and is executed on
port 0 or 6.

In the Skylake microarchitecture, macro-op fusion can
be performed up to twice per cycle, after which decoders will
stop decoding. Time diferences may occur in two identical

loops with diferent virtual addresses due to diferent po-
sitions where they stop decoding, which can be amplifed by
multiple iterations. As shown in Figure 2, when decoders
have performed two macro-op fusions, the remaining in-
structions will get decoded in the next clock cycle. However,
if the virtual address difers, two macro-op fusions will
happen in the last two decoders and thus instructions from
two iterations can get decoded in the same cycle.

We verify and reverse the mechanisms involved to
confrm that this observable time diference is indeed caused
by macro-op fusion.

3.2. Restrictions on Macro-Op Fusion. Only specifc in-
struction pairs can be macrofused as Agner describes in
Table 1 [17]. In addition, six conditions and restrictions
afect the performance of macro-op fusion. Te frst one is
ofcially given by Intel, and the third one is described in [17],
which are verifed in the Appendix. We reverse the
remaining as follows:

(1) Macro-op fusion can be performed at most twice
per cycle

(3) Decoders stop decoding after two macro-op fusions
(4) Instructions crossing the 16 byte boundary can also

be macrofused
(5) Macro-op fusionmay lead to a performance decrease
(6) Virtual address also afects execution time outside

the SGX
(7) Macro-op fusion is performed in the decoders

L1 Cache

Fetcher Pre-decode
Buffer

Instruction Queue

MS ROM Decoders

Branch
Predictors

DSB

IDQ
LSD

Stack Engine

MITE PATH
DSB PATH
LSD PATH

Figure 1: Structures of the CPU front-end.
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3.2.1. Decoders Stop Decoding after Two Macro-Op Fusions.
In this section, we will test the number of macro-op fusions
before decoders stop working, for our covert channel needs
to confrm it. It is supposed that decoders stop working after
two macro-op fusions.

Te test code is shown in Figure 3. In case 1, it is impossible
to perform two macro-op fusions consecutively. Because of
that, even if two macro-op fusions are decoded in the same
cycle, at least one shift instruction is decoded at the same time.
Case 2, on the other hand, performs two macrofusions con-
secutively, resulting in the two shift instructions will be
decoded in the next cycle. Since the total length of the six
instructions is less than 16bytes, there are certain cycles in
which the two shift instructions of the second test case can not
be decoded together with the compare and jump instructions
in the next cycle. Each case is repeated 4000 times and looped
106 times for a total of 2.4×1010 instructions per test case.

Te experimental results are shown in Table 2. It can be
seen that the number of cycles where micro-ops are de-
livered to IDQ from MITE (r1002479) is signifcantly lower
in the frst test case with similar numbers of micro-ops
delivered to the IDQ from the MITE (r479). Tis proves that
the decoder stops decoding after performing two macro-op
fusions. Te similar wall-clock cycle number is because the
IDQ absorbs the bubbles introduced by decoders.Te reason
why the frst case can not issue 4 micro-ops per cycle to the
backend will be explained later in this section.

3.2.2. Single Macro-Op Fusion May Lead to Decoding Speed
Reduction. Macro-op fusion does not necessarily mean
a speed improvement. A single macro-op fusion may also

lead to a throughput decrease. Tat is why the frst test case
in Figure 3 can not issue 4 micro-ops per cycle.

Tere are three test cases in Figure 4, where test and jz
instructions are macrofused, and any jump instructions are
not macrofused. In the 2MF case, there are two pairs of test
and jz instructions, which means macro-op fusions happen
twice. Te 1MF case includes one combination of test and jz
instructions, and one combination of or and jz instructions.
With two or-jz pairs, macro-op fusion will not happen in the
0MF case. Each case is repeated 40 times and looped
106 times.

Te number of decoded instructions per cycle (DIPC)
can be calculated from the number of cycles where micro-
ops are delivered to IDQ from MITE (r1002479) and the
number of micro-ops delivered to IDQ from MITE (r479).

DIPC �
r479

r1002479
. (1)

Table 3 presents the experimental results on decoders.
Tere is a clear trend of increasing DIPC as the number of
macro-op fusions decreases, resulting in a rise in cycles. Te
possible reasons for the lower decoding will be discussed
later in this section.

MS ROM MS ROM

Macro-fused
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Macro-fused
pair

Macro-fused
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Macro-fused
pair

Non-Macro-
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OP OP OP OP

JCC JCC JCC JCC

Inst InstInst Inst

Complex
Decoder

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Figure 2: How macro-op fusion causes time diferences. Te location where the two macro-op fusions get decoded causes time diferences.

Table 1: Pairs of instructions that can be macrofused. It Includes
the opposite jump instructions.

Te frst instruction Te following instruction
cmp jz, jc, jb, ja, jl, jg
add, sub jz, jc, jb, ja, jl, jg
adc, sbb None
inc, dec jz, jl, jg
test All jump instructions
and All jump instructions
or, xor, not, neg None
shift, rotate None

.test2:
%rep 4000

test ecx, ecx
jz .exit_loop
test ecx, ecx
jz .exit_loop
shl eax, 1
shl ebx, 1

%endrep

.test1:
%rep 4000

test ecx, ecx
jz .exit_loop
shl eax, 1
test ecx, ecx
jz .exit_loop
shl ebx, 1 

%endrep

Figure 3: Test code that decoders stop decoding after two macro-
op fusions.

Table 2: Number of active decoder cycles (r1002479) and number
of transmitted instructions (r479).

Test
cases Cycles r1002479 r479

#1 8, 014, 691, 739 5, 354, 685, 262 16, 002, 858, 134
#2 8, 014, 342, 810 6, 013, 800, 242 16, 002, 095, 349
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3.2.3. Impact of Virtual Addresses on Execution Time.
Te work [14] explores the infuence of virtual addresses on
the number of fetched instructions and further on the ex-
ecution time. However, they have failed to observe it outside
the SGX, maybe sufering from DSB hits. In our experi-
ments, the efect of virtual addresses on the execution time is
also observed outside of SGX, and macro-op fusion
amplifes it.

We use nop instructions to adjust the virtual addresses of
test codes in Figure 4. Every test case is repeated 40 times and
looped 106 times. With the change of virtual addresses, the
cycles represent a trend of periodic change outside of SGX,
as shown in Figure 5(a). Te number of macro-op fusions
does not change the overall trend of cycles but amplifes the
efect of the virtual address on cycles. Te 2MF test case has
lower cycles when macro-op fusions can be performed
normally, and higher cycles when decoding is stopped. It is
important to note that even at the virtual addresses where
the three curves overlap, we can still get distinguishable the
time diferences.

As shown in Figure 5(b), the increase of virtual addresses
also leads to periodic fuctuations in DIPC. Te three test
cases at the overlapping point in Figure 5(a) have diferent
execution times because of the diferent DIPCs.Tis is one of
the advantages of macro-op fusion toMFCC that it amplifes
the efect of the virtual address on the execution time. Te
greater time diference allows us to better distinguish be-
tween 0 s and 1 s.

3.2.4. Location where Macro-Op Fusion is Performed.
Te component where macro-op fusion is performed is not
yet determined. It should not be earlier than the predecode
bufer, where the CPU knows the exact instruction length, or
later than the decoders, whose output is already micro-ops.

One view holds that macro-op fusion takes place in the
IQ (instruction queue), where two macro-ops are fused into

one complex macro-ops [20], as shown in Figure 6. Tere is
also a view that the macrofusion is carried out in the
decoders [17].

Based on the conclusion earlier in this section that
macro-op fusion may also lead to a throughput decrease, we
propose a possible deduction that if one instruction can be
macrofused into the last decoder; its decoding is delayed and
enters the frst decoder in the next cycle to check whether the
next one is a jump instruction that can bemacrofused.Tis is
consistent with the conclusion that DIPC rises as the
number of macro-op fusions decreases.

Based on the conclusion that instructions crossing
the 16 byte boundary can also be macrofused without
any throughput loss, we infer that if any instruction that
can be macrofused is stored in the IQ while the next one
is still in the predecode bufer, then the instruction
should wait and enter decoders in the next cycle, which
conficts with the conclusion that the throughput will not
decrease.

Tus, we believe that the macro-op fusion is performed
in the decoders.

4. Covert Channel Based on Macro-Op Fusion

4.1. Design of the Covert Channel. Since most of the front-
end components can not be shared across cores, previous
studies [14–16] based on contention have been limited to
transfer information on the same core and sufered from
CPU noise. Noise means that another normal program may
corrupt the attackers’ carefully designed contention con-
ditions.Te feature of stopping decoding after twomacro-op
fusions enables us to construct a covert channel, MFCC (the
macro-op fusion covert channel), using two identical loops
with diferent virtual addresses, which has overcome such
shortcomings.

For the threat model, we assume that on the same
machine, the sender and receiver are both malicious. Te
sender holds secrets but has no access to the Internet and the
receiver tries to extract the secret information by measuring
timing changes and later transmit secrets to the attacker
somehow. Our work focuses on the covert channel where the
sender and receiver communicate. Te sender and receiver
need to get a timestamp and start at a specifc time point. We

.2MF:
%assign i 0
%rep 40

.test%+i: 
add eax, 0×123
add ebx, 0×23
test ecx, ecx 
jz .test %+ i 
test ecx, ecx 
jz .test %+i 

%assign i i+1 
times 32 nop
%endrep

.1MF:
%assign i 0 
%rep 40

.test%+i:
add eax, 0×123
add ebx, 0×23
test ecx, ecx
jz .test %+ i 
or ecx, ecx 
jz .test %+ i 

%assign i i+1 
times 32 nop 
%endrep

.0MF:
%assign i 0 
%rep 40 

.test%+i:
add eax, 0×123
add ebx, 0×23 
or ecx, ecx
jz .test %+ i 
or ecx, ecx 
jz .test %+ i 

%assign i i+1 
times 32 nop 
%endrep

Figure 4: Test code that single macro-op fusion may lead to decoding speed reduction.

Table 3: DIPC of groups with diferent macro-op fusion numbers.

Test cases (MF) DIPC
2 3.59322436
1 3.69357949
1 3.79700302
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demonstrate vulnerabilities in both single-thread settings
where the two run in diferent privileges, and cross-core
settings. We assume that coresidency on the same server can
be achieved by using methods proposed by [21]. Tus,
MFCC can be efective in the cloud environment as many
previous attacks [3, 4] do.

Figure 7 explains the structure of MFCC, where the
sender has a secret. Te number of nop instructions is used
to adjust the virtual address of the code block, according to
message 0 or 1. Te two add instructions and two cmp-
and-jmp pairs are 16 bytes in length, equal to the length of
the Fetcher. A prefx like 66H may infuence the decoding
throughput.Tus, we do not use registers like AX and BX. 32
nop instructions are used to make the MITE throughput the
only bottleneck because they need to get decoded but do not
execute in the backend ports. Code block A and Code block
B send 1 and 0 respectively.

Each block is executed 106 times, collecting a total of
1000 points. Te distribution of 1000 points is shown in
Figures 8(a) and 8(b). In milliseconds, the two blocks can be
roughly distinguished; while in fner granularity, the number
of cycles, the two blocks can be completely distinguished.

In MFCC, we use execution time to distinguish them,
avoiding root privileges. We use a shared timestamp to
synchronize the sender and receiver. In a more practical
scenario, our channel can use techniques proposed by
[22–25] independent of the common clock. Every child
thread of the sender transmits only 1 bit. Tus, the receiver
measures the runtime of each thread to distinguish the 0 s
and 1 s.

4.2. Parameter Analysis. We build two types of MFCC: the
sender and receiver running in the same thread but oper-
ating at diferent privilege levels, and the sender and receiver
running in two diferent processes. In experiments, the
message is a 10000 bits string.

4.2.1. Number of loops. Each loop creates a diference in
execution time between Code block A and Code block B.Te
higher number of loops, the less difcult it is to distinguish
between the two. Results are shown in Table 4. As the
number of loops increases, the accuracy tends to increase
while the speed drops.

Te number of loops represents a trade-of between
accuracy and speed. Comparing the results of two
code blocks, the speed and accuracy are impressive
when transmitting within the same thread, because there
is no overhead of cloning processes and less noise
interference.

4.2.2. CPU Load. Most studies in the feld of the micro-
architecture covert channel have focused on exploiting the
competition between the sender and receiver for some
shared resources. Tis leads to problems that channels can
not transmit beyond the resource hierarchy and hardly resist
noise in the real world.Te 1 bit secret is sent on the eviction
of the DSB in [16], whichmeans the sender and receiver have
to locate at the same core. When another process switches to
the core where they are located, the well-laid-out states of
DSB will become disorganized. However, CPU load has
a much smaller impact onMFCC since our channel does not
depend on the competition and has a low requirement for
threshold.

We use look-busy [26] to impose CPU load on MFCC,
which takes various approaches to authorize the CPU to

0 Macro-op Fusion
1 Macro-op Fusion
2 Macro-op Fusion

3.6
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1e8
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0 Macro-op Fusion DIPC
1 Macro-op Fusion DIPC
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3.8

3.9
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Figure 5: Impact of virtual addresses on execution time. (a) Execution cycles under diferent virtual address. (b) DIPC under diferent
virtual address.

cmp eax, [mem]
jne loop

cmpjne eax,
[mem], loop

Figure 6: Two macro-ops are fused into one complex macro-ops.
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operate at a fxed CPU load. As shown in Figure 9, the
accuracy within a single thread is almost independent of
CPU load, while in interprocess transmission, the accuracy

gradually decreases with the increase of CPU load. However,
the accuracy of interprocess transmission maintains more
than 0.8 even when the CPU load is 100%.

Start timing
waiting
…
…
…
…
…
waiting

End timing

if time> threshold
secret=1

else
secret=0

sender receiver

Get secret

trigger

trigger

times 1 nop
.main:

%assign i 0
%rep 40

.test%+i:
add eax, 0×123
add ebx, 0×23
test ecx, ecx
jz .test %+ i
test ecx, ecx
jz .test %+ i
%assign i i+1
times 32 nop

%endrep

times 5 nop
.main:

%assign i 0
%rep 40

.test%+i:
add eax, 0×123
add ebx, 0×23
test ecx, ecx
jz .test %+ i
test ecx, ecx
jz .test %+ i
%assign i i+1
times 32 nop

%endrep

Code A
Send 1

Code B
Send 0

Secret

Figure 7: Schematic diagram of MFCC.
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Figure 8: Distinguishability of code block A and B.
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When a CPU is heavily loaded, there must be many
processes colocated with our sender and receiver. However,
since the decoders are not shared between threads or pro-
cesses, another process will not afect how the decoders work
for our sender and receiver. It only makes the receiver run
longer. In such a scenario, the runtime of the sender will
increase as a whole whether it sends 0 s or not, but it is still
distinguishable as stated in 4.2.

Te diference in accuracy between the two is mainly due
to the fact that inter-process communication requires
cloning processes, which consumes some time and results in
a smaller time diference between 1 s and 0 s.

4.2.3. Treshold for Distinguishing 1 s and 0 s. Te choice of
threshold is theoretically dependent on noise and the
number of loops, which can bring a signifcant efect on the
accuracy.

Te experimental results are shown in Figure 10. When
the loop count is 1000, the threshold is incremented from
200000 to 300000 in steps of 1000. It can be observed that the
accuracy remains around 0.5 at the beginning, which means
that the threshold cannot distinguish between 1 s and 0 s at
all and starts to increase rapidly around 17.8, reaching the

maximum accuracy of 17.95 and then decreases rapidly. It
can also be found that we have a wide range of threshold
selection, which is advantageous in dealing with high CPU
load. Diferent numbers of loops will have diferent ranges of
the threshold.Te noise will only have a direct impact on the
accuracy, and it is not necessary to modify the threshold
under a specifc CPU load.

5. Discussions

5.1. Results Discussions. In this section, we will evaluate the
experimental results, including a comparison with other
similar works, discussions about shortcomings, and possible
improvements.

5.1.1. Speed Comparison. MFCC can achieve a speed of
857.46 kbps with an error rate of about 5.85% for transmission
within a thread across privilege levels, and 12.315 kbps with
a BER of 6.61% for interprocess transmission.

Our work does not have a signifcant advantage in speed
compared to other front-end covert channels. Te speed of
a single thread is roughly comparable, while the interprocess
communication is slower, as shown in Table 5.

Table 4: Speed and accuracy under diferent numbers of loops.

Loop count
#1 #2

Speed (kbps) Accuracy Speed (kbps) Accuracy
100 21.645 0.7034 112.36 0.9979
500 12.315 0.9339 23.585 0.9927
1000 8.104 0.9125 11.834 0.9588
10000 1.097 0.9778 1.191 0.996
100000 0.118 0.9939 0.119 0.9996

inter-process
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Figure 9: Impact of CPU load on accuracy.
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Although the bandwidth is in the middle level
among attacks reported in the literature [27], our covert
channel can transmit cross cores and under high CPU
load, which enables us to work in the real world, as
discussed in 4.2.

5.1.2. Shortcomings and Improvements. We do not fnd
a convenient handshake in the communication between
processes to guarantee synchronization between the re-
ceiver and sender. Tus we take the most primitive way in
that the receiver starts timing when the cloning is carried
out and ends timing when the sender is released. Tis is
very straightforward and efcient at the cost of a speed
drop. In Table 4, the speed diference between intrathread
and interprocess communication reaches about 40 times,
mostly caused by cloning. Te speed of MFCC can be

further improved if we can fnd a more suitable way to
handshake.

In Section 4.2, we discussed the change in accuracy caused
by the threshold. But the threshold to distinguish 1 s and 0 s
may be diferent among diferent devices. Tus we propose the
concept of dynamic adaptive thresholds. Before transmitting
secrets, the sender and receiver use a piece of known in-
formation to determine the best threshold. When the accuracy
reaches 0.9, then secrets start to transmit. Tis allows for better
adaptation to diferent CPU microarchitectures.

Moreover, since our MFCC does not depend on any
shared resources, concurrent transmission of secrets is
feasible. By having multiple senders transmit a part of se-
crets, the speed can increase signifcantly between processes.
If requiring high-level accuracy, secrets can be sent by
multiple senders.
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Figure 10: Impact of CPU load and loop count on threshold and accuracy.

Table 5: Transmit speed comparison. MT is a multithreaded transmit and MP is a cross-process transmit.

Work Speed (kbps) Error (%) Cpu model
Leaky frontends (MT) [15] 200.37 4.62 Intel E-2286G
Leaky frontends (MT) [15] 1410.84 0.00 Intel E-2286G
Dead uops (MT) [14] 250 5.59 Intel i7-8700T
Dead uops [14] 965.59 0.22 Intel i7-8700T
MFCC (MP) 12.315 6.61 Intel i7-10700
MFCC 857.46 5.85 Intel i7-10700
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Te disputed bits are voted or retransmitted through ma-
jority voting, which can improve accuracy without speed loss.

5.2. Possible Mitigations. We fnd that existing defenses or
ideas can protect against MFCC at the cost of performance
degradation.

Te most intuitive mitigation would be to remove the
macro-op fusion.Tere was a similar situation before that in
the erratum SKL 150, Intel disabled the LSD on client
processors through a microcode update [28]. Tis will bring
about a 10% performance degradation as the diference
between 2 macro-op fusions and 0 macro-op fusion in
Figure 5(a) indicates.

One possible approach is to add noise to the hardware
counters. Our channel relies on the performance counter

returning an accurate timestamp, which is used to calculate
the execution time and thus distinguish between 1 s and 0 s.
However, in addition to hardware counters, it is possible for
networked programs to obtain reliable timestamps from the
network. Hu [29] proposed to modify the IO bufers to
support delayed virtual interrupts for the purpose of adding
noise on all available clock sources.

Another possible approach is to make all events de-
livered at deterministic time points [30, 31]. Tis poses
a greater challenge to the hardware implementation and
there is a performance loss. In a virtualized environment, the
difculty is reduced because of the hypervisor.

Overall, it is important to achieve a delicate balance
between security and performance as performance decreases
in exchange for security improvements.

%assign i 0
%rep 10

%rep 8
.test%+i: 

test ecx, ecx 
jz .test%+ i

%assign i i+1
%endrep 

times 24 nop
%endrep

Figure 11: Test code that at most two macro-op fusions happen in one cycle.

Table 6: Macro-op fusion can be performed at most twice per cycle.

Performance monitor unit Result
Cycles 10, 181, 821, 638
Instructions 40, 198, 387, 276
r10e 32, 093, 761, 570
r1b1 8, 100, 347, 112
r1002479 10, 100, 951, 100
r479 32, 108, 844, 511

Align 32 .test:
%assign i 0 
times 14 nop 
%rep 4000

.test%+i:
times NOPS1 nop
ecx, ecx
jz .test%+i
times NOPS2 nop
%assign i i+1

%endrep

Figure 12: Test code that crosses the 16 byte boundary of the fetcher can also be macro-fused.

Table 7: Instructions across the 16 byte boundary of the fetcher can be macrofused. r1002479 is the number of micro-ops are delivered to
IDQ from MITE. r479 is the number of micro-ops delivered to the IDQ from the MITE.

Test case Cycles Instructions r1002479 r479
NOPS1� 0, NOPS2�12 13, 043, 078, 943 56, 016, 000, 820 13, 013, 118, 488 52, 019, 903, 856
NOPS1� 2, NOPS2�10 13, 052, 102, 429 56, 016, 000, 821 13, 010, 725, 499 52, 016, 153, 156
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6. Conclusion

Tis study set out to develop a covert channel that transmits
robustly and across cores. We verify and reverse the re-
strictions on macro-op fusion and construct one based on
that. To resist code audit, our channel uses two identical
loops to transmit secrets. MFCC not only works across cores
without sacrifcing the speed of transmitting secrets but also
shows good accuracy under high CPU load, which has not
been accomplished by any previous front-end covert
channels. It can achieve a transmission speed of 857.46 kbps
with an error rate of about 5.85% within a thread, and
12.315 kbps with an error rate of 6.61% in interprocess
transmission. We propose three possible protection strate-
gies: eliminating the macro-op fusion mechanism, adding
noise to the hardware counters, and making the events
delivered at a defned point in time. Moreover, it is possible
to exploit micro-op fusion in the similar way.

Appendix

In this section, we verify one condition and one limitation of
macro-op fusion, which are already disclosed.

Macro-op fusion can be performed at most twice per
cycle. We will test the maximum number of macro-op fu-
sions that can be performed in one cycle in the Skylake
microarchitecture. Te code used to perform the test is
shown in Figure 11, where the test and jz instructions are
macrofused. Nop instructions are executed quickly on the
backend and do not reach the execution ports, which makes
the front-end decoding the only bottleneck and reduces the
DSB usage. Te whole case is looped 109 times in total.

Results are shown in Table 6.TeDIPC of this code block
is about 3.179, which is below the upper limit of 4 micro-ops
per cycle. According to the assumption that at most two
macro-ops fusions can be performed per cycle, a code block
with 8 combinations of test and jz needs 4 cycles to complete
decoding and 24 nop instructions need 6 cycles to complete
decoding. Tus, 32 microinstructions (one test-jz pair
produces one micro-op) need 10 cycles in total to complete
decoding. Te theoretical DIPC is 3.2, which is close to the
experimental results.

Te r10e is the number of micro-ops sent by the RAT to
the RS, which decreases by 8×10^9. It proves that macro-op
fusions have been performed in the front-end. Te r1b1
measures the number of micro-ops actually executed. It
proves that nop instructions are not executed in the backend
ports. Te number of micro-ops executed per cycle, cal-
culated by r1b1 and cycles, is about 0.8, which means no
stalling in the backend. Tis ensures the validity of the
conclusion.

Instructions that cross the 16 byte boundary of the
fetcher can also be macrofused.Te purpose of this section is
to verify the conclusion that instructions across the 16 byte
boundary of the fetcher can be macrofused, with no decrease
in speed. Te test case is shown in Figure 12. Results are
shown in Table 7. Te virtual addresses are aligned at the
beginning of the test cases using ALIGN 32. In the frst one,
NOPS1� 0 and NOPS2�12; in the second one, NOPS1� 2

and NOPS2�14. Test and jz instructions are both 2 bytes
long, so the total length of the test cases is 16 bytes, which is
just the length of the fetcher. Te only diference is that the
test and jz instructions in the frst case will cross the 16 byte
boundary while the second one will not. Each case is re-
peated 4000 times and looped 106 times, for a total of
5.6×1010 instructions per case. In both cases, the diference
between the total number of instructions and micro-ops
transmitted from the decoder to IDQ is about 4×109, which
proves that the two instructions crossing the 16 byte
boundary of the fetcher can be macro fused. In addition,
there is no signifcant diference in cycles between the two,
which proves that there is no impact on the decoding speed.

Data Availability

We believe that our original data can be reproduced using
the code listings provided by the paper. Te basic and
necessary data are listed in the paper. Te data used to
support the fndings of this study are available from the
corresponding author upon request.
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