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We consider the efcient hardware implementation of Grain-128AEADv2, which is the second version of Grain-128AEAD (one
of the lightweight cryptography fnalist candidates). In order to counteract side-channel attacks, the efcient masked hardware
implementation of Grain-128AEADv2 is also considered under the idea of domain-oriented masking. In detail, the so-called
pipeline-like pre-computation technique is applied to increase the throughput-area ratio of the (masked) hardware imple-
mentation of Grain-128AEADv2. Te performance of the (masked) hardware implementation of Grain-128AEADv2 is evaluated
on ASIC and FPGA. For the unmasked version, the highest throughput-area ratio can be 2.14 Mbps/GE on ASIC and
9.34 Mbps/Slice on FPGA. For the masked version, the highest throughput-area ratio can be 0.37 Mbps/GE on ASIC and
1.72 Mbps/Slice on FPGA. Ten, the security of the masked hardware implementation of Grain-128AEADv2 is verifed with the
simulated T-Test. To the best of our knowledge, this is the frst published work about the (masked) hardware implementation of
Grain-128AEADv2. In light of this, this contribution may help researchers and practitioners to accurately compare the efciency
and the security of the hardware implementation of Grain-128AEADv2 with those of other lightweight cryptography algorithms.

1. Introduction

In August 2018, National Institute of Standards and Tech-
nology (NIST) launched the project Lightweight Cryptog-
raphy (LWC) calling for lightweight cryptographic
algorithms that possess the function of authenticated en-
cryption with associated data (AEAD). Tese algorithms are
expected to be suitable to be used in resource-constrained
environments where existing cryptographic algorithms may
be unsuitable to be used. Compared with existing symmetric
cryptographic algorithms, lightweight cryptographic algo-
rithms that possess the function of AEAD can achieve the
goal of integrity and confdentiality simultaneously. Ten,
after two rounds of review, NIST announced in March 2021
that Grain-128AEAD and nine other lightweight crypto-
graphic algorithms are selected as the fnalists.

Te Grain family was frst proposed as a candidate of the
eSTREAM project [1] launched by the European Network of
Excellence for Cryptology. After three rounds of evaluation,

Grain v1 [2] of the Grain family was chosen as one of the
three stream ciphers included in Portfolio 2 (hardware-
oriented). Ten, recognizing the emerging need for 128-bit
keys, Hell et al. proposed Grain-128 [3], which can support
128-bit keys and 96-bit IVs. Ten, Grain-128a [4] that
supports authentication was proposed in 2011. Based on
Grain-128a, Grain-128AEAD [5] was proposed and sub-
mitted to the project LWC. Compared with Grain-128a,
Grain-128AEAD can additionally use associated data to
support authentication. Finally, in order to add security
against key reconstruction from a known internal state,
Grain-128AEADv2 [6] was proposed and submitted to the
project LWC as a fnalist.

Considering that lightweight cryptographic algorithms
are expected to be used in resource-constrained environ-
ment, it is very meaningful to evaluate the performance of
the hardware implementation of Grain-128AEADv2. In fact,
there have been several hardware implementations of the
Grain family. In [7], the hardware implementation of
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Grain-128a was proposed. In [8], the efcient hardware
implementation of Grain-128AEAD was proposed. In order
to increase the throughput-area ratio, the Galois trans-
formation of the NFSR was adopted in these hardware
implementations. However, compared with the original
ones, such transformation would lead to diferent output
sequences and diferent states of NFSR. Moreover, since
diferent versions of the hardware implementation of Grain-
128AEAD adopt diferent Galois feedback functions, the
output sequences of diferent versions of the hardware
implementation of Grain-128AEAD can be also diferent,
which will decrease the generality of the hardware imple-
mentation of Grain-128AEAD. In order to generate the
same output sequences with the original ones, the secret key
should be transformed [9]. Te transformation of the secret
key needs extra control logic. Te situation can be more
complicated in the hardware implementation of Grain-
128AEADv2 since the secret key bits are XORed with the
input to both LFSR and NFSR in the key reintroducing
phase. Tus, extra memory can be needed to save the
transformed secret key, which will increase the area cost of
the hardware implementation of Grain-128AEADv2. Apart
from that, the increased area cost and the more complicated
control logic can infuence the synthesis process and de-
crease the throughput-area ratio of the hardware imple-
mentation of Grain-128AEADv2.

One strategy to increase the throughput-area ratio of the
hardware implementation of Grain-128AEADv2 is to apply
the pipeline technique, which aims to increase the frequency
of the hardware implementation of Grain-128AEADv2 by
inserting registers into the critical path. However, it is not
possible to apply the pipeline technique for FSRs due to their
intrinsic feedback property [8]. In light of this, a pipeline--
like pre-computation technique is proposed. Compared with
the Galois transformation, the pipeline-like pre-
computation technique has two advantages. First, it does
not change the feedback functions, which can lead to the
same output sequence as the original Grain-128AEADv2.
Tus, it will not infuence the generality of the hardware
implementation of Grain-128AEADv2. Second, since the
feedback functions are not changed, the parallel level of the
hardware implementation of Grain-128AEADv2 with the
pipeline-like pre-computation technique can be up to x32,
which can be two times the maximum parallel level (x16)
reached by the hardware implementation of Grain-
128AEADv2 with the Galois transformation [7]. As the
throughput-area ratio of a hardware implementation in-
creases with its parallel level, it can achieve an efcient
hardware implementation of Grain-128AEADv2.

In practice, side-channel attacks can exploit the leakage
of a cryptographic algorithm implementation to recover the
secret key, which can pose a serious threat on the security of
a cryptographic algorithm implementation. In light of this,
the hardware implementation of Grain-128AEADv2 that is
secure against side-channel attacks should be considered. In
fact, there exist diferent types of countermeasures that can
resist side-channel attacks, such as masking [10, 11], shuf-
fing [12], and random delay [13]. Among them, masking as
a provably secure countermeasure can be the most famous

one. Terefore, the masking technique should be adopted in
the secure hardware implementation of Grain-128AEADv2.
Since the idea of masking was proposed at CRYPTO 1999
[14], masking schemes suitable to be used for software and
hardware implementations have been proposed over the past
twenty years. Compared with the software ones, the hard-
ware ones may face the security problems related to glitch.
Te security of a masking scheme should be analyzed in
a certain adversary model. Ishai et al. for the frst time
proposed the d-probing model at CRYPTO 2003 [11], where
the adversary can obtain the values of d bits with d probes.
However, the security of the hardware implementation of
a cryptographic algorithm under the d-probing model may
be not enough since the leakage related to glitch is not
considered [15]. For example, the authors of [16, 17] applied
side-channel attacks on masked AES hardware imple-
mentations, and they led to the conclusion that glitch can
pose a serious threat on the security of masked AES
hardware implementations.

In order to consider the security problems related to
glitch, the idea of the glitch-extended probing model was
frst proposed at CRYPTO 2015 [18]. Ten, its formal
version was proposed at CHES 2018 [19]. Te frst glitch-
resistant masking scheme, i.e., Treshold Implementation
(TI), was proposed by Nikova et al. at ICISC 2006. At least
td + 1 shares should be used in TI where t denotes the degree
of a non-linear function and d denotes the security order.
Terefore, the number of shares needed in TI can be large.
Ten, in order to decrease the number of shares needed in
TI, Reparaz et al. proposed Consolidating Masking Schemes
(CMSs) at CRYPTO 2015 [18] by using fresh randomness.
After that, Domain-Oriented Masking (DOM) [20] and
Unifed Masking Approach (UMA) [21] were proposed to
further reduce the number of fresh randomness. Among
these schemes, DOM can induce the least computation delay
and the minimum number of extra operations. Moreover,
the number of fresh randomness required by DOM can be
relatively small. Terefore, DOM may be suitable to be used
to secure the efcient hardware implementation of Grain-
128AEADv2. In order to increase the throughput-area ratio
of the masked hardware implementation of Grain-
128AEADv2, the pipeline-like pre-computation technique
can be also applied. However, for the parallel level above 16,
the masked feedback functions will use some values that
have not yet been shifted into the FSRs, and pre-
computation cannot be processed. Tus, only the parallel
level up to 8 can be achieved in the masked hardware
implementation of Grain-128AEADv2. In fact, the security
of the masked hardware implementation of Grain-
128AEADv2 is verifed with T-Test proposed by Gilbert
Goodwill et al. [22] in simulated scenario.

Ten, the performance of the (masked) hardware
implementation of Grain-128AEADv2 is evaluated on both
ASIC and FPGA. According to the synthesis results, the
hardware implementation of Grain-128AEADv2 with the
pipeline-like pre-computation technique can obtain the
highest throughput-area ratio for both unmasked version
and masked version. In detail, the highest throughput-area
ratio for the unmasked version can be obtained in the x32
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parallel version with the pipeline-like pre-computation
technique, which is 2.14 Mbps/GE on ASIC and
9.34 Mbps/Slice on FPGA; the highest throughput-area ratio
for the masked version can be obtained in the x8 parallel
version with the pipeline-like pre-computation technique,
which is 0.37 Mbps/GE on ASIC and 1.72 Mbps/Slice on
FPGA. Overall, this contribution may help researchers and
practitioners to accurately compare the hardware imple-
mentation efciency of Grain-128AEADv2 with those of
other lightweight cryptography algorithms.

Te rest of the paper is organized as follows. Pre-
liminaries are presented in Section 2. Ten, three versions of
hardware implementation of Grain-128AEADv2 are shown
in Section 3. In Section 4, the masked hardware imple-
mentation of Grain-128AEADv2 with the pipeline-like pre-
computation technique is shown. Ten, in Section 5, the
performance of the (masked) hardware implementation of
Grain-128AEADv2 is evaluated on both ASIC and FPGA. In
Section 6, T-Test is used to evaluate the security of the
masked hardware implementation of Grain-128AEADv2 in
the simulated scenario. Finally, conclusions are drawn in
Section 7.

2. Preliminaries

First, the details of Grain-128AEADv2 are presented; sec-
ond, the glitch-extended probing model is presented; third,
the DOM masking scheme is presented.

2.1. Grain-128AEADv2. Grain-128AEADv2 is composed of
two building blocks [6]. Te frst block is a pre-output
generator, which is composed of a Linear Feedback Shift
Register (LFSR), a Non-linear Feedback Shift Register
(NFSR), and a pre-output function. Te second block is an
authenticator generator, which is composed of a shift reg-
ister and an accumulator. Te structure of Grain-
128AEADv2 is shown in Figure 1.

Te pre-output generator consists of a 128-bit LFSR S,
a 128-bit NFSR B, and a pre-output function y. It gen-
erates a stream of pseudo-random bits, which can be used
for encryption and authentication. Te states of 128-bit
LFSR and 128-bit NFSR at clock cycle t can be denoted as
St � [st

0, st
1, · · · , st

127] and Bt � [bt
0, bt

1, · · · , bt
127], respectively.

Te corresponding update functions of LFSR and NFSR
can be expressed with f(St) and g(Bt):
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Te output of the pre-output generator is given by the
pre-output function y as
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Te authenticator generator consists of a 64-bit shift
register R and a 64-bit accumulator A. We denote the
content of the shift register at instance i as Ri � [ri

0, ri
1, · · · ,

ri
63] and the content of the accumulator at instance i as

Ai � [ai
0, ai

1, · · · , ai
63]. Te running of Grain-128AEADv2

consists of two phases: an initialization phase and a key-
stream generation phase. During the initialization phase, the
LFSR and NFSR are frst loaded with the key bits and IV bits.
If we denote the key bits as ki, 0≤ i≤ 127 and the IV bits as
IVi, 0≤ i≤ 95, all 128 bits of NFSR are loaded with the key
bits, i.e., b0i � ki, 0≤ i≤ 127, and the frst 96 LFSR bits are
loaded with the IV bits, i.e., s0i � IVi, 0≤ i≤ 95. Te last
32 bits of the LFSR are flled with 31 ones and a zero, i.e.,
s0i � 1, 96≤ i≤ 126, s0127 � 0. Ten, the Grain-128AEADv2 is
clocked 320 times, feeding back the pre-output function y

and XORing it with the input to both the LFSR and the
NFSR, i.e.,

s
t+1
127 � f St( 􏼁 + yt, 0≤ t≤ 319,

b
t+1
127 � s

t
0 + g Bt( 􏼁 + yt, 0≤ t≤ 319.

(3)

Ten, Grain-128AEADv2 is clocked 64 times, reintro-
ducing the key and XORing it with the input to both the
LFSR and the NFSR, i.e.,

s
t+1
127 � f St( 􏼁 + yt + kt−256, 320≤ t≤ 383,

b
t+1
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t
0 + g Bt( 􏼁 + yt + kt−320, 320≤ t≤ 383.

(4)

Once the pre-output generator has been initialized, the
authenticator generator is initialized by loading the register
and the accumulator with the pre-output keystream as

a
0
j � y384+j, 0≤ j≤ 63,

r
0
j � y448+j, 0≤ j≤ 63.

(5)

While the register and the accumulator are initializing,
the LFSR and the NFSR should be simultaneously updated as

s
t+1
127 � f St( 􏼁, 320≤ t≤ 383,

b
t+1
127 � s

t
0 + g Bt( 􏼁, 320≤ t≤ 383.

(6)

Tus, when the Grain-128AEADv2 has been fully ini-
tialized, the LFSR and the NFSR states can be denoted as S512
and B512, respectively. Besides, the register and the accu-
mulator can be denoted as R0 and A0, respectively. During
the keystream generation phase, the pre-output is used to
generate zi for encryption and zi

′ for authentication. Here, zi

and zi
′ can be defned as

zi � y512+2i,

zi
′ � y512+2i+1.

(7)

Ten, the message can be encrypted as
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ci � mi ⊕ zi, 0≤ i< L. (8)

Te accumulator A can be updated as

a
i+1
j � a

i
j + mir

i
j, 0≤ j≤ 63, 0≤ i≤ L. (9)

Te shift register R can be updated as

r
i+1
63 � zi
′,

r
i+1
j � r

i
j+1, 0≤ j≤ 62.

(10)

2.2. Glitch-Extended Probing Model. Usually, the security of
masking schemes can be evaluated under the d−probing
model [11], where the adversary can put up to d probes on
intermediate variables of the implementation of a masking
scheme. Te d−probing model is formally defned in
Defnition 1.

Defnition 1 (d−probing model [11]). Given a combina-
tional logic circuit G, an adversary with d probes can observe
up to d internal wires of G.

Glitch exists in the hardware implementation of
a cryptographic algorithm. It means that by putting a probe
on the output of G, one may obtain the input of G. Con-
sequently, the security of hardware implementations of
a cryptographic algorithm should be considered under the
glitch-extended probingmodel.Te glitch-extended probing
model is formally defned in Defnition 2.

Defnition 2 (glitch-extended probing model [19]). Given
a combinational logic circuit G, an adversary with glitch-
extended probes can observe all the inputs of G up to the
latest synchronization point by probing any output of G.

Example 1. Given a combinational logic circuit G which can
implement function g � G(x1, · · · , xn), the inputs of G can

be represented as xi where 0< i< n while the output of G can
be represented by g. Under the glitch-extended probing
model, one may obtain the inputs of G, i.e., xi, by probing g.

2.3. Domain-Oriented Masking (DOM). Domain-Oriented
Masking (DOM) can be used to secure the efcient hardware
implementation of Grain-128AEADv2 under the glitch-
extended probing model with d(d + 1)/2 fresh random-
ness, where d denotes the security level. In DOM, the XOR
and the AND masking gadgets should be used to replace the
original XOR and AND. In order to achieve the frst-order
security, the origin-sensitive variables x and y should be
divided into (Ax, Bx) and (Ay, By), respectively. Te
masking gadgets take (Ax, Bx) and (Ay, By) as input and
return (Aq, Bq) as the output. Owing to the linear property
of the XOR operation, the XOR masking gadget can be
trivially achieved as

Aq � Ax + Ay,

Bq � Bx + By.
(11)

However, the AND masking gadget can be more com-
plicated, which is shown in Figure 2. Te AND masking
gadget performs three steps in order to map the input shares
to the output shares, which can be referred to as calculation,
resharing, and integration. In the calculation step, the actual
multiplication is performed and the product terms
AxAy, AxBy, BxAy, and BxBy can be obtained. In DOM,
(AxAy, BxBy) are defned as the inner-domain terms and
(AxBy, BxAy) are defned as the cross-domain terms. Ten,
in the resharing step, each cross-domain term should be
randomized with a fresh random Z so that it is independent
of other terms. Terefore, it can be added to any arbitrary
domain in the next step. In order to prevent that any glitch
propagates through the resharing step, a register must be
inserted at the end of the resharing step. Finally, in the
integration step, the inner-domain terms and the reshared
cross-domain terms are added to obtain (Aq, Bq).

NFSR

g

LFSR

f

h

yt
Register

kt−320+64

t = 320 · · · 383

t = 0 · · · 383
t = 384 · · · 511

kt−320t = 320 · · · 383

Accumulator

Figure 1: An overview of the building blocks in Grain-128AEADv2.
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3. Efficient Hardware Implementations of
Grain-128AEADv2

In order to compare the hardware implementation per-
formances of diferent LWC fnalist candidates, the standard
LWC hardware API [23, 24] is adopted in the hardware
implementations of Grain-128AEADv2, which is presented
in Section 3.1. Ten, three versions of the hardware
implementations of Grain-128AEADv2, i.e., the straight-
forward version, the Galois transformation version, and the
pipeline-like pre-computation version, are presented.

3.1. Te Standard LWC Hardware API. Te standard LWC
hardware API includes the minimum compliance criteria,
interface, communication protocol, and timing character-
istics that should be supported by hardware implementation
of Grain-128AEADv2. Te interface of the hardware
implementation of Grain-128AEADv2 is shown in Figure 3.

According to their diferent functions, the I/O ports can
be divided into the datapath ports and the control ports. Te
datapath ports consist of the data input ports and the data
output ports. Te data should be input through ports key and
bdi_data (block data input), and the data can be output
through port bdo_data (block data output). Te key port is
controlled by the handshake signals key_valid and key_-
ready. key_update is used to notify that the internal key
should be updated. Te bdi_data port is controlled by the
handshake signals bdi_valid and bdi_ready. Te bdi_va-
lid_bytes port and the bdi_size port indicate the location and
the size of the valid data in the bdi_data port. Te bdo_data
port is controlled by the handshake signals bdo_valid and
bdo_ready. Each width of key, bdi_data and bdo_data is set
to 32 bits, the widths of bdi_valid_bytes and bdi_size are set
to 4 and 3 bits, respectively, and the widths of other control
ports are set to 1 bit so that they are consistent with the LWC
hardware API.

3.2. Te Straightforward Version. In order to analyze the
structural characteristic and obtain the basic hardware
implementation performance of Grain-128AEADv2, the

straightforward version is implemented.Te straightforward
version of the hardware implementations of Grain-
128AEADv2 follows the architectural design in [6]. Te
FSRs are in Fibonacci confguration, and the update func-
tions are the same as the ones shown in Section 2. Te FSRs
are normally defned to be able to update one bit at each
clock cycle. However, the design of the update functions
makes it possible to calculate up to 32 update bits that can be
used to update the FSRs in 32 continuous rounds in parallel.
Te throughput-area ratio increases with the parallel level of
a hardware implementation. In light of this, the parallel
versions up to x32 are implemented to optimize the
throughput-area ratio of the hardware implementation of
Grain-128AEADv2. For a given parallel level p, the highest
throughput-area ratio of a hardware implementation can be
related to the highest frequency that can be achieved, while
the highest frequency of a hardware implementation de-
pends on the critical path which corresponds to the maximal
delay of two fip-fops. Similar to [8], the potential critical
paths of Grain-128AEADv2 should be in the following ones:

(i) Dn: the maximal delay from any NFSR or LFSR fip-
fop to any other NFSR or LFSR fip-fop.

(ii) Dy: the maximal delay from any NFSR or LFSR fip-
fop to the output via the function y.

(iii) Dya: the maximal delay from any NFSR or LFSR
fip-fop to any accumulator fip-fop via the
function y.

(iv) Da: the maximal delay from any fip-fop in the
authentication section to any accumulator fip-fop
or output.

(v) Dyn: the maximal delay from any fip-fop of the
NFSR or LFSR to any fip-fop of the NFSR via the
function y.

Although there are several potential critical paths, some
can be excluded by analyzing the update functions of Grain-
128AEADv2. Te update functions of the NFSR and the
LFSR in the initialization phase can be more complicated
than those in the generation phase because y needs to be
additionally XORed to f and g. Ten, Dn and Dy can be

FF FF

BqAq

Ax Ay Bx ByZ0

domain A domain B

calculation

resharing

integration

Figure 2: Te 1st order DOM AND masking gadget.
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excluded because of the existence of Dyn. According to (3),
(9), and (10), Dyn can be longer than Dya and Da. However,
when we implement Grain-128AEADv2 in parallel, the data
that are needed by the update function of the accumulator
are not located yet. In this case, Dya may be longer than Dyn,
and it may be the critical path. Te straightforward version
of Grain-128AEADv2 is synthesized on both ASIC and
FPGA, and the synthesis results on both the ASIC and FPGA
can be seen in Table 1.

According to Table 1, the critical paths of hardware
implementations of Grain-128AEAD and Grain-
128AEADv2 can be identical, i.e., critical paths of x1, x2,
x4, and x8 implementations are Dyn and the critical paths of
x16 and x32 implementations are Dya. Ten, in order to
increase the frequency of the hardware implementation of
Grain-128AEADv2, some strategies will be applied to op-
timize Dyn and Dya.

3.3.TeGalois Transformation Version. In order to decrease
Dyn, one should transform the Fibonacci confguration to
a Galois confguration. Besides, one needs to make sure that
the Fibonacci confguration and the Galois confguration are
equivalent so that their sets of output sequences can be
identical. According to Table 1, the critical paths of x1, x2,
x4, and x8 versions of the hardware implementation of

Grain-128AEADv2 can be Dyn and those of x16 and x32
versions of the hardware implementation of Grain-
128AEADv2 can be Dya. Te state of the NFSR can be
denoted as (x0, x1, · · · , xn−1). Te value of xi should be
updated by gi, 0≤ i≤ n − 1. For 0≤ i≤ n − 2, we have
gi � xi+1. Note that gn−1 can be defned as a complicated
feedback function, and it may become the critical path in the
hardware implementation of Grain-128AEADv2. On the
contrary, in the Galois confguration, the expression of gi

can depend on more than one element of the NFSR.Tus, gi

in the Galois confguration can be simpler than gn−1 in the
Fibonacci confguration, and the delay of the update phase of
the Galois confguration may be shorter than that of the
update phase of the Fibonacci confguration, which may
optimize the frequency of the hardware implementation of
Grain-128AEADv2. Since gn−1 in the Fibonacci confgura-
tion of Grain-128AEADv2 can be the same as that of Grain-
128a and that of Grain-128AEAD, the Galois transformation
of Grain-128AEADv2 can be identical to that of Grain-128a
and that of Grain-128AEAD. Details about the feedback
functions after the Galois transformation of Grain-128a can
be seen in [7]. According to [7], the Galois transformation of
Grain-128AEADv2 cannot be applied when the parallel level
of the hardware implementation of Grain-128AEADv2 is
above 16.

3.4. Te Pipeline-Like Pre-Computation Version. In order to
shorten Dyn, we split g and y into two parts. Ten, the
update phase of round r can be divided into two stages: (1)
compute the frst parts of g and y and (2) compute the
second parts of g and y, XOR them with the frst parts of g

and y, and update the NFSR with the XORed values. When
the pipeline technique is applied, stage 2 of round r and stage
1 of round r + 1 should be computed at clock cycle t.
However, the result of stage 2 of round r is used to update
the NFSR and stage 1 of round r + 1 can only be computed
after the NFSR is updated. Tus, it seems that the pipeline
technique cannot be applied. Considering that only the
(n − 1)-th bit of the NFSR is updated with the result of stage
2 and the other bits of the NFSR are updated with the
(i + 1)-th bit, stage 1 of round r + 1 can be pre-computed
before the NFSR is updated at clock cycle t. Te pipeline-like
pre-computation technique can be implemented as follows.

Compared with the straightforward version and the
Galois transformation version, the pipeline-like pre-
computation technique needs one more clock cycle. We
denote this one more clock cycle as t � −1. At clock cycle
t � −1, stage 1 of round 0 can be computed as

pg � s
0
0 + b

0
0 + b

0
26 + b

0
56 + b

0
91 + b

0
96 + b

0
3b

0
67 + b

0
11b

0
13 + b

0
17b

0
18 + b

0
27b

0
59,

py � b
0
95s

0
42 + s

0
60s

0
79 + b

0
12b

0
95s

0
94 + s

0
93 + b

0
2 + b

0
15 + b

0
36 + b

0
45 + b

0
64 + b

0
73 + b

0
89.

(12)

Grain-128
AEADv2

bdi_ready rdi_ready

bdi_valid rdi_valid

rdi_data

bdo_readykey_ready

key

bdo_validkey_valid

bdi_data

key_update

bdo_data

bid_type

bdi_size

Figure 3: Te interface of the hardware implementation of Grain-
128AEADv2.
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Note that the FSRs are not updated at clock cycle t � −1.
At clock cycle t � 0, stage 2 of round 0 can be computed as

b
t+1
127 � pg + b

t
40b

t
48 + b

t
61b

t
65 + b

t
68b

t
84

+ b
t
22b

t
24b

t
25 + b

t
70b

t
78b

t
82 + b

t
88b

t
92b

t
93b

t
95,

y
t+1
127 � py + b

t
12s

t
8 + s

t
13s

t
20.

(13)

At the same time, stage 1 of round 1 should be pre-
computed as

pg � s
t
1 + b

t
1 + b

t
27 + b

t
57 + b

t
92 + b

t
97 + b

t
4b

t
68 + b

t
12b

t
14 + b

t
18b

t
19 + b

t
28b

t
60,

py � b
t
96s

t
43 + s

t
61s

t
80 + b

t
13b

t
96s

t
95 + s

t
94 + b

t
3 + b

t
16 + b

t
37 + b

t
46 + b

t
65 + b

t
74 + b

t
90.

(14)

Note that the FSRs begin to shift at clock cycle t � 0.
Ten, at clock cycle t≥ 1, stage 2 of round r can be computed
similarly as (13) since the NFSR has been updated. Ten, the
pre-computation of stage 1 of round r + 1 can be computed
with (14).

Te parallel version of the pipeline-like pre-computation
technique can work similarly. For example, for parallel level
p≤ 16, the frst part of g at stage 1 can be computed at clock
cycle t≥ 0 as

p
g

[p−1:0] � s
t
[2p−1:p] + b

t
[2p−1:p] + b

t
[2p+25:p+26] + b

t
[2p+55:p+56] + b

t
[2p+90:p+91] + b

t
[2p+95:p+96] + b

t
[2p+2:p+3]b

t
[2p+66:p+67]

+ b
t
[2p+10:p+11]b

t
[2p+12:p+13] + b

t
[2p+16:p+17]b

t
[2p+17:p+18] + b

t
[2p+26:p+27]b

t
[2p+58:p+59].

(15)

However, for the parallel level p � 32, such split needs to
be modifed since some indexes of b can exceed 127, which
can induce the result that the values of the bits with indexes
exceeding 127 cannot be obtained in the current clock cycle.

In order to apply the pipeline-like pre-computation tech-
nique, the split of g and y should be modifed. All the terms
with indexes exceeding 127 are left to the second part. Tus,
the frst part of g and y can be modifed as

pg � s
t
[2p−1:p] + b

t
[2p−1:p] + b

t
[2p+25:p+26] + b

t
[2p+55:p+56] + b

t
[2p+10:p+11]b

t
[2p+12:p+13] + b

t
[2p+16:p+17]b

t
[2p+17:p+18]

+ b
t
[2p+26:p+27]b

t
[2p+58:p+59] + b

t
[2p+39:p+40]b

t
[2p+47:p+48] + b

t
[2p+21:p+22]b

t
[2p+23:p+24]b

t
[2p+24:p+25],

py � b
t
[2p+11:p+12]s

t
[2p+7:p+8] + s

t
[2p+12:p+13]s

t
[2p+19:p+20] + b

t
[2p+1:p+2]

+ b
t
[2p+14:p+15] + b

t
[2p+35:p+36] + b

t
[2p+44:p+45] + b

t
[2p+63:p+64].

(16)

Ten, the second part of g and y should be modifed as

b
t+1
127 � pg + b[p+90:91] + b[p+95:96] + b[p+2:3]b[p+66:67] + b[p+60:61]b[p+64:65] + b[p+67:68]b[p+83:84]

+ b[p+69:70]b[p+77:78]b[p+81:82] + b[p+87:88]b[p+91:92]b[p+92:93]b[p+94:95],

y
t+1
127 � py + b[p+94:95]s[p+41:42] + s[p+59:60]s[p+78:79] + b[p+11:12]b[p+94:95]s[p+93:94] + s[p+92:93] + b[p+72:73] + b[p+88:89].

(17)

Table 1: Clock periods (ns) and critical paths (CP.) of the straightforward version of Grain-128AEAD and Grain-128AEADv2.

Cipher x1 x2 x4 x8 x16 x32 Plat.

Grain-128AEAD [8]
Period 0.49 0.61 0.64 0.69 0.77 0.84 ASIC
CP. Dyn Dyn Dyn Dyn Dya Dya

Grain-128AEADv2
Period 0.478 0.480 0.492 0.520 0.591 0.597 ASIC

2.76 2.81 2.85 2.90 3.08 4.04 FPGA
CP. Dyn Dyn Dyn Dyn Dya Dya
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Te second part of y for the parallel level p � 32 can be
more complicated than that of y for other parallel levels.
However, because of the large parallel level (p � 32), the
efect of the longer path of Dya can be relatively small.

3.5. Pipelining the Accumulator. Since only one of the
generated bits is used for authentication, the update of the
accumulator A with (9) can hold for the parallel level p≤ 2.
However, for the parallel level p≥ 4, A can be updated as [8]

a
i+1
j � a

i
j + 􏽘

p/2−1

k�0
mi+k · r

i
j+k, p≥ 4. (18)

In such cases, some values have not yet been shifted into
R. For example, for the parallel level p � 16, a63 can be
updated as

a
i+1
63 � a

i
63 + mi · r

i
63􏼐 􏼑 + mi+1 · r

i
64􏼐 􏼑 + · · · + mi+7 · r

i+7
70􏼐 􏼑, (19)

where (ri
64, · · · , ri+7

70 ) is being computed with (10) and is not
shifted into R. Ten, the update of A needs to wait for the
computation of y, which means that the delay of Dya can be
longer than the delay ofDy.Tis is verifed by the results shown
in Table 1.

In order to make Dya shorter, Sönnerup et al. [8]
inserted a pipeline step between y and A and isolated A.
However, in the Galois transformation version and the
pipeline-like pre-computation version, we insert the pipeline
step in the update of A for the parallel level p≥ 16 as shown
in Figure 4. Te advantage of such technique is that it needs
less extra control logic. Terefore, it can lead to a relatively
high frequency since the complicated control logic can have
a negative efect on the frequency of the hardware imple-
mentation of Grain-128AEADv2. Note that the pipeline step
will add one clock cycle delay to the update of A.

4. Masked Hardware Implementation of
Grain-128AEADv2

Under the idea of DOM, the 1st order masked hardware
implementation of Grain-128AEADv2 under the glitch-
extended probing model is proposed.

4.1. Te Straightforward Version. In order to achieve the dth

order security under the glitch-extended probing model, each
sensitive variable in f, g, and y should be split into d + 1
shares. Tus, in the 1st order masked hardware imple-
mentation of Grain-128AEADv2, the LFSR and the NFSR
should be split into two shares, i.e., (S, S′) and (B, B′). Ten,
the elements in S′ and B′ can be denoted as si

′ and bi
′. Besides,

the 1st order masked f, g, and y can be denoted as F, G, and
Y.Ten, F can be implemented by applying f to each share as

s
t+1
127 � f St( 􏼁

� s
t
0 + s

t
7 + s

t
38 + s

t
70 + s

t
81 + s

t
96,

s′
t+1
127 � f St

′( 􏼁

� s′
t

0 + s′
t

7 + s′
t

38 + s′
t

70 + s′
t

81 + s′
t

96.

(20)

Te non-linear terms in G and Y should be implemented
with the AND masking gadget. Ten, G and Y can be
implemented by XORing the output shares of the AND
masking gadget with the shares of the linear terms. DOM
needs to insert one register stage into each AND masking
gadget. Te term of g and y with the highest degree is
bt
88b

t
92b

t
93b

t
95. Since each ANDmasking gadget of DOMneeds

to be inserted one register stage, the 1st order masked
hardware implementation of the term bt

88b
t
92b

t
93b

t
95 needs two

register stages. Te computation of bt
88b

t
92b

t
93b

t
95 is shown in

Figure 5.
Te unmasked straightforward version encrypts 1 bit of

the message every two clock cycles, while the masked
straightforward version encrypts 1 bit of the message every
six clock cycles. Terefore, the throughput-area ratio of the
masked straightforward version will bemuch lower than that
of the unmasked straightforward version.

4.2. Te Pipeline-Like Pre-Computation Version. In order to
increase the throughput-area ratio, the ANDmasking gadget
can be implemented with the pipeline-like pre-computation
technique. Since f is a linear function, F can be computed in
one clock cycle. When the pipeline-like pre-computation
technique is applied, the AND masking gadget can be
computed in one clock cycle. In order to compute the AND
masking gadget in one clock cycle, G and Y should be di-
vided into three stages. In order to explain the details of the
1st order masked implementation of the Grain-128AEADv2
with the pipeline-like pre-computation technique, we take
the masked update function G as an example. Te 1st order
masked hardware implementation of G with the
pipeline-like pre-computation technique can be seen in
Figure 6. Te 1st order masked hardware implementation of
Y can be similar to that of G.

According to Figure 6, G should be divided into three
stages. Te frst stage aims to compute terms with degree 2
such as e � b3b67 and f � b1b13 with the AND masking
gadget. Note that there are two terms with degree 2, i.e.,
m � bt

88b
t
92 and n � bt

93b
t
95, in the term bt

88b
t
92b

t
93b

t
95. Te

computation of e, f, m, and n can be shown as

e
0
0 � b3b67,

e
0
1 � b3′b67′ ,

e
1
0 � b3b67′ + r0,

e
1
1 � b3b67′ + r0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f
0
0 � b11b13,

f
0
1 � b11′ b13′ ,

f
1
0 � b11b13′ + r1,

f
1
1 � b11b13′ + r1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m
0
0 � b88b92,

m
0
1 � b88′ b92′ ,

m
1
0 � b88b92′ + r9,

m
1
1 � b88′ b92 + r9,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
0
0 � b93b95,

n
0
1 � b93′ b95′ ,

n
1
0 � b93b95′ + r10,

n
1
1 � b93′ b95 + r10.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

Te XOR masking gadget of the linear terms in G can be
computed with (22). Te XOR masking gadget of the linear
terms in Y can be computed similarly.
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l0 � s0 + b0 + b26 + b56 + b91 + b96,

l1 � s0′ + b0′ + b26′ + b56′ + b91′ + b96′ .
(22)

Te second stage uses an AND masking gadget to
compute q � mn. Before computing q � mn, the shares of m

and n should be XORed as m0 � m0
0 + m0

1, m1 � m1
0 + m1

1,
n0 � n0

0 + n0
1, and n1 � n1

0 + n1
1 so that the efect of glitch does

not exist any more. Ten, the computation of q � mn can be
shown as

q
0
0 � m0n0,

q
0
1 � m1n1,

⎧⎨

⎩

q
1
0 � m0n1 + r13,

q
1
1 � m1b0 + r13.

⎧⎨

⎩ (23)

At the same time, the obtained shares of terms with
degree one and two can be XORed to reduce the compu-
tation complexity in the third stage, which can be shown as

p0 � l0 + e0 + f0 + · · · ,

p1 � l1 + e1 + f1 + · · · .
(24)

Ten, in the third stage, G is computed and the two
shares (B, B′) of the NFSR can be updated as

b127 � p0 + · · · + q0,

b127′ � p1 + · · · + q1.
(25)

Te computation of G with the pipeline-like pre-
computation technique is shown in Figure 7. Compared
with the straightforward version, the pipeline-like pre-
computation technique needs two more clock cycles. We
denote these two more clock cycles as t � −2 and t � −1.
Ten, (b127, b127′ ) of round t can be obtained at every clock
cycle t≥ 0. According to Figure 7, at clock cycle t � −2, only
the stage 1 of round 0 is computed. At clock cycle t � −1,
stage 2 of round 0 and the stage 1 of round 1 are computed.
Since the shares of the FSRs are not shifted at t � −2, bi+1 and
si+1 should be used to compute stage 1 of round 1 at clock
cycle t � −1. Ten, at clock cycle t≥ 0, stage 3 of round t,
stage 2 of round t + 1, and stage 1 of round t + 2 are
computed. Since the shares of the FSRs are not shifted at
t � −1, bi+1 and si+1 should be used to compute stage 2 of
round 1, and bi+2 and si+2 should be used to compute stage 1
of round 2. Since the shares of the FSRs are shifted at clock
cycle t≥ 0, the bits used to compute stage 1 and stage 2 can be
the same.

Take the computation of the linear terms of G in stage 1
of round t for example. At clock cycle t � −2, the compu-
tation of the linear terms of G in stage 1 of round 0 should be
pre-computed with (22). Since the shares of the FSRs are not
shifted at t � −2 and t � −1, the computation of the linear
terms of G in stage 1 of round 1 should be pre-computed at
clock cycle t � −1 as

reg

ziʹ

Register

Accumulator

reg· · ·

Figure 4: Pipelining the accumulator for the parallel level p≥ 16.

AND Gadget AND Gadget

AND Gadget

b8ʹ8 b9ʹ2

qʹ

b9ʹ3 b9ʹ5b92b88 b93 b95

q

Figure 5: Te 1st order masked hardware implementation of the term bt
88b

t
92b

t
93b

t
95.
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l0 � s1 + b1 + b27 + b57 + b92 + b97,

l1 � s1′ + b1′ + b27′ + b57′ + b92′ + b97′ .
(26)

Ten, at clock cycle t � 0, the computation of the linear
terms of G in stage 1 of round 2 should be pre-computed
as

l0 � s2 + b2 + b28 + b58 + b93 + b98,

l1 � s2′ + b2′ + b28′ + b58′ + b93′ + b98′ .
(27)

Since the shares of the FSRs are updated at clock cycle
t≥ 0, the computation of the linear terms of G in stage 1 of
round t + 2 should be computed with (27).

l0 = s0 + · · · + b96

e0
0 = b3b67

q0
0 = m0n0

n0
0 = b93b95

m0
0 = b88b92

e0
1 = b'3b'67

m0
1 = b'88b'92

q1
0 = m1n1

n0
1 = b'93b'95

e1
0 = b3b'67 + r0

m1
0 = b88b'92 + r9

n1
0 = b93b'95 + r10

e1
1 = b'3b67 + r0

m1
1 = b'88b92 + r9

n1
1 = b'93b95 + r10

q1
1 = m0n1 + r13

q0
1 = m1n0 + r13

l1 = s'0 + · · · + b'96

Stage1 Stage 2 Stage 3

b127 = p0 + · · · + q0

b'127 = p1 + · · · + q1

l0

e0

m0

n0
q1

q0

n1

m1

e1

l1

p1 = l1 + e1 + · · ·

p0 = l0 + e0 + · · ·

...
...

Figure 6: Te 1st order masked hardware implementation of G.

compute l, e, · · · , m compute p, · · · , q compute b127, b'127

stage1:

compute l, e, · · · , m
stage 1:

compute l, e, · · · , m
stage 1:

stage 2:

compute p, · · · , q
stage 2:

compute p, · · · , q
stage 2:

stage 3:

compute b127, b'127

stage 3:

compute b127, b'127

stage 3:

clock cycle −2 clock cycle −1 clock cycle 0 clock cycle 1 clock cycle t

...
...

Round 0

Round 1

Round 2

Figure 7: Te 1st order masked hardware implementation of G with the pipeline-like pre-computation technique.
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In fact, the parallelization technique can be applied to the
masked hardware implementation of the Grain-128AEADv2
with the pipeline-like pre-computation technique to increase
its the throughput-area ratio. For example, at clock cycle t, the
computation of G in stage 1 of round t + 2 can be shown as

e
0
0 � b[3p+2:2p+3]b[3p+66:2p+67],

e
0
1 � b[3p+2:2p+3]
′ b[3p+66:2p+67]

′ ,

e
1
0 � b[3p+2:2p+3]b[3p+66:2p+67]

′ + r[p−1:0],

e
1
1 � b[3p+2:2p+3]b[3p+66:2p+67]

′ + r[p−1:0],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f
0
0 � b[3p+10:2p+11]b[3p+12:2p+13],

f
0
1 � b[3p+10:2p+11]
′ b[3p+12:2p+13]

′ ,

f
1
0 � b[3p+10:2p+11]b[3p+12:2p+13]

′ + r[2p−1:p],

f
1
1 � b[3p+10:2p+11]b[3p+12:2p+13]

′ + r[2p−1:p],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⋮

m
0
0 � b[3p+87:2p+88]b[3p+91:2p+92],

m
0
1 � b[3p+87:2p+88]
′ b[3p+91:2p+92]

′ ,

m
1
0 � b[3p+87:2p+88]b[3p+91:2p+92]

′ + r[11p−1:10p],

m
1
1 � b[3p+87:2p+88]
′ b[3p+91:2p+92] + r[11p−1:10p],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n
0
0 � b[3p+92:2p+93]b[3p+94:2p+95],

n
0
1 � b[3p+92:2p+93]
′ b[3p+94:2p+95]

′ ,

n
1
0 � b[3p+92:2p+93]b[3p+94:2p+95]

′ + r[11p−1:10p],

n
1
1 � b[3p+92:2p+93]
′ b[3p+94:2p+95] + r[11p−1:10p].

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

When the pipeline-like pre-computation technique is ap-
plied, the parallel level can be up to x8. For the parallel level
p> 8, some indexes of b can exceed 127, which can induce the
result that the values of the bits with indexes exceeding 127
cannot be obtained in current clock cycle. Tus, such paralle-
lization will lead to a longer critical path than the parallelization
with p≤ 8, which may decrease the throughput-area ratio of the
masked hardware implementation of Grain-128AEADv2.
Consequently, only the parallel level with p≤ 8 is considered.

5. Performance Evaluation

In this section, the performance of the (masked) hardware
implementation of Grain-128AEADv2 is evaluated on ASIC
and FPGA. For the ASIC hardware platform, the STM 65 nm
process with 1.2V supply voltage and 25 °C is adopted. Te
synthesis tool is the Synopsys Design Compiler L-2016.03-
SP1. Te FPGA hardware platform is the Xilinx Artix-7
family [25], and the Synthesis and the Implementation are
conducted in Vivado 2020.1 [26] which is the standard IDE
for Xilinx Artix-7 family with the Verilog hardware design
language. Ten, in order to precisely evaluate the perfor-
mance of the (masked) hardware implementation of Grain-
128AEADv2, only primary component look up table (LUT)
in FPGA is used, and resources like SRL16/SRL32, BRAM,

and DSP are not applied in our implementations. Te fresh
randomness is assumed to be generated by external Pseudo-
Random Number Generator (PRNG). Terefore, the over-
head of the generation of fresh randomness is not considered
in the performance evaluation.

Overall, the evaluation results of the (masked) hardware
implementation of Grain-128AEADv2 are shown in Tables 2
and 3.

According to Tables 2 and 3, the following three ob-
servations can be obtained.

(i) First, among diferent versions of the (masked)
hardware implementation of Grain-128AEADv2,
the (masked) hardware implementation of Grain-
128AEADv2 with the pipeline-like pre-
computation technique can reach the highest
throughput-area ratio. For the unmasked version,
the highest throughput-area ratio can be obtained
with the parallel level p � 32, while for the masked
version, the highest throughput-area ratio can be
obtained with the parallel level p � 8. In detail, for
the unmasked version, the highest throughput-area
ratio of the hardware implementation of Grain-
128AEADv2 can be 2.14 Mbps/GE on ASIC and
9.34 Mbps/Slice on FPGA, while for the masked
version, that of the hardware implementation of
Grain-128AEADv2 can be 0.37 Mbps/GE on ASIC
and 1.72 Mbps/Slice on FPGA. Overall, compared
to the other two versions, the increase rate of the
throughput of the pipeline-like pre-computation
version can be larger than the increase rate of the
consumed area of the pipeline-like pre-computation
version on both ASIC and FPGA. For example, for
the unmasked version, the increase rate of the
highest throughput of the pipeline-like pre-
computation version to the straightforward ver-
sion on ASIC can be 22.4%, while the increase rate
of the consumed area of the pipeline-like pre-
computation version to the straightforward ver-
sion on ASIC can be only 13.9%. Terefore, the
pipeline-like pre-computation version can obtain
the highest throughput-area ratio on both ASIC
and FPGA.

(ii) Second, the parallel level p can infuence the
throughput and the consumed area of the (masked)
hardware implementation of Grain-128AEADv2. In
fact, the throughput and the consumed area increase
with the parallel level p. Since the increase rate of
the throughput can be larger than that of the area,
the throughput-area ratio of the (masked) hardware
implementation of Grain-128AEADv2 can increase
with the parallel level p. For example, for the
unmasked version, the throughput of the straight-
forward version on ASIC can increase from
1.14 Gbps to 26.67 Gbps as the parallel level p

increases from 1 to 32, while the consumed area of
the straightforward version on ASIC can increase
from 5975 GE to 13381 GE as the parallel level p

increases from 1 to 32. Because the increase rate of
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Table 2: Evaluation results on ASIC.

p Period (ns) Area (GE) Troughput (Gbps) Efciency (Mbps/GE) Technique
x1 0.44 5975 1.14 0.19

Straightforward

x2 0.46 5705 2.17 0.38
x4 0.46 6678 4.35 0.65
x8 0.48 7676 8.33 1.09
x16 0.57 8692 14.55 1.61
x32 0.60 13381 26.67 1.99
x1 0.41 6028 1.22 0.20

Galois transformation
x2 0.41 6399 2.44 0.38
x4 0.44 6742 4.55 0.66
x8 0.45 7744 8.89 1.15
x16 0.47 10194 17.39 1.67
x1 0.42 6192 1.19 0.19

Pipeline-like pre-computation

x2 0.41 6419 2.44 0.38
x4 0.42 6877 4.76 0.69
x8 0.43 8116 9.30 1.15
x16 0.44 10559 18.18 1.72
x32 0.49 15249 32.65 2.14
x1 0.47 10415 1.06 0.10

Masking straightforward

x2 0.48 11192 0.69 0.06
x4 0.49 13701 1.36 0.10
x8 0.57 17471 2.34 0.13
x16 0.61 25788 4.37 0.17
x32 0.67 44246 7.96 0.18
x1 0.43 11615 1.16 0.10

Masking pipeline-like pre-computationx2 0.44 13305 2.27 0.17
x4 0.45 16866 4.44 0.26
x8 0.48 22722 8.33 0.37

Table 3: Evaluation results on FPGA.

p Period (ns)
Area Troughput Efciency

(Mbps/Slice) Technique
(Slice) (LUT) (FF) (Gbps)

x1 2.76 158 403 629 0.18 1.15

Straightforward

x2 2.81 168 463 625 0.36 2.12
x4 2.85 191 547 623 0.70 3.67
x8 2.90 201 634 625 1.38 6.86
x16 3.08 355 1073 615 2.60 7.32
x32 4.04 502 1730 614 3.96 7.89
x1 2.68 185 611 632 0.19 1.01

Galois transformation
x2 2.72 214 669 627 0.37 1.72
x4 2.78 224 779 627 0.72 3.21
x8 2.80 274 853 632 1.43 5.21
x16 2.91 341 1148 703 2.75 8.06
x1 2.67 212 623 632 0.19 0.88

Pipeline-like pre-computation

x2 2.71 214 694 632 0.37 1.72
x4 2.76 236 794 635 0.72 3.07
x8 2.80 263 907 640 1.43 5.43
x16 2.89 371 1216 719 2.77 7.46
x32 3.19 537 1849 760 5.02 9.34
x1 2.81 210 683 1098 0.06 0.28

Masking straightforward

x2 2.90 350 1286 1177 0.11 0.33
x4 3.01 464 1565 1337 0.22 0.48
x8 3.22 593 1888 1648 0.41 0.70
x16 3.66 840 2681 2278 0.73 0.87
x32 4.71 1176 4139 3513 1.13 0.96
x1 2.93 226 774 1104 0.17 0.76

Masking pipeline-like pre-computationx2 2.94 414 1428 1195 0.34 0.82
x4 3.01 506 1875 1370 0.66 1.31
x8 3.24 738 2643 1718 1.28 1.72
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the throughput (25.6 times) can be larger than the
increase rate of the consumed area (1.2 times), the
throughput-area ratio of the straightforward version
on ASIC can increase with the parallel level p.
Similarly, the throughput of the straightforward
version on FPGA can increase from 0.18 Gbps to
3.96 Gbps as the parallel level p increases from 1 to
32, while the consumed area of the straightforward
version on FPGA can increase from 158 Slices to
502 Slices as the parallel level p increases from 1 to
32. Because the increase rate of the throughput (21
times) can be larger than the increase rate of the
consumed area (2.2 times), the throughput-area
ratio of the straightforward version on FPGA can
also increase with the parallel level p. Te Galois
transformation version and the pipeline-like pre-
computation version can show similar trends on
ASIC and FPGA.

(iii) Tird, compared with the hardware implementation
of Grain-128AEADv2, the masked hardware
implementation of Grain-128AEADv2 can decrease
the throughput and increase the consumed area.
Accordingly, the throughput-area ratio of the
masked hardware implementation of Grain-
128AEADv2 can be lower than that of the hard-
ware implementation of Grain-128AEADv2.
Comparatively, the decrease rate of the throughput-
area ratio of the pipeline-like pre-computation
version of the masked hardware implementation
of Grain-128AEADv2 to the throughput-area ratio
of the pipeline-like pre-computation version of the
hardware implementation of Grain-128AEADv2
can be smaller than the decrease rate of the
throughput-area ratio of the straightforward version
of the masked hardware implementation of Grain-
128AEADv2 to the throughput-area ratio of the
straightforward version of the hardware imple-
mentation of Grain-128AEADv2. In detail, for the
straightforward version, the highest throughput on
ASIC can decrease from 26.67 Gbps to 7.96 Gbps

and the largest consumed area can increase from
13381 GE to 44246 GE, while for the pipeline-like
pre-computation version, the highest throughput
on ASIC can decrease from 32.65 Gbps to 8.33 Gbps

and the largest consumed area can increase from
15249 GE to 22722 GE. Ten, for the straightfor-
ward version, the highest throughput-area ratio on
ASIC can decrease from 1.99 Mbps/GE to
0.18 Mbps/GE, while for the pipeline-like pre-
computation version, the highest throughput-area
ratio on ASIC can decrease from 2.14 Mbps/GE to
0.37 Mbps/GE. Terefore, the highest throughput-
area ratio of the straightforward version of the
masked hardware implementation of Grain-
128AEADv2 on ASIC can decrease about 90%
compared with the highest throughput-area ratio of
the straightforward version of the hardware
implementation of Grain-128AEADv2 on ASIC,

while the highest throughput-area ratio of the
pipeline-like pre-computation version of the
masked hardware implementation of Grain-
128AEADv2 on ASIC can decrease about 80%
compared with the highest throughput-area ratio of
the pipeline-like pre-computation version of the
hardware implementation of Grain-128AEADv2 on
ASIC. Such trend can also be shown on FPGA. In
summary, since the increase rate of the consumed
area of the pipeline-like pre-computation version
can be smaller than the increase rate of the con-
sumed area of the straightforward version while the
decrease rate of the throughput of two versions can
be about the same, we obtain the result that the
decrease rate of the throughput-area ratio of the
pipeline-like pre-computation version can be
smaller than that of the throughput-area ratio of the
straightforward version.

6. Security Evaluation

In this section, the resistance of the masked hardware
implementation of Grain-128AEADv2 against side-channel
attack is evaluated with T-Test proposed by Gilbert Goodwill
et al. [22] in the simulated scenario. More specifcally, the
non-specifc T-Test leakage detection methodology is
adopted. In the non-specifc T-Test detection methodology,
two sets of power traces should be used. Power traces in one
set Q1 correspond to the encryption of randomly chosen IVs
with a fxed secret key, while power traces in another set Q2
correspond to the encryption of a fxed IV with the same
fxed secret key. If the number of samples contained in one
power trace is denoted as Ns, the value v of T-Test at sample
w(1≤w≤Ns) can be computed as

vw �
X1,w − X2,w���������������

S
2
1,w/N1 + S

2
2,w/N2

􏽱 , (29)

where X1,w denotes the mean of the power traces contained
in Q1 at sample w, X2,w denotes the mean of the power traces
contained in Q2 at sample w, S21,w denotes the variance of the
power traces contained in Q1 at sample w, S22,w denotes the
variance of the power traces contained in Q2 at sample w, N1
denotes the number of power traces contained in Q1, and N2
denotes the number of power traces contained in Q2. Te
null hypothesis is that X1,w and X2,w can be equal, which is
accepted if vw is between the threshold of ±4.5. If vw exceeds
the threshold of ±4.5, the null hypothesis is rejected with
a confdence greater than 99.999%. In the simulated sce-
nario, the power consumption in a power trace at sample w

is assumed to be composed of the signal part and the noise
part. Te signal part is simulated under the Hamming
Distance Model, while the noise part is assumed to follow the
Gaussian Distribution with mean 0 and a given variance σ2.

We observe that the variance of the signal under the
Hamming Distance Model can be between 24 and 66. Ten,
the signal-to-noise ratio of the hardware implementation is
set to 0.02. According to the evaluation results, the leakage of
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an unprotected hardware implementation can be tested with
only 10,000 traces. Te number of traces in the simulated
scenario is less than that needed in the real scenario. Te
reason can be as follows. In the simulated scenario, the signal
leakage can perfectly follow the Hamming Distance Model,
while in the real scenario, it is impossible to perfectly
characterize the signal leakage. Tus, much more traces can
be needed in the real scenario. Note that 100,000 traces are
used to test the leakage of the hardware implementation of
Grain-128AEADv2. Te security evaluation results of the
(masked) hardware implementation of Grain-128AEADv2
are shown in Figure 8.

In Figure 8, the red lines represent the threshold of ±4.5.
If the T-Test value exceeds ±4.5, the leakage of the hardware
implementation of Grain-128AEADv2 can be tested; oth-
erwise, no leakage can be tested. According to Figure 8, the
following three observations can be obtained.

(i) First, the leakage of the unprotected hardware
implementation of Grain-128AEADv2 with either
the straightforward technique, the Galois trans-
formation technique, or the pipeline-like pre-
computation technique can be tested with
100,000 traces, which means that three types of
unprotected hardware implementations of Grain-

128AEADv2 can be insecure against side-channel
attacks.

(ii) Second, the T-Test values of the masked hardware
implementation of Grain-128AEADv2 with the
pipeline-like pre-computation technique can be
within the threshold of ±4.5, which means that such
hardware implementation of Grain-128AEADv2
can be secure in face of side-channel attacks.
Terefore, the security evaluation results show the
efectiveness of masking against side-channel
attacks.

(iii) Tird, one can see that the shape of two curves of
T-Test computed for the straightforward version
and the pipeline-like pre-computation version can
be about the same, while that computed for the
Galois transformation version can be diferent. Te
reason is that the pipeline-like pre-computation
version does not change the state of the FSRs and
only adds two registers to store the intermediate
values. Te efect of the two extra registers can be
ignored compared to the states of FSRs, which
induces the result that the shape of the T-Test curve
of the pipeline-like pre-computation version can be
about the same with the shape of the T-Test curve of
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Figure 8:Te security evaluation results of the (masked) hardware implementation of Grain-128AEADv2. (a) Straightforward. (b) Pipeline-
like pre-computation. (c) Galois transformation. (d) Masking.

14 Security and Communication Networks



the straightforward version. However, the Galois
transformation version can change the state of the
NFSR, which induces the result that the shape of the
T-Test curve of the Galois transformation version
can be diferent from the shape of the T-Test curve
of the straightforward version.

7. Conclusion

In this paper, efcient (masked) hardware implementation
of Grain-128AEADv2 is considered and we propose the
pipeline-like pre-computation technique. For the unmasked
version, the hardware implementation of Grain-
128AEADv2 with the straightforward technique, the
Galois transformation technique, and the pipeline-like pre-
computation technique is considered. For the masked
version, the hardware implementation of Grain-
128AEADv2 with the straightforward technique and the
pipeline-like pre-computation technique is considered. Te
performance of the (masked) hardware implementation of
Grain-128AEADv2 is evaluated on both ASIC and FPGA.
According to the evaluation results, the pipeline-like pre-
computation technique can optimize the throughput-area
ratio for the masked version and the unmasked version
compared with the other two techniques. In detail, the
highest throughput-area ratio of the hardware imple-
mentation of Grain-128AEADv2 can be obtained in the x32
parallel version with the pipeline-like pre-computation
technique, which is 2.14 Mbps/GE on ASIC and
9.34 Mbps/Slice on FPGA; the highest throughput-area ratio
of the masked hardware implementation of Grain-
128AEADv2 can be obtained in the x8 parallel version
with the pipeline-like pre-computation technique, which is
0.37 Mbps/GE on ASIC and 1.72 Mbps/Slice on FPGA.
Besides, the security of the masked hardware implementa-
tion of Grain-128AEADv2 with the pipeline-like pre-
computation technique against side-channel attacks is
evaluated with T-Test in simulated scenarios. Overall, this
contribution may help researchers and practitioners to ac-
curately compare the efciency and the security of the
hardware implementation of Grain-128AEADv2 with those
of other lightweight cryptographic algorithms.

Data Availability

All data generated or analyzed during this study are included
in this article.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this article.

Acknowledgments

Tis study was supported by the National Key Research and
Development Program of China (no. 2020YFB1805402), the
Open Fund of Advanced Cryptography and System Security
Key Laboratory of Sichuan Province (grant no. SKLACSS-

202116), and the National Natural Science Foundation of
China (grant nos. 61872359, 61936008, and 62272451).

References

[1] Ecrypt, “eSTREAM: Ecrypt Stream Cipher Project,” 2008,
http://www.ecrypt.eu.org/stream.

[2] M. Hell, T. Johansson, A. Maximov, andW.Meier, “Te grain
family of stream ciphers,” in New Stream Cipher Designs,
pp. 179–190, Springer, 2008.

[3] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream
cipher proposal: grain-128,” in Proceedings of the 2006 IEEE
International Symposium on Information Teory, pp. 1614–
1618, IEEE, Seattle, WA, USA, July 2006.
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