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Te competing landscape between malware authors and security analysts is an ever-changing battlefeld over who can innovate
over the other. While security analysts are constantly updating their signatures of known malware, malware variants are changing
their signature each time they infect a new host, leading to an endless game of cat and mouse. Tis survey looks at providing
a thorough review of obfuscation and metamorphic techniques commonly used by malware authors. Te main topics covered in
this work are (1) to provide an overview of string-scanning techniques used by antivirus vendors and to explore the impact
malware has had from a security and monetary perspective; (2) to provide an overview of the methods of obfuscation during
disassembly, as well as methods of concealment using a combination of encryption and compression; (3) to provide a com-
prehensive list of the datasets we have available to us in malware research, including tools to obfuscate malware samples, and to
fnally (4) discuss the various ways Windows APIs are categorized and vectorized to identify malicious binaries, especially in the
context of identifying obfuscated malware variants. Tis survey provides security practitioners a better understanding of the
nature and makeup of the obfuscation employed by malware. It also provides a review of what are the main barriers to reverse-
engineering malware for the purposes of uncovering their complexity and purpose.

1. Introduction

Digital resources and infrastructure have become some of
the most crucial concerns in the feld of cyber security. As we
encourage a greater use of the Internet to delegate the tasks
of everyday life, we expose ourselves and our information
through potential exploitation by malicious actors. Te
biggest culprit is malware, a portmanteau for malicious
software. Malware takes on many forms, but put simply, the
ultimate goal of malware is to carry out a series of actions for
nefarious purposes. Whether the end goal is espionage,
disrupting services, or exploiting systems for fnancial gain,
the costs associated with inaction are increasing every year as
new malware variants are deployed on unsuspecting en-
terprises and victims. Every year several antivirus (AV)
vendors publish their annual white papers regarding the
current state of malware worldwide. From a research
standpoint, researchers are concerned about three aspects of

malware behavior: the ability for malware to disguise its own
structure to avoid detection; modifcation and/or utilization
of the host operating system (OS) resources; and the
communication malware aims to establish externally [1] to
so-called command and control servers (CnC).Tese aspects
of malware behavior can be summarized as follows:

Obfuscation: Malware employs the use of various
obfuscation techniques, such as packing and encryp-
tion, in order to avoid signature-based detection
methods. Obfuscated malware also makes it cumber-
some to disassemble and produce accurate control-fow
graphs (CFG) when reverse engineering.
Resources: Malware will utilize various resources of the
host operating system in order to carry out its pre-
defned objectives. Malware will call several Windows
application programming interfaces (APIs), make
changes to the registry, read and write to the fle system,
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as well as create and spawn new daughter processes and
threads.

Network: Malware will attempt to communicate with
an outside command and control (CnC) server in order
to relay information. Communication may be used to
serve a greater botnet network and relay personal
confdential details obtained from surveillance of the
target operating system (OS) or used in detecting the
presence of a sandbox environment in antiemulation
and stealth malware.

Te scope of malware worldwide is widespread and
includes infections in both Macintosh and Windows OS,
afecting businesses, governments, and individuals alike. A
total of 20% of individuals have experienced a malware
attack in one form or another, a 14% increase from 2018 [2].
Estimates obtained for 2019 identifed 24 million Windows
and 30millionMacintosh infections being recorded [3], with
Kaspersky noting over 24 million unique malicious objects
being detected in 2019 alone [4]. While infections recorded
span several diferent types of OS, approximately 94% of
malware developed is, in fact, Windows targeted [5, 6].
Malware takes on many shapes and sizes and includes ar-
chetypes such as Trojans, adware, spyware, viruses, worms,
ransomware, rootkits, exploits, cryptojackers, and key-
loggers. Tese all carry out some form of invasion, damage,
or disabling of systems for the direct or indirect beneft of the
malicious actor. More recently, the availability of free and
open source software distributions has posed signifcant
risks, as so-called “script kiddies,” which are users who have
little to no experience in writing software themselves, have
made use of these tools for nefarious purposes. Te readily
available access to distributions such as Remnux and Kali
Linux (Ofensive Security, New York City, NY) has made it
even easier for users to deploy various forms of re-
connaissance and penetration testing tools with out-of-the
box software. As natural language processing (NLP) tools
become more sophisticated, chatbots such as ChatGPT can
act as personal advisers in red-teaming and blue-teaming
drills, which can also subsequently be used by black hats for
their own vulnerability campaigns.

Businesses are some of the most susceptible recipients to
malware attacks, as they are potential victims to ransomware
attacks for monetary gain and experience service downtown
due to denial of service (DOS) attacks. For example, in late
2019, the average downtime for a ransomware attack was
16.2 days and the average ransom payment was 81,116 USD,
almost doubling from 41,198 USD seen earlier in 2019 [7].
Te average cost of a data breach to a business was estimated
at 3.8 million USD [8], and the average cost of a DOS attack
was placed at 2 million USD [9]. Te prevalence of malware
in the business environment is evident, with 95% of orga-
nizations recording a malicious infection [10] and 81%
having been afected by such an infection [11]. While total
malware detections have seen a small increase of 1% year
over year, the business sector has seen a 13% increase in 2019
[3, 12]. Te top 10 malware variants which target business
infrastructure saw triple digit increases in their number of
infections between 2018 and 2019 [3]. Small businesses

represent 43% of infected businesses reported, likely due to
their inability to mitigate, fag, and respond to infections
appropriately [7] and the fact that 37% of businesses spend
less than 200,000 USD on Internet technology (IT) security
and 78% do not have a formal incident response plan in
place [13, 14]. Security experts encourage IT security per-
sonnel to adopt the 1-10-60 rule: threats are to be detected
within the frst minute, threats are to be investigated in
10minutes, and an appropriate action must be taken within
the frst 60minutes [15]. Businesses are prime targets for
malware due to the fnancial motivation, with 71% of all
breaches being fnancially motivated and 25% being moti-
vated by espionage [7, 8]. Furthermore, North America is
one of the leading regions where corporate ransomware is
a pressing concern, with 68% of businesses having experi-
enced attacks in the last year [16].

AV vendors are particularly interested in the emergence
of new forms of malware because these represent unique
instances of malware that have never been seen before and
they pose a signifcant threat to security infrastructure. A
report by FireEye noted over 100,000 unique malware sig-
natures are being reported each day by AV vendors [10].
Zero-day attacks are of particular concern as they require
AV vendors to develop signatures of these new malware
instances, requiring signifcant domain-level knowledge and
constant revision of their signature database. New and
emerging threats are evident, with 60% of ransomware
variants identifed in the last 6months of 2016 being de-
veloped in the last year [17]. Moreover, a small but mutable
subset of malware variants, totaling only 50 malware fam-
ilies, were noted to make up 80% of all successful malware
infections [10]. Tis propensity for malware infections to
originate from a small family of malware instances is due to
the polymorphism built into their development. Poly-
morphism allows for malware to change their signature
upon each iteration of its propagation, leading to previously
unseen threats and new instances of zero-day attacks
[18–21]. As the stakes increase for both cybercriminals and
businesses, so has the tools they develop to penetrate and
mitigate threat vectors, respectively. Te call for cyber se-
curity expertise has never been at its highest, with 62% of
organizations planning on investing more in cyber security
in 2020 [22].Te prevalence of polymorphic malware and its
variants has expanded how we approach the feld of cyber
security for threat mitigation. Legacy methods, which
classify new malware based on previously known signatures,
are no longer efective in identifying polymorphic malware
[23], lending credence to the development of a more
adaptable, behavioral, and cognitive-based approach to how
we detect malware [24]. Te vast majority (93.6%) of
malware observed today is polymorphic [25], and the
necessary steps must be taken to ensure our instruction
detection systems (IDS) and security information and event
management (SIEM) systems are equipped to keep up with
the ever-mutating nature of today’s malware landscape.

Tis review will cover several aspects of metamorphic
malware: starting from the limitations of current signature-
based methods to the various obfuscation techniques
employed by malware. Tis survey discusses the constantly
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evolving threat characteristics of metamorphic malware,
which provides the basis for building more sophisticated
heuristic and analytically tools based on potential features
sets. In addition, a broad discussion of metamorphic engines
and antiarmoring techniques discusses the challenges re-
searchers face in isolating malware variants in a controlled
environment. We hope to improve the current un-
derstanding of metamorphic malware research by making
the following core contributions in this work:

(i) Summarize the common obfuscation methods
which, in turn, can be used to develop better
heuristic techniques for feature engineering in
machine learning pipelines.

(ii) Present the inner workings of a metamorphic en-
gine and polymorphism more generally. Un-
derstanding how a malicious payload can persist in
memory without ever be written to disk will allow
researchers to fnd indicators of compression or
encryption when a candidate binary is presented.

(iii) Outline the current metamorphic engines broadly
available in the literature which can be used by
researchers to obfuscate their own binaries to in-
corporate robustness into their own work.

Section 1.1 will cover basic signature techniques used by
AV vendors including the most common scanning tech-
niques and considerations for scanners. Section 2 builds on
the limitations of these techniques by introducing malware
obfuscation, which is the most commonly used routine used
by metamorphic engines in its obfuscation stage. In Section
3, the idea of obfuscation is put into perspective with
a deepdive into a metamorphic engine, which involves the
ability of malware to unpack, obfuscate, compress, and
encrypt its payload on the fy. Finally, Section 4 provides an
overview of the most well-studied datasets used in malware
research, with Section 4.2 covering popular metamorphic
kits that can be used by researchers to create their own
metamorphic binaries.

1.1. Signature Analysis and Creation. Signatures are used to
help identify malicious code segments present, either
existing as independent executables or attached to benign
fles known as benignware. It is imperative that AV vendors
constantly update their signature databases in order to cross-
reference known malicious binaries with fles suspected of
being malicious. Acting as unique fngerprints for malware,
signatures are plagued with several fundamental issues. First,
signatures are incapable of identifying emerging malware
variants. In an environment where approximately 60% of
new ransomware are never-before-seen variants according
to the most recent estimates [3], this creates a signifcant
shortfall in detection rates for new variants. In addition,
when the vast majority of malware is polymorphic [25],
signatures are sometimes not generalized to catch obfus-
cated instances of previously fagged malware.

Te art of fle scanning is in of itself a laborious process,
requiring trade-ofs between speed and specifcity. In-
corporating longer signatures provides a more specifc

identifcation of malware and malware families but is unable
to catch the subtleties of minute changes [26]. Short sig-
natures provide better coverage but results in more false
positives [27, 28]. AV vendors therefore must come up with
a series of rules to both generalize their signatures and
improve their scanning efciency. Some of the basic scan-
ning strategies are shown in Table 1 and described in the
following:

String scanning is the de facto standard for any string
match scanning. Te scanner is to look up the exact
sequence of bytes in any ofset.
Wildcards method allows for the use of wildcard
variables. In the example shown in Table 1, the use of
“??” acts as a placeholder for 2 bytes of any string, while
%3 prompts the scanner to look for the subsequent byte
sequence in any of the proceeding 3 byte positions.Tis
is extremely efective for catching register swapping
and instruction replacement obfuscations.
Mismatch method incorporates the idea of partial
match of any given byte sequence. In the example
provided in Table 1, if the scanner allows for up to 1
mismatch, as long as 2 of the 3 byte sequences are
found, the scanner alerts to a match.
Generic method allows for the detection of malware
families through the use of both wildcards and mis-
match sequences. Tis method extracts the core mal-
ware artifacts of a malware family, thereby capturing
any subtle alterations to the bytecode sequence that
may arise in the future. For example, the Win95/
Regswap virus uses similar opcodes between genera-
tions. Trough a combination of wildcard string
matching with mismatch, the entire Regswap genera-
tion can be fagged based on a few common signatures.

In addition to generating unique signatures as part of
generating a greater signature database for malware, scan-
ning fles requires a dedicated strategy, and in some cases,
dedicated hardware. For example, while a signature may be
located in any one of the portable executable (PE) sections,
such as .idata, it may also be located in the PE fle header. In
addition, if you wish to cross-reference thousands of
malicious signatures with an incoming data stream using
regex patterns, you would have to take advantage of
intrapacket or interpacket scanning to process them efec-
tively [29]. AV vendors utilize cheaper operations, such as
checking the fle length, before committing to the use of
a more arduous task such as a checksum [28]. In practice,
a signature can act as a representation for a series of bytes,
a whole fle, or certain sections. Te ways in which AV
vendors carry out simple scanning on a binary is described in
the following sections.

1.1.1. Top-and-Tail Scanning. Tis mode of scanning used to
extract signatures from the top and bottom of fles. Tis is
especially useful for viruses that append to the front or back
of the targeted host program. Since the address of the main
entry point of a program is in its header section,
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manipulation of this address to point to the appending
malicious binary is possible [30]. As an example, the Poli-
mer.512.A virus preappends itself at the front of the exe-
cutable and shifts the original program content after itself.
Alternatively, the Vienna virus is 1,881 bytes long and ap-
pends itself to the end of the host fle.

1.1.2. Entry Point Scanning. Tis mode of scanning is used
to extract signatures from the sequence at program entry
points. Malware routinely alters program entry points as to
avoid detection through rerouting of the execution fow to
a decryptor stub which decrypts the original binary [31]. Te
Zmorph virus follows such behavior, whereby the decryptor
aims to rebuild the instructions line by line by pushing the
result into the stack memory. Tis can lead to “black hole”
scenarios where useless operations are compiled early on in
the process fow to burden the reverse engineering analysis.

In addition, an assembly encoder or an altered JUMP
statement can be confgured to run encoded information in
a “code cave,” as to not increase the fle size of the binaries.
Tis would normally impact the binary fle header values,
and any changes will alter relative/absolute ofsets, so the
pointers need to be changed accordingly. As previously
mentioned, the Polimer.512.A virus appends itself to the
infected program and in doing so is exactly 512 bytes long.
Tis would raise fags and be easy to identify possible in-
fected fles due to the consistent fle size diferential.

Viruses such as the Win32/Simile is able to avoid
changing the entry point of an infected fle by altering call
instructions which reference ExitProcess() to point to the
virus code.Tis has the efect of not changing the entry point
of the infected fle. Other viruses such as W32/Bistro and
W32/SMorph obfuscate their entry point [32]. SMorph is
able to use existing API calls in the infected fle to call to its
own import address table containing references to API
imports.

1.1.3. Integrity Checking. Tis mode of scanning can be an
extremely powerful tool to detect manipulation of system
fles which should never change [27]. A checksum database
can be used for reference when performing routine integrity
checking of the system and fles to detect any alterations
[33, 34]. Common checksums include MD4, MD5, and
CRC32. Checksums are routinely used on byte values sus-
pected areas of a virus body, thereby reducing the number of
total checksums required.

Alternatively, certain types of infections, such as com-
panion infections, may attempt to mimic the name of an
infected fle and redirect the header section of an EXE which

stores the address to themain entry point of a program to the
start of the virus code [35]. Te virus may also change the
extension to COM as the Windows OS give a higher priority
to COM over EXE extensions. In order to account for this,
distributions such as McAfee’s network security platform
can assign a magic number to fle types and will fag fles
whose extensions have been tampered with [36].

2. Obfuscation

Tis chapter will provide an overview of the common ob-
fuscation techniques employed bymalware. Examples of these
techniques will be provided, along with some actual code
snippets from popularized malware variants. Finally, a brief
overview of encryption and compression is given, two very
important techniques to familiarize yourself with. Tis
chapter will focus on obfuscations made specifcally via
changes to the opcodes and operands, which serve as the CPU
instruction set which specifes the data that are processed and
how it is done. Opcode examples will include both Intel and
ATT syntax, with the former being readily apparent as the
source operand is always on the right side of the instruction
and the destination on the left (e.g., mov eax, 1).

2.1. Dead-Code Insertion. Dead-code insertion, or some-
times referred to as garbage code insertion, is an obfuscation
technique which inserts byte code sequences into a binary
without afecting functionality [37–40]. Tis obfuscation
relies on the fact that instructions can be added to code
which do not perform any meaningful function, or in other
scenarios, can carry out an instruction and perform the
operation in reverse [41, 42]. An example of this type of
obfuscation is shown in Table 2 where a series of nop in-
structions are used to pad the instructions. Typically, dead-
code insertion is used to carry out one of three functions:

(1) Insertion of a pointless operation such as nop, mov
eax, eax, add eax, 0, and eax, −1 or or eax, 0. In
practice, these instructions do not change the con-
tent of CPU registers or memory as they are all
semantically equivalent to nop; however, they may
modify the status of the fag register in the CPU.
Tese instructions also have diferent opcodes.

(2) Insertion of operations with the purpose of bur-
dening the reverse engineering process by altering
values in registries and then reversing the in-
struction. An example would be incrementing
a registry add eax, 1 and then reversing the in-
struction by decrementing sub eax, 1. Other exam-
ples would be push and pop and inc and sub. Tis

Table 1: Summary of byte (strings) scanning techniques.

Description Example
String scanning Searches for sequences of common strings characteristic of malware AA, AB, AC, AD, AE, AF
Wildcards method Searches for sequences of common strings while introducing wildcard variables AA, ??, AC, %3, AE, AF
Mismatch method Searches for sequences of common strings, regardless of position AA, AC, AE, AF
Generic detection Searches for common strings combinations typical of malware families AA, ??, %2, AE, AF
Legend: (?) wildcard, (%) mismatch.
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form does change the values of the CPU registry but
simply undoes the operation sometime afterwards.

(3) Insertion of dead code within branches of code that
are never actually called, whichmay or may not make
changes to variables in other branches of code which
are never executed. An example would be a set of
variables in Function A which are manipulated, but
Function A is never executed because it is bypassed
with a jmp statement.

Garbage code insertion is used successfully in the
implementation of W95/Bistro, a later implementation of
W32/Zperm, which utilizes a random block insertion engine
which is placed directly after the virus entry point. Upon
entering, this block of code millions of instructions is run,
thereby overburdening the emulator before the virus in-
structions are even executed. Other popular examples of
viruses utilizing garbage code insertion are W32/Evol and
W32/Zmist. Zmist is notable for its use of the executable
trash generator (ETG). W32/Evol in particular is able to
utilize garbage code insertion to produce very diferent
variants with diferent opcodes and string signatures,
thereby evading signature scanning techniques as no se-
quence of bytes is similar between the two generations. An
example of 3 variations of the same code is shown in Table 3.

Te use of garbage code insertion techniques is useful in
avoiding AV scanning for two reasons. First, the garbage code
inserted is unique to each virus generation, thereby side-
stepping previously seen AV signatures [44]. Secondly, gar-
bage code from benignware can be inserted into malware to
increase the false negative rate. In [45], the authors created
binaries with approximately 30% of dead code along with 10%
benign code and showed similar classifcation scores as
benignware. In the work of [46], ranges of garbage code
between 5 and 35% were used to determine their efectiveness
at evading detection; with 10% being noted as being sufcient.
In an earlier work [47], the authors combined various pro-
portions of garbage code insertion with subroutine reordering
to total 25 diferent combinations. Two diferent obfuscation
engines, AVFUCKER and DSPLIT, also known as crypters,
were used in [48] to produce obfuscated code with dead code
insertion. Since there is a wide variety of permutations, from
single nops to intermeshed garbage code blocks, upon which
garbage code insertion can take form, string scanning is fairly
inefective against this form of obfuscation.

2.2. Registry Reassignment. Registry Reassignment, or
sometimes referred to as Registry Renaming, is an obfus-
cation technique which swaps unused registers or memory
variables with those currently used by the program [44]. In

its simplest form, as demonstrated in Figure 1, registry
reassignment can replace the eax registry with ebx, with no
change in functionality.

Te downside to using registry reassignment is that
string scanning techniques, such as wildcard or half-byte
techniques, can be used to detect any possible combination
of registry used. Tis in efect will provide a constant string
between generations of registry reassignment, rendering
them easily fagged by scanners. Te virus W95/Regswap
(hence the name) efectively made use of registry reas-
signment as demonstrated in Table 4.

In Table 5, the string signatures of version 1 and version
2 have a 60% similarity when it comes to their hexadecimal
representation [49]. With the help of regex expressions, the
accuracy is greatly increased with variations of a similar
instruction set [50]. Along with garbage code insertion, these
primary obfuscation techniques make it considerably harder
to fag new variants of malware.

2.3. Instruction Substitution. Te instruction-substitution
technique introduces an additional layer of obfuscation
on the existing techniques discussed. Te power of
instruction-substitution comes from the fact that there is
a seemingly endless diversity to the substitutions you can
introduce to an existing instruction framework. Table 6
demonstrates an example of a 2–4 instruction substitution (2
instructions are replaced with 4 to perform the same
function) [51]. Another instruction substitution would be
push eax; mov eax, ebx with push eax; push ebx; pop eax.
Semantically, these are equivalent, but push, pop is in fact
slower as it is quicker to direct registry write with mov. Tis
exact substitution is utilized by the W95/Zmist virus, along
with interchanging xor/sub and or/test instructions.

Table 2: An example of dead code insertion using nop.

Before obfuscation After obfuscation

xor eax, eax
move eax, 0x2D
mov ecx, 0xA

xor eax, eax
move eax, 0x2D

nop
nop

mov ecx, 0xA

Table 3:Tree versions of the E32/Evol virus following obfuscation
through garbage code insertion and encryption. Retrieved from
[43].

Opcode After obfuscation

Version 1
C7060F000055 mov dword ptr [esi], 5500000Fh

C746048BEC5151 mov dword
ptr [esi + 0004], 5151EC8Bh

Version 2

BF0F000055 mov edi, 5500000Fh
893E mov [esi], edi
5F pop edi
52 push edx

B640 mov dh, 40
BA8BEC5151 mov edx, 5151EC8Bh

53 push ebx
8BDA mov ebx, edx
895E04 mov [esi + 0004], ebx

Version 3

BB0F000055 mov ebx, 5500000Fh
891E mov [esi], ebx
5B pop ebx
51 push ecx

B9CB00C05F mov ecx, 5FC000CBh

81C1C0EB91F1 add ecx, F191EBC0h;
ecx� 5151EC8Bh

894E04 mov [esi + 0004], ecx
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Instruction-substitution is utilized very efectively in
several high-profle viruses such as Evol, MetaPHOR,
Zperm, and Avron. Since instructions-substitutions
produce diferent opcode representations, this renders
opcode frequency and accompanying n-gram techniques
efectively useless. Researchers have attempted to draw
from the basic set of fundamental operations in order to
track the malware’s original intentions. In [52], a clue set

was established for the Evol virus in which all rewritten
instructions were based upon. Tis approach was found
to be very efective at characterizing the metamorphic
engine Evol uses. A similar approach was taken by [53]
where the complex instructions the virus would create
were transformed back into their simple representations
using their similar semantics. In Table 7, two versions of
the W95/Bistro virus are shown, using diferent in-
struction substitutions in each generation. Similar to
registry reassignment, the generations contain similar
string signatures, making them susceptible to wildcard
and half-byte scanning techniques. While this manu-
script is focused on obfuscators based on the Intel x86
instruction set, compile-time instruction set obfuscators
can also create semantically similar rule sets for basic
operations in other instruction sets [54, 55].

2.4. Code Transposition. Code transposition, or sometimes
called instruction permutation, is an obfuscation technique
which utilizes conditional or unconditional jmp statements
to reorder single or blocks of instructions [18]. Since jmp
instructions can theoretically be used for every line of in-
struction, the total number of permutations m! is pro-
portional to the number of lines rearranged m [44]. Code
transposition carries out a very similar function as sub-
routine reordering with the exception that there is a change
in the process fow; therefore, they will be discussed together.
Subroutine reordering, also known as block reordering, is an
obfuscation technique that reorders the process fow by
rearranging blocks of code that have independent sub-
routines [56]. If a program were to be categorized into n

number of subroutines, then n! permutations of subroutines
are available for rearrangement [40, 50, 57, 58]. A simple
program with 10 subroutines would therefore be able to
produce over 3.6 million possible iterations. Subroutines
require that the instructions’ set are independent of one
another, allowing them to be reordered without having an
impact on functionality. In Table 8, an example of a set of
instructions exhibiting multiple forms of obfuscation is
shown. In the example code transposition, subroutine
reordering, garbage code insertion, and instruction-
substitution are all used.

Decrytion Routine Decrytion Routine

Mutation Engine Mutation Engine Mutation Engine

Virus Body Virus Body Virus Body
1

2

3

4

5

6

Obfuscated
Encrypted

Figure 1: Graphical illustration for the decryption, obfuscation, and encryption carried out by a metamorphic mutation engine.

Table 4: An example of simple registry reassignment.

Before obfuscation After obfuscation
mov eax, ecx mov ebx, ecx
xor ebx, ebx xor eax, eax
test eax, ebx test ebx, eax

Table 5: An example of the Regswap virus. Adapted from [49].

Opcode After obfuscation

Version 1

5A pop edx
BF04000000 mov edi, 0004h

8BF5 mov esi, ebp
B80C000000 move eax, 00Ch
81C288000000 add edx, 0088h

8B1A mov ebx, [edx]
899C8618110000 move [esi + eax ∗ 4 + 00001118], ebx

Version 2

58 pop eax
BB04000000 move ebx, 0004h

8BD5 mov edx, ebp
BF0C000000 move edi, 000Ch
81C088000000 add eax, 0088h

8B30 mov esi, [eax]
89B4BA1811000 move [edx + edi ∗ 4 + 00001118], esi

Table 6: A simple example of instruction-substitution.

Before obfuscation After obfuscation

add eax, 05H
mov ebx eax

add eax, 01H
add eax, 05H
push ebx
pop eax
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Several jmp statements are employed to permute
blocks of instructions which can be run independently
from each other. Instruction-substitution is used to add
more sophisticated instructions based on the simple in-
struction set add eax 5; mov ecx, eax. jnk insertions are
used to add complexity to the existing code, as well as
added following the jmp F1 statement where it is never
actually executed. Tis jnk could include code from
benignware that would normally fail to compile if it were
embedded within the existing obfuscated framework but
may confuse scanning techniques nonetheless. Table 8
also displays another form of obfuscation called sub-
routine outlining [32]. Tis obfuscation explicitly turns
instruction blocks into subroutines and uses the call in-
struction to perform an unconditional jump to the lo-
cation indicated by the label operand. Subroutine inlining
would carry out the reverse: where subroutines would be
unraveled and placed in order to preserve the process
fow. Unlike simple jmp instructions, call preserves the
locations to return to when the subroutine is completed.

Tis sophisticated form of obfuscation is used by the
W95/Zperm and W32/Ghost viruses, with the former
employing the use of the real permutation engine to perform
subroutine reordering. Zperm divides the code into frames
which are independent subroutines, which are then repo-
sitioned randomly and connected using branch instructions
to preserve process fow. When Zperm initializes, it allocates
a bufer sized at 64Kb flled with zeros and then flls it with
obfuscated code and randomly positioned jmp statements
[43]. Tis means that a constant body is never generated
between generations and is never present in memory.
Similar to Table 8, garbage code is inserted between frames
to fool string detection similar to the Zmist virus. W95/
Zmist also inserts jmp instructions after every instruction,
making it the perfect shield to heuristic detection. In [39],
30% subroutine reordering was used to sidestep a developed
similarity metric that compared benignware to malware
based on the similarity of their transpositions. From a se-
curity analysis standpoint, it is extremely difcult to know
when the virus begins when it is embedded within existing
code and is encrypted. Partial emulation is one avenue
whereby code can be reconstructed and then used to
completely decrypt the virus. But when and how to decrypt
during emulation is still a laborious process in of itself.

3. Encryption, Compression,
and Metamorphism

Metamorphism, and more generally obfuscation techniques,
makes up the backbone for most new and emerging mali-
cious threats we see today. As the signature-based scanning
techniques improved for AV vendors, so did the levels of
obfuscation employed by malicious actors to thwart said
techniques [49, 59]. Along with obfuscation came various
forms of armoring, stealth-behavior and antiemulation
tactics, which made the job of a security researcher that
much more burdensome.

To understand how mutation came to be, it is worth
mentioning the earliest forms of obfuscation and how they
came into existence. Viruses make use of entry point ob-
scuration (EPO) in order to avoid any consistency in the
execution order of the virus code in relation to the infected
fle. As shown in Figure 2, the fle header would point to an
address that would execute virus code, which would then
point back to the host fle so that the virus execution would
do so unknowingly.

Te CASCADE virus in 1986 became one of the frst
known viruses to implement encryption, thereby requiring
a separate decryption routine to carry out decryption and
push the instructions into memory for execution. Since the
form of encryption would become apparent as the virus
propagated, the decryptor routine itself would have to be
mutated, leading to the establishment of the frst series of
oligomorphic viruses.

3.1. Oligomorphism. Oligomorphism began as a reaction to
the signature-based scanning techniques widely utilized for
fagging possible virus infections. With the help of scanning

Table 7: Instruction replacement used by the Win95/Bistro virus.
Adapted from [49].

Opcode After obfuscation

Version 1

55 push ebp
8BEC mov ebp, esp
8B7608 mov esi, dword ptr [ebp + 08]
85F6 test esi, esi
743B je 401045

8B7E0C mov edi, dword ptr [ebp + 0c]
09FF or edi, edi
7434 je 401045
31D2 xor edx, edx

Version 2

55 push ebp
54 push esp
5D pop ebp

8B7608 mov esi, dword ptr [ebp + 08]
09F6 or esi, esi
743B je 401045

8B7E0C mov edi, dword ptr [ebp + 0c]
85FF test edi, edi
7434 je 401045
28D2 sub edx, edx

Table 8: An example of code reordering and code transposition in
combination with other obfuscation techniques.

Before obfuscation After obfuscation

mov eax, ecx
mov ebx, 10
Mul ebx
add eax, 5
mov ecx, eax

mov ebx, 10
jmp F1
jnk

F2: push edx; jnk
pop ecx
jmp F3

F1: mul, ebx
add ecx, 1; jnk
add ecx, 5
jmp F2

F3: mul ebx
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techniques such as wildcard and mismatch, a greater swath
of possible infections could be characterized by a few unique
signatures. Furthermore, since virus code would either
append or preappend onto an existing fle, top-and-tail
scanning was an efective tool for extracting signatures from
certain select sections of a fle. Emulators could also be
utilized to uncover the decryption routine used in the en-
cryption, meaning that the decryption routine itself had to
be altered in some form or another. Emulators wait as the
virus is decrypted one instruction at a time and as it rebuilds
itself by pushing the stack into memory. Once control is sent
to the stack memory, the emulator monitors the stack, and
the code can be dumped. Oligomorphic malware were the
start of a new breed of malware which would involve ob-
fuscation of the routine itself, meaning viruses were unique
among their generation.Te frst oligomorphic virus was the
whale DOS virus frst identifed in 1990. In Figure 3(a), an
obfuscated, encrypted decryption routine is used to carry out
decryption of the virus body and to avoid detection.

However, a major limitation to oligomorphism is that
the loop of possible decryptors is fnite. For example, the
W95/Memorial virus had exactly 96 diferent decryptors to
choose from. Once an oligomorphic generator is exhausted,
the entirety of its possible generational variance is also
exhausted and understood. Te natural extension to this
problem is to introduce obfuscation into the decryptor
routine itself, leading to an infnite number of possible

decryption routines [60]. Tis led to the frst generation of
polymorphic viruses such as 1260, and popularized gener-
ators such as Phalcon/Skism mass-produced code generator
(PS-MPC) and virus creation lab (VCL), which are still used
to this day.

3.2. Polymorphism. Polymorphic malware was seen as
a complete package: complete with a compiler that could
decrypt and obfuscate then recompile everything back to-
gether. Te unencrypted virus body would create a new
mutated decryptor using a random encryption algorithm
and then allow the decryptor to encrypt itself before linking
both sections back together. However, the core problem of
emulation remains: the virus code section would be
decrypted into memory and be able to be detected and
fagged by security researchers. It was also the case that prior
generations of obfuscators sufered from several limitations
[61]:

(1) Constant size of virus code between generations
(Polimer.512.A or Vienna viruses)

(2) Appending or preappending to the infected host fle
meant signature scanning could target these sections
exclusively

(3) Similar virus code segments between generations
mean the virus is subject to entropy analysis

In order to build on some of these defciencies, the
introduction of the metamorphic engine came to be.

3.3. Metamorphism. Te introduction of metamorphic
viruses introduced the idea for the frst time that no two
generations of viruses can have similar signatures, as no
constant body is present like with polymorphic malware
[43]. In Figure 3(b), an example of a metamorphic virus is
shown. Unlike polymorphism, the virus code is obfus-
cated, meaning that the entirety of the virus is present in
an obfuscated state. Tis introduces the fundamental issue
since “metamorphics are body-polymorphics” [62] and as
a result have no constant body and they reinforce the
notion that anomaly-based detection is NP-complete
[63, 64]. Te frst metamorphic viruses were W95/
Regswap in 1998 [65] followed byW32/Ghost identifed in
2000 [66]. W32/Ghost contained 10 submodules, so over
3.6 million possible variations were possible with sub-
routine reordering.

In light of the graphic shown in Figure 3(b), the sepa-
ration between the decryptor and the virus body is no longer
possible and the level of obfuscation means that encryption
is no longer needed. Furthermore, as is typically the case, the
decryption routine is scattered in the benign code. Te
executed code in the virus body mutates entirely along with
the decryptor, and it does not need to unpack to create a new
constant virus body like polymorphics [50]. One of the most
utilized and efective metamorphic generators is W32/
NGVCK created in 2001. Metamorphic viruses have a so-
phisticated mutation engine that contains many sub-
processes. Tese will be discussed in the following section.

Header

Benign Code

Virus Code

Figure 2: Illustration of an appending virus that latches onto the
end of a benign fle.
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3.4. Metamorphic Engine. A metamorphic engine is re-
sponsible for the obfuscation and reconstruction of the
binary so that the fle can remain operational. In Figure 4, an
illustration of a complete metamorphic engine is shown.
Some of the key components of the metamorphic engine are
described as follows [65, 67]:

Disassembler is responsible for turning the source code
into assembly instructions.Tis creates an intermediate
form that is independent of the CPU architecture for
future adoption with diferent OS and CPU architec-
tures [43]. Within the disassembler a code analyzer
provides info for a code transformer module that
gathers information related to control fow, sub-
routines, variables, and registers.
Shrinker eliminates much of the garbage code produced
from previous generations and mainly eliminates garbage
and other nonsequential code that is produced from
obfuscation. Tis step also carries out code shrinking,
a form of code-substitution that will turn previous 1 to 2
or 1 to 3 instruction substitutions back to their seman-
tically similar primitive equivalents [68].
Permutor carries out much of the obfuscation using
permutations of subroutines, many times in a ran-
domized fashion. Insertion of jmp instructions is also
common to divert control fow.

Header

Benign Code

Virus Code

Decryption
Routine

Obfuscated
Encrypted

(a)

Header

Virus Code

Decryption
Routine

Obfuscated
Encrypted

Benign Code

(b)

Figure 3: An illustration showing the variation in positioning and level of obfuscation found in (a) oligomorphic and (b) metamorphic
malware.

Viral Code

Disassembler

Shrinker

Permutator Mutation
Engine

Expander

Assembler

Benign Code

Garbage Code

Figure 4: Overview of the major components of a metamorphic
engine.
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Expander performs instruction-substitution to convert
instructions into another equivalent instruction set. In
addition, registries are reassigned and variables are
reselected according to the fxed probabilities using
substitution tables [65, 69]. Garbage and other do-
nothing codes are added, and functions are inlined/
outlined [70, 71] Both the permutor and expander steps
are quite sophisticated in the metamorphic W32/Etap
and W32/Zmist viruses [60].
Assembler restructures the control fow and converts
the assembly code back into machine binary code
where it can become operational again.
Virus code contains the core instruction set that will
execute on all new generations of the virus. It also
contains the instructions that coordinate with the
mutation engine and other components.

Te mutation engine does not have to operate at the
assembly and the source code level but can also operate at an
intermediate representation (IR) bytecode level [70]. In
[72, 73], morphing techniques are seen as deterministic
automata, whereby transitions following formal grammar
are made to symbols and new mutations are produced. In
[69], a template is used which illustrates how simple rep-
resentations of formal grammar can produce several possible
mutations. Te depiction shown in Figure 4 includes all the
core components with the exception of a decryption routine.
A metamorphic engine with the addition of a decryption
routine is shown in Figure 1 and follows a sequence of steps
to decrypt, obfuscate, and link everything back together. Te
steps are as follows in order:

(1) First, the decryption routine decrypts the virus body
and executes an instance of it.

(2) Te decryption routine then decrypts the mutation
engine and executes it.

(3) Te shrinker component of themutation engine goes
to work to deobfuscate the virus body.

(4) Obfuscation takes place by introducing a new and
unique decryption routine using the various tech-
niques discussed in Section 2.

(5) Te virus body is then obfuscated by the mutation
engine to produce a unique generation using the
various techniques discussed in Section 2. Te virus
body is then encrypted using a unique algorithm,
a static key or a host specifed temporary key. More is
given on this in the following section.

(6) Finally, the mutation engine is encrypted.

Once all three components are reobfuscated to seem-
ingly new binaries, with the mutation engine and virus body
decrypted, the virus relinks its components back up and can
execute on a new host by decrypting its payload through it
newly obfuscated decryption routine.

Te authors in [57] provide a detailed summary of the
production and considerations for creating a metamorphic
generator, as well as in [74] for creating a metamorphic
worm. One of the more sophisticated metamorphic viruses

is W32/Simile, also known as MetaPHOR or Etap. Te
author, “Mental Driller,” referred to the expansion, con-
traction, and permutation of instructions as the “Accordion
Model” [61, 67] based on the changing form that garbage
code takes when it becomes obfuscated.Te Simile virus was
also unique, and in that, 90% of the virus code was dedicated
to the metamorphic engine itself, with the decryptor being
placed at the end of the code section and the virus body being
partitioned elsewhere [43, 52].

3.5. Encryption. While encryption was briefy touched upon
at the beginning of Section 3, obfuscation engines make use
of a variety of encryption techniques to avoid detection [49].
Te earliest form of encryption was carried out by the
CASCADE virus on DOS [40] and did so using a simple xor
(see Figure 5).

Te cascade virus, frst identifed in the early 1900s, was
shown to increase the fle size of infected fles by 1701 and
1704 bytes and mainly comprised its encryption loop and
main body. Te virus uses a technique called “cascading” to
conceal its presence. When the infected fles are executed,
the virus code is executed frst, causing the virus to infect
more fles and directories. Tis creates a cascading efect,
making it difcult for antivirus programs to detect and
remove the virus [75]. Te decryption routine in Figure 5 is
fairly simple: the stack pointer, sp, acts as the key and the si
register is used to keep track of which position of the virus
body to point to. As the decryption process is carried out,
both the si and sp counter increment and decrement by one,
respectively, until sp returns to 0; otherwise, it will jump
using jnz. For example, applying a simple xor operation to
each byte using an 8-bit value as the encryption key will
produce the encrypted text. Te string 2D03 002E when
xor’d with the key 0xFF will produce D2FC FFD1. Doing so
in reverse with the same key will produce the original text,
thereby performing encryption and decryption with only
one key.

Conventional decryption relies on the virus’ own
decryptor loop to decrypt the virus body. It did not take long
for malicious actors to rely on multiple decryptors instead of
one, such as the DOS/whale virus in 1990, which utilized
dozens of diferent decryptors and chose one randomly each
infection. It may also be the case that rather than the en-
cryption being performed serially, decryption can be per-
formed in a random fashion, as is the case for W32/
MetaPHOR which does so seemingly randomly, with each
instruction only being decrypted once. In malware de-
ployments, the use of a crypter is typically used, which
carries out encryption for antianalysis and obfuscation
purposes. A crypter contains a stub which carries out the
decryption and does so while generating a new payload and
key with each new generation [48, 76]. All of this occurs in
memory, and nothing is written to disk. Decryption can take
place in the stack, but then the key to it is not writable, as
opposed to allocating to memory which is easily fagged by
emulations that are monitoring memory. On Intel x86
platforms, 24 bytes or more of modifed memory is char-
acteristic of a decryption routine [28]. Once the stub passes
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control to the virus body after decryption, a new encryption
key is created and all executables and .text sections are
encrypted with the new key. Depending on the fle type,
a TEA cipher can be used for EXE and RC4 for DLLs as is the
case for HackedTeam’s core-packer [77]. Te key is then
stored in the decryptor stub or elsewhere.

Basic encryption can be performed as mentioned
previously with a single decryptor key (see Figure 6), using
1 to 1 byte to byte mapping, with zero operand using inc or
neg, or reversible instructions such as add or xor. Al-
ternatively, sliding key encryption makes use of the
starting key which updates as it progresses and may even
utilize the characters most recently encrypted (see
Figure 6(b)) or based on an algorithm, as shown in
Figure 6(c). Flow encryption determines a key stream in
advance equal to the size of the encrypted text and then
encrypts the body instruction by instruction. Key gen-
eration can also be varied amongst decryptor routines,
where a key(s) can be located in the decryptor stub itself,

hidden among the virus body, generated uniquely from
the host system, or alternatively, randomly generated and
not stored at all.

Te sources for the encryption key can vary but can either
be hardcoded in one form or another or obtained through the
host. In the case of variable key generation, the decryptor can
develop the encryption key based on its own function calls.
Alternatively, environmental key generation does not involve
any descriptors from the viral payload or stub itself, but rather,
retrieves them from the infected host. One example of envi-
ronmental key generation is the use of a trusted platform
module (TPM) chip, which is a hardware component built into
many modern computers and devices [78]. Te TPM can
generate unique encryption keys that are tied to specifc
physical attributes of the device, such as the device’s BIOS,
frmware, or other hardware components. Tis makes it much
more difcult for an attacker to access the key and decrypt the
protected data even if they are able to physically access the
device. In the case of the RDA.Fighter virus family, the virus
checks the BIOS address at FFFF : 000E0, and if it returns
advanced technology (AT), as in AT-class computer, the time
stamp is retrieved from the CMOS bufer; otherwise, it is
retrieved from the system clock.Te timestamp is then used to
create a 16-bit number that is used to decrypt the next code
section using a mirror table lookup as a mask. In addition to
time, the current date, timer tick, host flename, and even the
hard disk serial number can act as sources for developing the
encryption key. As a form of armoring, the key can be stored on
a distant web server, and outside of a typical host environment,
such as in virtualization or emulation, the virus can disable
itself and fail to run.

Decryptions and decryption loops are not limited to
a single loop, or to a single key. For example, the RDA.Fighter
virus family utilizes 16 layers of decryption and does so in
a backward fashion, making it a laborious process to automate
the disassembling process [28]. Multiple layers of encryption
are also utilized by the W32/Harrier and Bradley viruses [79].
To avoid all form of local or external storage of the key,
a random decryption algorithm (RDA) can be used to brute
force the key.Te key can be any generated word value, and the
decoding method will check the checksum following the
decoding procedure to identify when it has successfully found
the key. In the RDA.Fighter family, RDA is used as secondary
form of encryption on top of environmental key generation.

3.6. Compression. Compression represents an additional
level of obfuscation on top of a possible decryption routine
and other forms of obfuscation. A packer is defned as
a utility which enacts some form of compression to the
executable either to reduce fles size to avoid entropy analysis
or introduce a layer of obfuscation to the PE header. It has
been estimated that 80% of all malware uses some form of
packer [80], as well as 90% of all worms [43]. Two of themost
popular packers are Ultimate Packer for eXecutables (UPX
(https://upx.github.io/)) and ASPACK (https://www.aspack.
com/). In addition to signifcant compression ratios and
great performance, these packers work for a variety of ex-
ecutable formats with no memory overhead due to in-place
decompression.

lea si, start

mov sp, 06282

xor [si], si
xor [si], sp

inc si

dec sp

jnz

Figure 5: Simple xor decryptor which decrypts byte by byte using
an increment counter and a jump not zero (jnz) loop.
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Packers are ultimately tasked with compressing executables
with decompressed code and a compressed payload. Packers
compress the code to avoid reverse engineering and bypass
frewalls. Malware makes use of packers by initially converting
an Image Section (see Figure 7(a)) into a Packed Section and
Unpacking Section (see Figure 7(b)). Te Unpacking Section is
then set to be the initial point of entry once the fle is executed.
Upon execution, the packed section is decompressed to be-
come the Unpacked Section (Figure 7(c)) and is executed on
virtual memory [81]. One of the more devious uses of packers
in malware analysis is that the original PE header is hidden as
the visible import functions are those utilized by the packer
itself. Since packers such as UPX, ASProtect, PECompact, and
Temida are widely used for nonnefarious purposes as well,
there is no sure indication that the fle is malicious based on the
import functions [82–84].

One of the more comprehensive tools for the detection of
malicious packers is the use of entropy analysis [1]. In the work
of [85], 28 diferent packers were used to classify a control fow
graph as an image representation through the use of a con-
volutional neural network (CNN). Te work of [86] used
CNNs for a similar purpose, but was used to categorized 9300
malware variants into 25 malware families simply based on the
malware binary. Tese techniques have the advantage of
allowing the neural network to learn which PE sections are
important in identifying maliciousness; and in doing so it uses
an advanced form of entropy analysis which can identify
malware family usage of packers, encryption and garbage code
obfuscation [86]. When compression is coupled with en-
cryption, as is the case with so-called Protectors, the resulting
binary has high entropy levels, making it susceptible to clas-
sifcation. In [58], a fle segmentation method that utilized
entropy with wavelet analysis was used to classify metamorphic
malware based on edit distance between fle segments. Tis
motivation was derived from the earlier work of [87] that
established that the homogeneity of each malware’s binary
section is characteristic of the complexity of its data order.

Along with this insight, polymorphic malwares are able to
be identifed using these techniques, albeit with a high rate
of false positives [87].

In Figure 8, a historic summary is provided, which is
complete with major milestones in obfuscation and new
malware deployments.

4. Metamorphic Datasets, Generation Kits,
and Armoring

While metamorphic malware has grown in sophistication, so
has the tools we have as available as researchers to thwart their
actions. One of such tools and resources is the use of publicly
available datasets, such as DARPA99, a popularized dataset
released to improve intrusion detection systems. Datasets
encourage the development of classifcation tools by leaving the
details for collecting representative samples in a controlled
environment and at scale to others. Secondly, datasets also
provide a baseline in which to compare competing algorithms,
usually with the aim of increasing true positive rates and
decreasing false positives. One of the downsides is that these
datasets are typically outdated and are not representative of
new and emerging threats. If researchers make raw malicious
binaries available, as is the case with the SOREL dataset [88],
they cannot do the same for benign binaries due to issues with
copyright. One workaround used in SOREL is to dump the
entire metadata of the binary and use that metadata dump to
create features for amodel to learn from.Tis sectionwill touch
on some of the more useful malware datasets used historically
and then transition into covering some aspects of malware
generation kits and antiarmoring behavior.

4.1. Malware Datasets. Te DARPA dataset was created in
1998 and contains 7 weeks of raw TCP/IP dumps of a simu-
lated attack scenario to an Air-Force base.Te dataset contains
both host and network fles. Te KDD99 was created based of

0x99

0x99
Virus Code

Decryptor Stub

0x99
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Decryptor Stub

Virus Code

0x99
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Virus Code
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Figure 6: Illustration of diferent encryption archetypes, where (a) key is reused for each encrypted block; (b) encrypted block is used as
nonce for next encrypted block; and (c) stream cipher is used to encrypt each block.
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the DARPA dataset [89], with a reduced size and a total of 24
attack types and an additional 14 existing solely in the test
dataset [90, 91]. Based on the observations of [91], KDD99 was
the most widely used dataset in IDS research between the years
2010 and 2015. Several issues arose with the use of KDD99,
namely, the time-to-live (TTL) values for benign andmalicious
packets were diferent [92, 93], and the data rates were not
characteristic of real-world networks [94]. Many of these issues
were exemplifed in the critique carried out by [93], leading to
a need to provide much needed modifcations to the existing
dataset. In addition, since the size of the KDD99 datasets was
large for many trainable models and the dataset contained
duplicates of attacks such as DOS, the dataset was further
reduced to become its most recent version, NSL-KDD [93].
Another dataset containing network trafc is the UNSW-NB
15.Te dataset was created by the IXIA PerfectStorm tool at the
Cyber Range Lab at the Australian Center for Cyber Security
[95]. A TCPDump tool is used to capture 100GB of raw trafc,
with a total of 49 features generated using a set of tools and
algorithms. Other lesser known network datasets include
CAIDA [96] and ISCX 2012 [97] for network intrusion de-
tection and CICIDS2017 [98]. Te CICIDS2017 dataset is
unique, and in that, the authors included behavior for Win-
dows (XP, 7, 8, and 10), macOS, iOS as well as Linux operating
systems, encompassing attacks fromBotnets, DoS, DDos, Brute
Force FTP, Brute Force SSH, Heartbleed, Web Attack, and
Infltration [98]. For a thorough summary of network-based
datasets, the authors refer to the review carried out by [99].

Several datasets have been used to represent the content
of the malware binary, versus relying on network activity.
One of the more utilized datasets is the Microsoft Malware
Classifcation Challenge dataset, which becomes popularized
in a Kaggle competition back in 2015.Te raw data of a virus’
binary are represented in hexadecimal, with a compilation of
metadata retrieved using the IDA disassembler tool. Binary

representations of malware binary have also become pop-
ularized as a dataset in image analysis, with the Malimg
dataset [100] having the greatest impact in recent years
[101–109]. Other alternatives include the Malicia dataset
[110] which contains 11,668 malicious binaries from 54
families retrieved from 500 drive-by downloads over
11months. However, the project was ultimately dis-
continued in 2016. Te Malsign dataset [111] contains
142,000 signed malware and potential unwanted products
(PUP) binaries obtained from 2012 to 2015 for the Windows
platform [112].

Mobile and internet-of-things (IoT) security plays
a unique but important role in malware security, as these
devices make up a larger proportion than ever in how we
connect with others and exchange information. Te Drebin
dataset [113, 114] is one of the most used datasets in mobile
security, with 5500+ malware being included in the dataset
belonging to 20 families, collected from 2010 to 2012. Te
android adware and general malware dataset (AAGM)
[115, 116] includes network activity of 1900 adware, general
malware, and benignware running on android smartphones.
Te IoTID20 [117] is a more recent dataset used to simulate
network attack retrieved from two smart home devices. Te
dataset consists of 42 pcap fles encompassing simulated
attacks produced from Nmap and from the Mirai botnet
[118, 119].

Several datasets include features extracted directly from
PE fles, and this includes the ClaMP and EMBER dataset.
ClaMP [120] includes features from the DOS header, fle
header and optional header of PE fles.Te integrated dataset
includes 68 features:28 features are from the raw dataset, 26
features are Boolean (fle and optional header), and 14 are
derived features. A second version of the dataset exists which
consists of 56 features. Finally, the largest dataset by far is the
Ember dataset [121] with a total of 1.1 million binary fles.
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Figure 7: Overview of the main steps in a packer. Adopted from [81].
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Te authors in [122] include additional tools to extract
features from the PE fles to further encourage the use of the
dataset to train benchmark problems.Te Ember dataset was
the larges of such datasets until the introduction of the
SOREL dataset in 2020, which expanded from 1.1 million
binaries to 20 million binaries, including 10 million dis-
armed malware samples ready for feature extraction [88].
Te Australian Defense Force Academy (ADFA) is the
author of two datasets: the Linux dataset (LD) [123, 124] and
Windows dataset (WD) [125]. Both datasets provide

a comprehensive simulation of a HIDS based on the col-
lection of system calls; however, a signifcant downside exists
for the ADFA-WD as it was collected solely onWindows XP,
which limits the applicability to future generations of
Windows OS [125].

Insider threats are considered one of the more emerging
sources of security vulnerabilities for government and frms.
CERT identifed that 15–24% of frms experience an insider
incident perpetrated by a business partner [126]. It has also
been noted that a quarter of cyber security risks are due to
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insider threats, meaning that current or close business
partners are considered as much of a threat as ransomware
from a security standpoint [17].Tat is why, a dataset such as
the CERT insider threat V.2 dataset is so important in our
understanding and tracing of threats that exist in network
topologies [127]. Te dataset includes several synthetic
threat scenarios, accompanied with information related to
HTTP records, employee info, and log on/of times, among
other indicators. A summary of the datasets discussed along
with some information on their makeup is shown in Table 9.

Virus repositories are also a source for millions of
malicious binaries and source code for malware research.
Te Zoo (https://github.com/ytisf/theZoo) from [263]
contains hundreds of malicious binaries that are updated on
a regular basis as new threats emerge and as virus source
code becomes available [264]. VirusTotal (https://www.
virustotal.com/gui/home/) contains one of the most com-
prehensive repositories used in the industry today. Malicious
binaries can be uploaded or searched via MD5 hash to
provide a detailed summary of the threat and other met-
adata. VirusTotal also comes equipped with a public and
private API that allows threats to be uploaded while
returning a detailed report, along with which AV vendors
have already developed a signature for the given binary.
Virushare (https://virusshare.com/) is a searchable sample
database, boasting 34 million +malware samples for use for
analysts, researchers, and the security community [265].
Other less popularized repositories for sharing malware for
research purposes include Malshare, VirusBay, and Das
Malwerk.

4.2. Metamorphic Generation Kits. Virus generation kits
facilitate the creation of a bulk of the newly generated virus
signatures we see every day. Tese kits perform some, if not
all, types of obfuscation outlined in Section 2 to evade
signature-based techniques and are a signifcant problem for
AV vendors and researchers alike. In addition, some kits
even provide functionality whereby users can customize the
level of obfuscation and encryption to introduce variation
into the malware generation and are even able to enact
antiemulation and armoring behavior. Some generation kits
have been easily fagged by AV vendors since their generated
code would contain similar code between generations;
therefore, only a few signatures developed could fag the
entire generation, rendering the generation kit obsolete.
Depending on the generation kit, COM and EXE viruses can
be produced directly, while other kits generate the virus
assembly code. For example, Borland TurboAssembler
TASM 5.0 can assemble an ASM fle into an object fle and
then TLINK takes the object fles and libraries and links
them together to produce virus executables. As demon-
strated in Figure 9, disassemblers such as IDA Pro can be
used to produce the ASM fles [266]. Te ASM fles can then
be used to extract opcodes and other features sets for use in
malware classifcation [267]. Tis section will discuss several
popular generation kits used in research, with a brief de-
scription on some of the obfuscation techniques used by
each generator.

Te phalcon-SKISM mass produced code generator (PS-
MPC) was developed in 1992 and includes over 25 options
for diferent types of encryption and payload types, as well as
having options to be memory resident. Te generator em-
ploys its own decryption routine but lacks options for stealth
techniques. PS-MPC generates fles that reside in memory
long enough to infect all COM and EXE fles. Te advantage
of PS-MPC at the time of creation was the ability to carry out
code generation in batches due to the generator operating as
a code-morphing engine as it is script-driven [43]. While all
PS-MPC-generated codes today are readily fagged by AV
vendors, the generator is still used today for research on
metamorphic malware [31, 51, 268–271]. Te mass-
produced code generation kit (MPCGEN) was frst de-
veloped in 1993 and was used to create CFG fles which were
then passed to PS-MPC followed by TASM to produce 32-bit
executables.Te name “mass-produced” comes from the fact
that the process of generating, compiling, and assembling
can be carried out for 500 fles in as little as 25minutes.
Similarly, MPCGEN is used to produce a high quality and
quantity of metamorphic variants for research purposes
[51, 56, 271–275].

Te second-generation virus generator (G2) was de-
veloped in 1993 and produces COM and 16-bit EXE in-
fectors. It employs several code substitution techniques, and
as an extension to PS-MPC, introduces antidebugging and
antiemulation features, as well as resident and nonresident
viruses. G2 has an easily modifable source code to allow
customization by an advanced programmer, and the rou-
tines it uses are semipolymorphic. G2 to do this day is a go-to
for generating polymorphic variants [31, 50, 51, 56, 58,
59, 67, 73, 268–278].

Virus creation lab for Windows 32 (VCL32) was created
in 1992 but was revamped in 2003. Created by a virus writer
named Nowhere Man, a member of a group called NuKE,
this generator can produce the assembly source code of
viruses. Tis means the assembly code needs to be compiled
and linked afterwards before they are active. Te versatility
of VCL32 comes from being able to customize activation
conditions based on date, time of day, number of infected
fles, computer country code, version of DOS, or the amount
of RAM available. VLC32 supports COM fle infections,
generating companion viruses, as well as various encryption
and infection strategies. As a complete package with a GUI
and drop-down menus, the most recent version VCL32
released in 2004 is commonly used in research
[31, 50, 51, 56, 268, 272, 274, 279, 280].

Te next generation virus generation kit (NGVCK) is
one of the more popular virus construction kits available.
Developed in 2001 with the most recent version released in
2003, NGVCK has been widely adopted for use in de-
veloping 32-bit PE-EXE polymorphic malware, especially in
a research environment [31, 39, 47, 50, 51, 56, 58, 67,
268–275, 277–288]. Options for encryption include rotate
without carry ROR/ROL, Twos complement negation NEG,
Ones complement Negation NOT, logical exclusive or XOR,
and addition/subtraction ADD/SUB. NGVCK can carry out
dead code insertion, subroutine reordering, code sub-
stitution, and registry renaming, and all are very efective

Security and Communication Networks 15

https://github.com/ytisf/theZoo
https://www.virustotal.com/gui/home/
https://www.virustotal.com/gui/home/
https://virusshare.com/


Ta
bl

e
9:

Su
m
m
ar
y
of

th
e
m
or
e
pr
ev
al
en
tm

al
w
ar
e
da
ta
se
ts

pu
bl
ic
ly

av
ai
la
bl
e
fo
r
us
e
by

re
se
ar
ch
er
s.

Fe
at
ur
es

D
es
cr
ip
tio

n
Re

fe
re
nc
es

N
SL

-K
D
D

21
at
ta
ck
s
fr
om

4
fa
m
ili
es

(D
oS
,p

ro
be
,r
oo

t2
lo
ca
l(
R2

L)
,u

se
r
2

ro
ot

(U
2R

))
,4
1
fe
at
ur
es

12
5,
97
3
tr
ai
ni
ng

ex
am

pl
es

(1
9.
85
%

be
ni
gn

),
41

fe
at
ur
es

[9
3,

95
,1

28
–1
60
]

K
D
D
99

21
at
ta
ck
s
fr
om

4
fa
m
ili
es

(D
oS
,p

ro
be
,r
oo

t2
lo
ca
l(
R2

L)
,u

se
r
2

ro
ot

(U
2R

))
,4
1
fe
at
ur
es

48
9,
43
1
tr
ai
ni
ng

ex
am

pl
es

(2
0%

be
ni
gn

)
[9
1,

93
,9

5,
13
1,

16
1–

18
5]

D
A
RP

A
99

Ra
w
TC

P/
IP

du
m
p
fl
es
;5

8
at
ta
ck
s
fr
om

4
fa
m
ili
es

(D
oS
,p

ro
be
,

ro
ot

2
lo
ca
l(
R2

L)
,u

se
r
2
ro
ot

(U
2R

))
,4
1
fe
at
ur
es

6,
59
1,
45
8
tr
ai
ni
ng

ex
am

pl
es

[8
9,

18
6–
19
3]

U
N
SW

-N
B1

5
Ra

w
Tr
af

c
as

Pc
p
fl
es
,9

ty
pe
s
of

at
ta
ck
s
(f
uz
ze
rs
,a
na
ly
sis

,
ba
ck
do

or
s,
D
oS
,e
xp
lo
its
,g

en
er
ic
,r
ec
on

na
iss

an
ce
,s
he
llc
od

e,
w
or
m
s)
;4

9
fe
at
ur
es

17
5,
34
1
tr
ai
ni
ng

an
d
82
,3
32

te
st
in
gs

ex
am

pl
es
,

49
fe
at
ur
es

[9
5,

15
2,

15
3,

17
7,

19
4–

21
3]

M
al
Im

g
M
al
w
ar
e
bi
na
ry
,c
on

ve
rt
ed

to
8
bi
t
ve
ct
or

th
en

8
bi
tg

ra
ys
ca
le

im
ag
e

9,
33
9
tr
ai
ni
ng

ex
am

pl
es
;2

5
M
al
w
ar
e
fa
m
ili
es

[1
00
,1

02
–1
05
,1

07
–1
09
,2
14
–2
17
]

C
ER

T
in
sid

er
th
re
at

V
.2

H
TT

P
re
co
rd
s,
em

ai
ls,

em
pl
oy
ee

in
fo
;5

un
iq
ue

sc
en
ar
io
s
of

su
sp
ic
io
us

ac
tiv

ity
.1
91

su
sp
ec
te
d
us
er
s

33
,7
71
,2
24

tr
ai
ni
ng

ex
am

pl
es
,3

3
fe
at
ur
es

[1
34
,2
18
–2

35
]

D
re
bi
n

Fe
at
ur
es

ex
tr
ac
te
d
fr
om

ap
pl
ic
at
io
n
m
an
ife
st
an
d
de
x
co
de
.8

co
re

fe
at
ur
e
se
ts
.1
79

m
al
w
ar
e
fa
m
ili
es

5,
56
0
m
al
ic
io
us

an
d
12
3,
45
3
be
ni
gn

ap
pl
ic
at
io
ns

[1
12
,1

13
,1

34
,1

39
,1

58
,2

33
,2

36
–2

41
]

M
ic
ro
so
ft
m
al
w
ar
e

cl
as
sif

ca
tio

n

H
ex
ad
ec
im

al
re
pr
es
en
ta
tio

n
of

bi
na
ry

co
nt
en
tw

ith
m
et
ad
at
a

m
an
ife
st
;9

cl
as
se
s
of

po
ly
m
or
ph

ic
m
al
w
ar
e
di
sa
ss
em

bl
ed

us
in
g

ID
A

pa
ck
et

di
sa
ss
em

bl
er

20
,0
00

m
al
w
ar
e
sa
m
pl
es

[1
01
,1

03
,1

04
,2
14
,2

42
–2

56
]

C
la
m
M
P

H
ea
de
r
fe
ld
s
of

PE
he
ad
er
s;
54

ra
w

fe
at
ur
es

15
de
ri
ve
d

52
10

ex
am

pl
es

(4
7.
75
%

be
ni
gn

)
[1
20
,1

36
,2

57
–2

59
]

A
A
G
M

Ra
w

tr
af

c
fr
om

pc
ap

fl
es
,2

ty
pe
s
of

m
al
ic
io
us

ap
pl
ic
at
io
ns

(a
dw

ar
e
an
d
ge
ne
ra
lm

al
w
ar
e)

1,
90
0
m
al
ic
io
us

ap
pl
ic
at
io
ns

(8
0%

be
ni
gn

)
[1
15
,1

16
]

EM
BE

R
Ra

w
fe
at
ur
es

ex
tr
ac
te
d
fr
om

PE
fl
es

in
JS
O
N

fo
rm

at
90
0,
00
0
tr
ai
ni
ng

an
d
20
0,
00

te
st
in
g
ex
am

pl
es

[1
21
,2

60
–2

62
]

Io
TI
D
20

Ra
w
tr
af

c
fr
om

pc
ap

fl
es
,1
2
fe
at
ur
es
,8

at
ta
ck
st
yp
es

(D
oS
,A

C
K

fo
od

in
g,

br
ut
e
fo
rc
e,
H
TT

P
fo

od
in
g,

U
D
P
fo

od
in
g,

A
RP

sp
oo

fn
g,

sc
an

ho
st

po
rt
,s
ca
n
po

rt
O
S)

40
,0
70

be
ni
gn

an
d
58
71
0
m
al
ic
io
us

ex
am

pl
es

[1
18
,1

19
]

A
D
FA

-L
D

Li
nu

x
sy
st
em

ca
lls
;6

at
ta
ck
s
cl
as
se
s
(F
TP

,S
SH

,p
oi
so
ne
d

ex
ec
ut
ab
le
,A

dd
us
er
/M

et
er
pr
et
er
,T

ik
iW

ik
ie

xp
lo
it,

PH
P
re
m
ot
e

vu
ln
er
ab
ili
ty
)
26

fe
at
ur
es

2,
43
0,
01
62

be
ni
gn

an
d
31
7,
38
8
m
al
ic
io
us

ex
am

pl
es

[1
24
]

16 Security and Communication Networks



techniques for obfuscation. In [51], NGVCK was compared
to other popular generation kits, including G2, MPCGEN,
and VCL32, and was noted to produce the highest rates of
obfuscation compared to other kits. A similarity metric was
used to compare assembly programs, and no similarity was
found to have G2 and MPCGEN, up to 2.4% was found with
VCL32, and normal fles had similarities between 0.98% and
1.2%. In [271], only a 10% similarity was found between
NGVCK when run over multiple iterations, meaning that
the kit produces a large amount of variability between uses.
An example of two virus variations produced by the NGVCK
generation kit is shown in Table 10. Obfuscation produces
two semantically similar variants using garbage code in-
sertion, instruction substitution, and subroutine reordering
as techniques.

A more recent polymorphic engine was introduced in
[69] as the virus and metamorphic worm (MWOR) gen-
eration kit. Te efectiveness of the generation kit was ex-
emplifed in [270] for being able to fool common statistical
analysis. Te kit has also found more recent interest in
research as it is able to control for the proportion of garbage
code and subroutine reordering possible
[270, 271, 273, 282, 283, 286]. Tis is extremely efective
because inserting a certain amount of garbage code from
benign fles has demonstrated an improved ability to thwart
AV scanners [39]. Tis chapter does not provide an ex-
haustive list of generation kits, and on the contrary, these
kits represent a small subset of available kits widely dis-
tributed. Websites such as VxHeavens were one of such
sources until the website was taken down in March 2012 by
Ukrainian police. Repositories containing over 200+ gen-
eration kits once hosted on VxHeavens can be found cir-
culating online to this day. Included in these kits as discussed
is antiarmoring and antiemulation capabilities. Some of
these will be discussed in the next section.

4.3. Anti-Emulation, Stealth, and Code Protection.
Antiemulation is an all-encompassing term that includes all
the various armoring, stealth, and/or code protection
techniques that are used to thwart or burden the process of
reverse engineering of a malware sample. According to
Symantec, approximately 28% of malware are VMware [12].
One of the shortcomings of virtual machines and other
honeypot deployments is that the environment they are
deployed in is static, with several confgurations set to de-
fault. It is for this reason that antiemulation malware can
check the environment for indicators of virtualization and
fail to execute or burden the reverse engineering analysis
with cumbersome instructions. Tis section will cover some
of the actions taken by antiemulation malware to exploit
their virtual environment and prevent security experts from
understanding the full breadth of their behavior. Anti-
emulation checks fall into four categories: human

interaction, confguration-specifc, environment-specifc,
and VMware specifc checks [289, 290].

4.3.1. Human Interaction. Checks to see if actions routinely
carried out by a user are being performed. Tis includes
mouse movements, use of the clipboard, and opening and
closing windows. Te Cuckoo Sandbox, for example, has
a setting which provides this sort of functionality for each
malware submission. Trojan Upclicker is a virus variant that
monitors user input in the form of a left click in order to
identify sandbox environments. It does this by using the
SetWindowsHookEx() and GetLastInputInfor() API to de-
termine the rate of user input over time. Tis would identify
the presence of sandbox environments as automated analysis
does not require the use of an auxiliary keyboard and mouse
[291].

4.3.2. Confguration-Specifc. Uses time periods or other
confguration to execute at a later time and date only if
certain conditions are met. Te Duqu virus, which was
frst identifed in 2011, included a series of antistealth
techniques in the form of delays as a precautionary
measure [292]. Code injection only occurs after ap-
proximately 10–15minutes, and the lifespan of Duqu is set
by an unknown communication module that removes its
hooks, deletes its kernel driver, and removes its registry
key once the timer has elapsed [292, 293]. Te Kelihos
botnet and Nap Trojan both make use of the SleepEx() and
NtDelayExecution() for extended sleep calls, with the
Kelihos botnet having afected 41,000 users before being
identifed and taken down. Hastati has a hardcoded check
which is executed only at 2 pm on March 20, 2013.
Otherwise, it does not execute if GetLocalTime() returns
a time less than that, indicating the presence of a vir-
tualized environment [294].

4.3.3. Environment-Specifc. It looks at the settings and
parameters of the host operating system and hardware
and decides whether to execute based on those fndings
[295]. Virtual machines incorporate virtual hardware
which tends to have consistent confgurations between
VM deployments. Hardware such as network adapters,
USB controllers, and audio adapters are all virtualized,
meaning that MAC addresses, USB controller types, and
SCSI device types are all telling signs of virtualization.
Te Scoopy Doo tool developed by Tobias Klein uses
Windows Script Host to read registry keys located in
HKEY_LOCAL_MACHINE∖HARDWARE∖DEVICEM-
AP∖Scsi∖ and HKEY_LOCAL_MACHINE∖SYSTEM
∖ControlSet001∖Control∖Class associated with SCSI and
can also lookup keys that are associated with IO and ports
for strings containing “VMware.” In another application,
malware can utilize the internal processor tick counter via
the ReaD Time Stamp Counter (RDTSC) instruction. Based
on a random bit value that is returned, the decryptor
contained within the malware will decode and execute the
virus body; otherwise, it will bypass and exit.

Virus Assembly
TASM

Virus EXE IDA Pro Virus ASM
TLINK

Figure 9: Assembly and compilation of a virus executable.
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4.3.4. VMware-Specifc. It uses checks that add the ability for
malware to look for specifc indicators of virtualization
based on the VMware software used by the host. One of the
best examples is in the use of VMWare workstation’sWinXP
Guest virtual hardware which includes a running VMtools
service and 300 references to VMtools in the registry. An-
other interesting adoption of VMware behavior is Pushdo.
Pushdo uses PspCreateProcessNotify() to deregister sand-
box routines [5, 290]. It also performs a check of the physical
hard drive serial number and checks if it is set to a default
value of 00 which is typically in virtual machines. In the work
of [296], the authors looked at antiemulator behavior in
android malware and noted volume identifers, network
interfaces, and invoking the GPUwere all techniques used to
obfuscate Dalvik virtual machines. Other evasion tech-
niques, such as exception process timing, IMEI checking,
and checking the variability in sensors have all been traced to
emulation evasion in android malware [297–302].

Alongside the specifc checks mentioned above, general
antidebugging makes it difcult for researchers to extract
signatures or strings to develop systems to protect against
them. An example is the Bistro virus which inserts garbage
code insertion and dummy loops before the decryptor stub.
As a result, before the malware has even unpacked millions
of instructions and burdens the emulator, and Bistro fails to
run. During analysis, many malware variants are memory-
resident, thereby requiring careful monitoring of viral
payload to load itself into memory before it can be dumped
and analyzed [61]. In the past, malware authors have been
one step ahead in their eforts to thwart monitoring memory
dumps or memory snapshotting. An example is the Zmorph
virus which has its decryptor rebuilding its instructions line
by line by pushing the result into stack memory. One of the
earlier adopters of this sort of technique was the DOS/
DarkParanoid which contained 10 diferent encryption
functions which it used to encrypt its previously run in-
structions while only allowing its current instruction to be
decrypted at any point in time. Without a conventional
decryption loop, it is a true polymorphic memory-resident
variant.Te use of other so-called “stealth viruses” employed
reconnaissance of the OS by waiting until AV products
check-summed programs to check for changes. When a fle
was read, as opposed to executed as is the case with user
input, it took that as indication of check-summing by the AV
and removed itself from the target executable. Finally, once it

waited until the fle was closed, it then reinfects the fle [303].
Using this process, it can follow the AV and infect every fle
on disk. A thorough summary of antidisassembly, anti-
debugging, and antiemulation techniques can be found in
[43]. For a summary of android application hardening used
by malware authors and developers, we refer the readers to
the work of [304].

5. Approaches to Feature Analysis

Malware features are typically categorized into two types:
static and dynamic. Static features incorporate all the unique
compositional information of the executable, irrespective of
the contextual information of the target system [305–308].
Tat is to say, the static features of an executable would be
the same regardless of what machine the malware is
deployed on. Static features typically include the portable
executable (PE) structure, assembly code instructions [5], list
of DLLs, n-grams, and byte sequences. PE structure features
would include information related to PE sections, resources,
application programming interface (API) calls, as well as
which dynamic link libraries (DLL) are imported/exported.
Most modern antivirus (AV) products employ the use of
a signature database which contains known signatures of the
static features of malware. Alternatively, dynamic features
include API and DLL call graphs, information gathered from
the fle system, registry, as well as process and thread activity
and the consumption of kernel resources. Dynamic analysis
can also include temporal snapshots of process execution,
memory, network, and system call logs [309]. Dynamic
analysis is OS-specifc because depending on the system
resources, account privileges, and other environmental
variables, the malware will behave diferently and have
a diferent signature as a result.

Te ability for malware to mutate has also presented
a problem for researchers, which render many of the legacy
static approaches to malware research obsolete. As a result,
dynamic analysis has been presented as the de facto standard
in classifcation approaches as it is impervious to routine
obfuscation and packing carried out my mutating malware.
Nowadays, dynamic analysis represents some 51% of the
analysis methods in the body of literature examined [306],
with a unique combination of feature sets and model ar-
chitectures being used to perform classifcation. It has been
noted that malware classifcation is not a trivial problem,

Table 10: Variations in code obfuscation used by the next generation virus generation kit. Adapted from [286].

Before obfuscation After
obfuscation (version 1) After obfuscation (version 2)

Call function A
Function A: pop ebp
sub ebp, OFFSET function A

Call function A
Function A: sub dword ptr[esp], OFFSETfunction A

pop eax
mov ebp, eax

add ecx, 0021751B; junk
Call function A

Function A: sub dword ptr[esp], OFFSET function A
sub ebx, 00000909; junk

mov edx, [esp]
xchg ecx, eax; junk
add esp, 00000004

and ecx, 00005E44; junk
xchg edx, ebp
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with some presenting it as an NP-complete problem [63] to
identify a bounded-length mutating virus or a polymorphic
variant of one [310]. Characterizing malware is the funda-
mental issue of concern, and researchers and practitioners
are constantly refning their methods to stay ahead of the
curve. Figure 10 provides an illustration of the feature
pipeline used for most malware classifcation approaches.
Both static and dynamic features form the bedrock in the
characterization of malicious behavior. Any number of these
features can be combined to form a hybridized model for
feature analysis, which is unofcially the third form of
characterization.

Many of these methods are covered in the compre-
hensive review of [308, 309], but this work will simply
provide a narrow overview of malware detection approaches
as it concerns API calls. While API calls are just of one of the
many forms of static and dynamic behavior, it is one of the
most consequential and information rich sources of dis-
crimination. But frst, an introduction to the source of APIs,
fles known as dynamically linked libraries, is required and
will be the topic of the next section.

5.1. Dynamically Linked Libraries. Dynamically linked li-
braries, or DLLs, are libraries of code that are written by
vendors such as Microsoft as well as third parties to co-
ordinate and manage resources on the Windows OS. DLLs
are fundamentally libraries of code that contain one or more
functions, indicated in their Export Address Table (EAT),
which identifes and whose functions are available for export
to other processes. DLLs are structurally equivalent to ex-
ecutables, with the exception being that their main function
is called DllMain, and they cannot be executed without the
use of helper functions RUNDLL.exe or RUNDLL32.exe, for
64-bit and 32-bit, respectively. DLLs are useful because they
allow multiple processes to share the same library of code
loaded into memory, thereby reducing the time required to
recompile each process and the amount of memory over-
head if the same code segments had to be loaded in memory
multiple times. Because each process does not need to in-
clude static code of its functions, it keeps fle sizes smaller
overall when it can connect to an already running copy of the
library of functions. It also has the advantage of allowing the
OS vendor to update a catalogue of core DLL libraries which
can work with subsequent versions of the OS.

When a DLL is requested to be loaded by an EXE, it does
so through by checking some default directories frst. Tere
is a known registry key in KnownDLLs that tells Windows
that the well-known DLLs should be found in the System32
path; otherwise, it searches in the .exe directory, the current
working directory, the %SystemRoot% directory, the 16-bit
system path, and then the directories in your environment
PATH. DLL order hijacking is the process by which mali-
cious actors inject their own malicious DLLs somewhere in
this load order so that their payload is loaded instead of
a legitimate DLL. For example, ntshrui.dll is loaded by
explorer.exe, but it is not a known DLL and therefore can be
susceptible to load-order hijacking. DLLs that are fully
protected can recursively load other DLLs that are not

protected, which forces the next executable to follow the
default search order and be prone to hijacking. Te tool
DependencyWalker (https://www.dependencywalker.com/)
can be used to see the dependency tree between loaded DLLs
on the OS. Legacy malware would change the Import Ad-
dress Table (IAT) to point to a new address in memory for
the DLL it needs. Changing pointers to new malicious ad-
dress locations with malicious payloads has since been
rectifed on newer versions of Windows as it becomes ap-
parent if all the address locations for functions are in higher
memory space 0x7C86 and a single function is loaded into
0x3420 then most likely that IAT entry has been changed
with a hook by a rootkit. Alternatively, malware can just
modify the DLL inline, requiring no changes in pointers just
the code, leading to a vulnerability commonly known as DLL
proxying which is much harder to detect but can be alerted
to using integrity checking.

Potentially vulnerable DLLs can be observed if using
tools such as SysInternals’ Process Monitor (Procmon
(https://docs.microsoft.com/en-us/sysinternals/downloads/
procmon)). In Procmon, if a DLL is not found and it is not
core to the functionality of the process, it will return an entry
NAME NOT FOUND. Using an out-of-the-box option like
Metasploit’s (https://www.metasploit.com/) msfvenom will
produce a DLL than can be put in place of the missing DLL,
thereby running the malicious payload and executing a suc-
cessful DLL hijacking. Other tools such as the SANS (https://
www.sans.org/blog/detecting-dll-hijacking-on-windows/) tool
can be used to search for DLLs that appear multiple times, are
unsinged, and are in unusual folders. More common in
research, the Dependency Walker tool (https://www.
dependencywalker.com/) makes it easy to view the map-
ping of imported DLLs and to even view a hierarchical
view of all dependencies between modules by looking at
the IAT. Te authors in citewang 2008 separated DLL
usage according to implicit dependency, delay-load de-
pendency, and forward dependency, which are all re-
sponsible for the static loading of DLLs in 3 tiers of
hierarchy. Tier 1 starts from those used by the main
program, followed by Tier 2 which have DLLs invoked by
other DLLs that are not in the main executable, with Tier 3
being the entire statically loaded tree. Te authors created
a one-hot encoded vector if the particular DLL existed in
the program and used that feature mapping for classif-
cation. In [311], a similar approach was taken which relied
on the DLL dependency tree but incorporated encoding
tree string dependencies. Te authors looked at all the tiers
of DLLs which loaded and created a depth-frst repre-
sentation where the original executable is the root node
and all nodes from root to leaf are assigned a unique
integer value. Tey then used CMTreeMiner which ex-
tracts closed frequent subtrees that exist in a particular
executable, and one-hot encoded a feature vector if
a particular subtree exists in the executable. Looking at
depths of subtrees from 3 to 6, accuracies as high as 98%+
were obtained following random forest and naive Bayes
classifers. Te work of [312] did not go in as depth as
[310], but the authors looked at the number of API calls by
a DLL in addition to the list of DLLs used and the API calls
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made. In any case, while DLLs do provide a good proxy of
malicious intent, it is in fact the API calls that are made
that are the real discriminator. For this reason, researchers
turn their focus towards API calls and their usage among
malware variants.

5.2. Windows Application Programming Interface. Windows
API calls are interfaces provided by DLLs to access low-level
resources [313]. API calls come in two favors: user-level and
kernel-level APIs. User level APIs operate at Ring 3 and
provide the average user just enough privileges to access
system resources to perform typical workloads. Te actual
hardware on the other hand runs in the kernel mode, which
makes use of the kernel level APIs that are not directly
available to users for the sake of security and stability of the
OS. From the stability perspective, a user-level crash results in
an error message, while a kernel-level crash results in the OS
crashing. From the security side, malware could reside in the
kernel and operate at a layer that is indistinguishable to the
user or any Ring 3 defenses. Nowadays, it is much more
unlikely to seemalware residing in the kernel, as theWindows
OS has made it more difcult to run code in the kernel and
make use of rootkits. Ultimately, to make use of the kernel, all
userland code uses Kernel32.dll as a gateway to communicate
with Ntdll.dll which, in turn, communicates with the kernel.

Te fascination with API calls comes down to the fact
that API calls provides a higher resolution of analysis of the
operation of any given process. It is the case that API
functions and system calls are related to the services pro-
vided by the OS [309, 314, 315]. As the API is responsible for
all system resource management, it is a particularly dis-
criminating feature for malware classifcation as it provides
the basic functionality for everything from networking to
saving fles to disk. Te usage of APIs and patterns in usage
can be very telling. Similar to the overarching view of static
and dynamic analysis of behavior, APIs are approached from
a static and dynamic perspective as well. In dynamic
analysis, the run-time behavior is monitored, and ideally, all
code segments are traced to reveal the behavior of the
malware. Tis circumvents the obfuscation techniques of
encryption, packing, and polymorphism [316]. Static anal-
ysis on the other hand can be fooled by adding fake API calls
[317] or API calls typical of benign event activity [318]. It is
also the case, as mentioned in Section 5.1, that the imported
functions of a DLL may or may not ever be called, which can
be used as a distraction from the real nefarious purpose of
the malware.

Features such as the API call function names, parame-
ters, and the return values of an executable can be extracted
from the APIs [319]. Monitoring the API calls is an approach

to detecting the malicious behavior of software; however,
there is no clear distinction between malicious APIs and
benign APIs as all native APIs are a helpful utility given the
right context. Te next section will outline some of the
nefarious usages of APIs by malware authors and how they
balance stealthiness with functionality.

5.2.1. Malicious Windows Application Programming In-
terface Usage. Broadly speaking, API usage can be catego-
rized into 7 categories based on the functionality they
provide to a process [314, 320]. Researchers have also made
use of similar categories to classify malicious intent [184].
Some of the malicious functionality APIs can provide to
executables and include the following:

File: create a fle in sensitive folders; delete or hide fles;
fle directory traversal
Process: inject DLL into a running system process;
create mutex to prevent execution
Memory: free up or occupy memory; minimize
memory usage
Registry: add or delete system service. Autorun, hide,
and protect
Network: open and listen on a port, communicate over
e-mail service, communicate with CnC server
Windows Service: terminate windows update, frewall,
setup Telnet or SSH
Others: hooking keyboard, hiding window, scan for
existing vulnerabilities and confguration

Code injection usually begins with the usage of third-
part DLLs or injecting code into a Windows DLL. Malware
makes use of Ntdll.exe indirectly to make use of kernel
APIs, so checking the stack trace of event activity is im-
portant [321]. Malware authors have to balance gaining
increased functionality at the cost of rising suspicion, so
a careful deliberation of which APIs to use is always in
mind [322]. Native Windows API calls that begin with
NTtQuery are popular for malware, as they include
functions such as NTtQuerySystemInformation and
NTtQueryInformationProcess which provide much more
information about the host system. More invasively, early
rootkits would make changes to the System Service De-
scriptor Table (SSDT) which contains addresses to the
kernel functions, which would instead be changed to
malicious driver functions. If, for example, a typical ad-
dress of a kernel function is set to 804d7000 for
ntoskrnl.exe, then one can look at addresses which are not
familiar and contained within the address space typical for
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Figure 10: Summary of the feature pipeline for the classifcation of malware.
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kernel drivers. With x64 bit versions of Windows starting
with XP, PathGuard prevents modifcation of the kernel
and the kernel code in the SSDT and the Interrupt De-
scriptor Table (IDT). Te IDT takes care of exception
handling, so rerouting the response to interrupts to
malicious code would be highly disruptive. As a precaution
to prevent making changes to native Microsoft DLLs and
APIs, Windows Vista was the frst Windows version to
introduce digitally signed drivers. Some of the example
use-cases and APIs used by malware are the following:

(a) File: if software wishes tomake use of the fle register,
it can do so using CreateFile, ReadFile, and Write-
File. Malware can make use of CreateFileMapping or
MapViewOfFile which loads the fle into RAM,
avoiding writing to disk all-together. Some malware
types, like Ransomware, perform high volume fle
and encryption operations to carry out its function
[323].

(b) Process: it is typical for malware to use Open-
Mutex to check if a mutex exists for a running
malware executable. Malware can make use of DLL
injection or direct injection. Code can be injected
into a running process using VirtualAlloxEx and
WriteProcessMemory. When the code is injected
into an executable such as Explorer.exe, the same
privileges hold for the executable it is injected into.
Asynchronous procedure call (APC) is a process
by which malicious code is attached to the APC
queue of a process’ thread. WaitForSingleObjectEx
is the most common call, with QueueUserAPC
being used for queues running on a thread. It can
be run from the kernel using KeInitializeApc and
KeInsertQueueApc. APC remains a known vul-
nerability on the MITRE ATTCK knowledge base
[324].

(c) Registry: when it comes to making use of theWindows
registry, malware can gain persistence so that it can load
whenever Windows restarts [316, 325]. Most com-
monly the Run key located in HKLM\Softwar-
e\Microsoft\Windows\CurrentVersion\Run can set
executables to run automatically. Te Sysinternals
tool Autoruns (https://docs.microsoft.com/en-us/
sysinternals/downloads/autoruns) can be used to
check dozens of registry locations, drivers loaded
into the kernel, and any other DLLs. Other options
for persistence include running Services which are
typically more powerful than administrator privi-
leges. Other registry entries include AppInit_DLLs,
which is a registry key that contains DLLs that are
attached to processes that load User32.dll. Tis
option has can be disabled in Windows 8 and later
versions when Secure Boot is enabled. WinLogon
Notify launches during log on, sleep, or when the
lock screen is open. Adding a malicious DLL to the
ServiceDll parameter in the registry allows a mali-
cious service to start its malicious service DLL into
a loaded svchost.exe [326].

(d) Networking: certain network API usage can be in-
dicative of malicious intent as networking APIs
provide diferent levels of fexible. For example, the
APIs in Wininet.dll will use higher level APIs for
HTTP and HTTPS communications. Malware might
use the rawWinsock libraries located in ws2_32.dll if
there is a need to provide further fexibility to their
malicious arsenal. Te Metasploit framework can
produce shellcode that acts as a listener on a port by
creating a simple process using CreateProcess. Te
confguration for STARTUPINFO is set to a socket,
thereby creating a remote shell. Tis setup allows for
I/O and error handling for cmd.exe and does so with
the command window suppressed to remain
stealthy.

(e) Other: malware downloaders and launchers use
URLDownloadtoFileA to download a fle from
a URL and then execute the fle by making a call to
WinExec. Keyloggers use hooking or polling.
Hooking uses an API such as SetWindowsHookEx
to notify about a key press, while polling is con-
ducted using GetAsyncKeyState and GetFore-
groundWindow to poll key states during any time
period.

Researchers have looked beyond individual API calls and
have investigated API call distribution [327]. A summary of
some of these classes of API usage used by researchers is
shown in Table 11. Te issues arise in that, and it requires
signifcant domain expertise to create and update a database
of API calls for particular malware variants or families. It is
also the case that there is signifcant overlap between
malicious and benign API usage, thereby making it difcult
to alert malware without alerting false positives. Te work of
[328] developed a similarity metric to trace the similarity
between malware variants and Stuxnet based on groups of
API calls. It comes to reason that groups of API calls in
succession, or the distribution of API calls, can provide
further insight into malicious behavior [334]. For this, we
investigate some of these research methods in the following
section.

5.2.2. Classifcation of Windows Application Programming
Interfaces. Te investigation of API calls in the context of
feature extraction is sometimes referred to as API call se-
quence or API call traces. In either defnition we are con-
cerned with the patterns that arise in the sequence of API
calls used one after another. Early adopters of this form of
investigation used Hofmeyr API call sequences, whereby
behavior profles were established between two sequences of
API calls based on Hamming distance [335]. Originally,
UNIX system calls were traced, and the investigators were
motivated by the immune system in their attempt to draw an
analogy between sequences of system calls and chains of
amino acids in the human body. API call sequences have
been leveraged in several applications involving malware
detection [160, 184, 316, 336–339], as well as in tracing the
API call traces during event activity [316, 340–343]. Overall,
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Table 11: Summary of malicious API usage by behavior type.

Behavior APIs References

General behavior
ShowWindow, GetWindow, WriteFile, WinExec, ShellExecuteA, OpenProcess,
VirtualAlloc, ∗Hook, ∗Exception, ∗Shutdown, ∗Crypt, ∗Debugger, ∗Shellexecute,

∗Manager
[1, 328, 330]

Stealthiness NtDelayExecution, FindFirstFileA, FindNextFileA, GetProcAddress,
LoadLibraryA, OpenProcess, sleep [5, 328]

Kernel ∗Ldr∗, ∗Section∗, ∗DuplicateObject∗, ∗Make∗, ∗Object∗, ∗Resource∗, ∗UdiCreate∗ [1]
Memory ∗Memory∗, ∗Volume∗, ∗Space∗, ∗Bufer∗ [1]

Registry CreateKey, OpenKey, CloseKey, RegOpenKey∗ RegSetValue, RegQueryValue,
∗EnumKey, ∗DeleteKey, ∗SetKey, ∗Enum∗ [1, 316, 331]

Reproduction ∗FindFirstFile, ∗CopyFile, GetFileType, SetFilePointer [316, 331]

DLL injection SetWindowsHookEx, CallNextHookEx, CreateRemoteTread, OpenProcess,
LoadLibrary, GetProcAddress, VirtualAllocEx, WriteProcessMemory [5]

Search fles

FindClose, FindFirstFile, FindFirstFileEx, FindFirstFileName, TransactedW,
FindFirstFileNameW, FindFirstFileTransacted, FindFirstStream, TransactedW,
FindFirstStreamW, FindNextFile, FindNextFileNameW, FindNextStreamW,

SearchPath

[1, 327]

Copy/delete fles

CloseHandle, CopyFile, CopyFileEx, CopyFileTransacted, CreateFile,
CreateFileTransacted CreateHardLink, CreateHardLink, Transacted,
CreateSymbolicLink, CreateSymbolic, LinkTransacted, DeleteFile,

DeleteFileTransacted

[327]

Get fle information

GetBinaryType, GetCompressed, FileSize, GetCompressedFile GetFileInformation,
ByHandleEx, GetFileSize, GetFileSizeEx GetFileType, GetFinalPathName,

ByHandle, GetFullPathName, GetFullPathName Transacted, GetLongPathName,
GetLongPathName, Transacted, GetShortPathName, GetTempFileName,
GetTempPath SizeTransacted, GetFileAttributes, GetFileAttributesEx,

GetFileAttributes, Transacted, GetFileBandwidth, reservation, GetFileInformation,
ByHandle

[327]

Move fles MoveFile, MoveFileEx, MoveFileTransacted, MoveFileWithProgress [327]

Read/write fles OpenFile, OpenFileById, ReOpenFile, ReplaceFile, WriteFile, CreateFile,
CloseHandle [327]

Change fle attributes
SetFileApisToANSI, SetFileApisToOEM, SetFileAttributes,
SetFileAttributesTransacted, SetFileBandwidthReservation,

SetFileInformationByHandle, SetFileShortName, SetFileValidData
[327]

Metamorphic engines

HeapAlloc, LocalFree, HeapCreate, GetStartupInfoA, GetCommandLineA,
GetEnvironmentStringsW, FreeEnvironmentStringsW, GetModuleFileNameA,
GetCurrentProcess, CloseServiceHandle, GetCurrentProcessId, GetProcessHeap,

HeapReAlloc, SetFilePointer, SetFileAttributesA, GetFileAttributesW,
FindFirstFileA, FindClose, SetTreadPriority, GetCurrentTreadId,

GetProcAddress, GetModuleHandleA, ResumeTread, GetEnvironmentVariableA,
ExitTread

[275, 328]

G2

GetCurrentProcessId, GetConsoleMode, SetConsoleMode,
FileTimeToDosDateTime, CreateFileW, GetFileSize, FileTimeToLocalFileTime,

GetFileTime, LocalFileTimeToFileTime, SetFileTime, SetFilePointer,
SetFileAttributesW, GetFileAttributesW, GetKeyState, ConsoleMenuControl,
AppendMenuW, ReleaseMutex, FindFirstFileA, FindClose, SetTreadPriority,
GetCurrentTreadId, GetProcAddress, GetModuleHandleA, ResumeTread,
GetSystemTimeAsFileTime, GetTickCount, QueryPerformanceCounter,

InitializeCriticalSection, LoadStringA, FormatMessageA

[332]

MPCGEN

HeapAlloc, LocalFree, GetVersionExA, HeapCreate, GetStartupInfoA,
SetHandleCount, GetCommandLineA, GetEnvironmentStringsW,
FreeEnvironmentStringsW, GetACP, GetCPInfo, GetStringTypeW,
GetModuleFileNameA, LCMapStringW, MultiByteToWideChar,

WideCharToMultiByte, GetEnvironmentStrings, LocalFileTimeToFileTime,
SetFileTime, ReadProcessMemory, AppendMenuW, GetLastError,

GetSystemTimeAsFileTime, GetTickCount, QueryPerformanceCounter,
InitializeCriticalSection, FormatMessageA, GetCurrentProcess, DuplicateHandle,

GetConsoleMode

[332]
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API call frequency and API sequences are efective tech-
niques in identifying data-fow dependencies in a process
[315].

5.2.3. Application Programming Interface Frequency. One of
the more primitive approaches to API analysis is API fre-
quency analysis. It stands to reason that if malware and
benignware make use of similar API libraries, then malware
must make use of certain libraries or “malicious” APIs more
frequently than others. In [319], considering API frequency
alone was efective in achieving 97% accuracy in a multi-
categorical classifcation problem involving metamorphic
malware variants. One takeaway was that incorporating
sequential information did improve accuracy of the models,
so frequency analysis is certainly a useful preliminary step in
behavioral analysis. Te work of [344] developed an end-
to-end malware detector based on the frequency of occur-
rence of opcode and API calls. Teir detector coined OPEM,
demonstrating an increased area under the curve (AUC) and
lower FPs with static calls and a hybrid approach. Un-
fortunately, the authors did not account for obfuscated
malware which tend to be packed and have polymorphic
engines which obfuscates the opcode. Teir hybrid ap-
proach, which included API execution trace, did outperform
all other feature sets used in their work [344]. Certain works,
like that of [245], decided to use a frequency of a subset of
794 API calls extracted from 500 thousand malware samples.
Te authors then fused this feature set with other static
techniques such as entropy and features extracted from the
PE fle such as the total number of assembly instructions in
the .data and .rsrc section.Te drawback to these approaches
is that taking the most frequent API calls leaves out in-
formation of potential edges cases; it is also a fact that
frequent API calls by malware are still routine events carried
out by benignware, such as reserving memory, creating a fle,
etc. Te work of [345] approached the problem in a similar
fashion, where they eliminated API calls with low frequency.
Again, doing so removes important edge-cases and is used
typically to reduce the size of the feature vector space to
improve training times. Tese aforementioned works all
made use of ML techniques to classify their malicious be-
havior. Other works make use of statistical similarity metrics
to diferentiate malicious versus benign by using one or
more metrics of comparison. For example, in [304], the
authors made use of information gain to select the features

based on the sequence of opcodes from android applications.
Based on some key obfuscation techniques discussed thus
far, including control fow obfuscation, string encryption, in
addition to advanced techniques such as class encryption
and refection, the authors found several ML approaches
were efective in detecting obfuscated samples.

In [346], the cosine similarity was proposed to compare
API call frequency between two vectors to represent the
similarity in vector space of a known signature to a new
malware sample. Te expression for cosine similarity is
shown in equation (1). Te motivation for using cosine
similarity is that the measure computes the similarity be-
tween two vectors while excluding their magnitude. Tis has
the efect of ignoring the impact of magnitude if one vector
were to use an API much more frequently than the other, as
the θ angle in equation (1) is indiferent to their magnitude.

cos(θ) �
x · y

‖x‖‖y‖
. (1)

Te extended Jaccard measure is another similarity
metric than is useful in measuring the degree of overlap in
two sets [346]. As an extension to Jaccard for use in con-
tinuous or count attributes, it is efective in demonstrating
the similarity, or the ratio of set intersection, between two
sets in the context of set theory. Te equation for this re-
lationship is shown in equation (2). Te numerator can be
seen as expressing the set intersection, while the de-
nominator can be seen as the union which acts as a form of
normalization.

J(x, y) �
x · y

‖x‖
2
‖y‖

2
− x · y

. (2)

Te cosine similarity was used efectively to create
a similarity matrix between the rarest 20–30% raw security
events and events of the training set [160].Tis approach was
used to signifcantly reduce their dimensionality of their set
by focusing their eforts on the similarities between a base-
line set of unusual events and their dataset more broadly. In
[347], similarity metrics were computed for API sequences
that appear frequently, and both assembly instructions and
API calls were considered in their work. API calls were noted
to be faster in having a smaller signature; however, the
authors noted that the API approach is bad for network
applications such as PuTTY and encrypted fles which show
few or do not show any API calls. Teir work did rely on

Table 11: Continued.

Behavior APIs References

NGVCK

GetClassLongW, CreateFontIndirectW, DeleteCriticalSection, TlsFree,
UnmapViewOfFile, CloseHandle, GetCurrentProcessId, EnumDesktopsW,

EnumDesktopWindows, CloseDesktop, GetProcessHeap,
SetUnhandledExceptionFilter, OpenDesktopW, GetProcessWindowStation,

GetUserDefaultLCID, CombineRgn, OfsetRgn, ExtCreateRegion,
CreateRectRgnIndirect, SetWindowRgn, DefWindowProcW, PeekMessageW,
SetCapture, SendMessageW, ReleaseCapture, MsgWaitForMultipleObjectsEx,

PtInRect, GetRgnBox, HeapReAlloc, LCMapStringW

[332]

Stuxnet LoadLibraryW, LoadLibraryA, GetModuleHandle, GetProcAddress, VirtualAlloc,
VirtualFree [328, 333]
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unpacked executables as it was limited only to static analysis.
In [346], an API call frequency similarity measure was used
followed by a chi-square test to test the representation based
on a distribution from a known signature. Families of APIs
of known metamorphic mutation engines were categorized
and compared to one another and to the same mutation
engine using both the cosine similarity and the extended
Jaccard measure. An interesting fnding was that comparing
a similarity metric between variants from the same mutation
engine provided a measure of the degree of obfuscation,
which was shown to be the largest for the next generation
virus creation kit (NGVCK), a well-known mutation engine.
Te work of [275] completed similar work, whereby
a proximity index table was setup to compare the similarities
between mutation engine families. Due to the sheer number
of possible API calls, feature dimensionality reduction was
carried out on the original 1000 or so APIs according to
frequency. Te authors noted that common APIs were used
between mass code generator (MPCGEN) and NGVCK-
generated viruses. An approach that included data mining
was taken in [320], whereby the calling frequencies of the
raw features are calculated to select a subset of features, and
then principal component analysis (PCA) is used for di-
mensionality reduction of the selected features. In total,
24,662 API function calls, 792 DLL features, along with PE
header info, were considered in their feature set while
considering only the top 30 DLLs according to frequency
[320]. To address the issue with high-dimensional data, the
authors in [336] developed a string-based malware detection
system that focused on the top 3,000 interpretable strings
that included API names using a max-relevance algorithm.
Teir feature parser extracted strings from 9,838 executables
and classifed them as Backdoors, spyware, Trojans, and
worms, in addition to benignware. While these techniques
have been proven useful in many controlled scenarios,
frequency-based analysis is still prone to malware which can
obfuscate themselves to avoid heuristic detection. For this
reason, sequence analysis is used.

5.2.4. Application Programming Interface Sequences. Te
investigation of API sequences has become the de facto
standard for many behavioral approaches as the information
contained within sequences is too powerful to rely on the
API frequency alone. It has also led to the adoption of
natural language approaches which will be discussed in
Section 5.4. Te work of [316] provided an example of the
fow of information surrounding a process that can act as
a template for how to carry out sequence analysis of APIs.
Te three fow paths are as follows:

(1) Te API call GetModuleFileName takes a NULL
character as its frst argument which returns the
malware fle path

(1.1). the path can be passed to CopyFile to open the
executable and run its processes
(1.2). or, if desired, a process can call CopyFile on
itself with the share permission shared to NULL,
thereby preventing applications from opening and
scanning the fle

Tis example serves to demonstrate that two very dif-
ferent uses of CopyFile can indicate malicious behavior, and
only once the whole context is understood can a detection
system alert it. An application that performed this suc-
cessfully was in [337] where 2,727 unique APIs were cate-
gorized into 26 groups based on functionality such as
hooking, fle and directories, registry modifcation, and
others. Based on the sequence of the APIs, critical patterns
were uncovered which were essential for core functionality
such as screen capturing and DLL injection. Results dem-
onstrated F1 scores as high as 0.999 with a focus on the
longest common subsequence between existing malicious
signatures and those of unknown variants. A similar ap-
proach was taken in [1] where 11 hand-crafted signatures of
dynamic and static behaviors were created based on mali-
cious operations spanning registry operations to device
operation to kernel operations. Tese signatures were
converted into semantic blocks based on the largest common
subsequences between dynamic and static APIs. Te work of
[348] created a formulation that includes API sequences as
part of a temporal domain, and pointers passed to API calls
as spatial information. Te motivation being similar to [316]
in that an API call such as LocalAlloc takes in uBytes as an
argument that is statistically lower for malicious fles than
benign fles during allocation of the heap. Capturing this
information in the spatial domain, while modeling the se-
quences of APIs in the temporal domain were efective in
classifying 516 executables with accuracies as high as 0.966.
Rather than focusing on API sequences as it pertains to
general malicious behavior, researchers have explored
common API sequence usage among malware variants and
types. In [330], fve classes of malware including Worm,
Trojan-Downloader, Trojan-Spy, Trojan-Dropper, and
Backdoor were associated based on the presence of 26 API
categories and sequences. 534 malware variants were hooked
and then categorized based on the presence of these API
sequences, which were characteristically diferent for dif-
ferent malware types that aim to pursue diferent objectives
through their API usage. In [349], the authors considered 9
behaviors based on sequences of 2–4 APIs in succession,
while [315] looked at combinations of 3 APIs (such as
CreateFile, WriteFile, and CloseHandle). Te work of [350]
obtained a 99.7% detection rate using several API calls sets,
which included sequences of diferent lengths.

When it comes to determining appropriate sets of API
calls for classifcation, researchers have pursued approaches
in the data mining space to optimize for a set of association
patterns towards a particular objective [351] and in this case,
optimizing an objective that a sample belongs to a malicious
or benign sample. Several papers have been published in this
area, in particular those published out of the Xiamen
University [352–354] focused on malware classifcation.
Ultimately, regardless of the particular mining algorithm
used, the idea is to fnd a set of API calls that support the
objective of classifying malware from benignware. In [353],
this was performed using a frequency pattern growth al-
gorithm [355]. Te goal is to create a frequency pattern tree
which encodes sequence in a tree-like structure similar to
a Hufman coding where parents of a node are encoded as
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longer extensions of the child sequences. So, for a given API
call API_i, it would exist as a leaf node, while its parent nodes
would contain sequences that contain API_i such as (API_i,
API_j) or (API_i, API_k). Tis is performed recursively up
the tree, and frequencies are stored as satellite information at
each node, and this is how rules are generated. A new sample
is then matched against the rules according to the
descending order of the rules’ confdence and support [356].
Te motivation is to maximize the likelihood that rules exist
which can discriminate one objective from the other. Tis
procedure was further described in [352] and used suc-
cessfully to generate rules which parse 29,850 Windows PE
fles, half of which were malicious. In the approach of [356],
the authors compared frequency mining approaches to ML
approaches including SVM, decision trees, and naı̈ve Bayes
and noted a 2–9% improvement in classifcation accuracy.
Because these approaches did extract the APIs from the PE
fles, this static approach is not efective for packed malware
or APIs which are imported by the executable but never
used. In a later paper by Ye and Yu [143], rule pruning was
used for duplicate rules and only elected to use the top 100
API calls as no further improvement was shown beyond 100.
While using a linear SVM, Aassociate classifer and novel
hierarchical associative classifer, 26 thousand malicious
samples were parsed and a precision value as high as 96%
was achieved but with a low recall value of 34%. A thorough
examination of the state of data mining approaches as it
pertains to cyber security are covered in [357]. While
handcrafting sequence signatures can be time-consuming
and require knowledge of specifc patterns in API usage, the
alternative is to consider all possible subsequences of a given
length and consider the usage patterns of all sequences si-
multaneously. While data mining does provide a compact
representation to do this, more innovative works allow
models to discern these rules on their own when coupled to
ML approaches. For this purpose, n-gram representation
is used.

5.2.5. Application Programming Interface n-Grams. One of
the earliest forms of sequence analysis in the malware
domain was carried out in [358]. It was also the frst
successful application of n-grams, which involves
translating a sequence of L APIs into subsequences n long
and doing so for every possible subsequence that exists in
the original API sequence. Tis has the efect of in-
corporating information about the sequences of APIs
with little preprocessing required. For any given API
sequence, a sequence of length L would have L − n + 1n-
grams, where n is the length of the subsequences and
assuming a stride length of one. So, for an API sequence
10 APIs long, we would have (10 − 5) − 1, subsequences
for n � 5. Te number of possible n-gram combinations
would be |C|5, which represents all the unique combi-
nations of fve APIs in sequence that are possible in the set
of APIs C. Te authors in [358] looked at short byte string
n-grams of the PC boot sector which was 512 bytes long.
Tey utilized an ML approach that removed the sigmoid
activation and stored the weights as 5/6-bit integers. Te

technique became part of the IBM AV package and was
successfully deployed to millions of machines.

Te versatility of n-grams means that one can look at
smaller n to generate shorter signatures which are noisy but
more generalizable or use larger n to create more specifc
signatures which lead to lower false positives (FP) but at
a cost of lower true positives (TP). Te application of n-
grams is known to have low FP rates with increasing se-
quence length L; however, the space complexity of n-gram
sequences is exponential in the length of the sequences
O(|C|5) [71].Te work of [359] focused their attention of the
PE header and body and carried out static analysis using the
top 500 most common 4-grams [360], representing DLL
names. Results demonstrated that the header-only features
are as relevant as body information and that separately, they
both have a use-case [359]. Similarly, in [361], a 4-gram
representation was used to model API sequences. Te au-
thors developed average confdence values of benign and
malicious activity and used the average confdence of
malware as a threshold. Tis simple thresholding obtained
90% accuracy; however, the work provided no indication of
FP rates to support their fndings. Te work of [342] went
one step further and carried out n-grammodeling of API call
sequences based on the fle system, network, and registry
activity. Tis work was unique in that, and it separated API
events based on the fle system, network, and registry, to
provide a further analysis of how these event categories fare
in acting as discriminators. In all, the authors looked at over
17,900 malicious executables and obtained 92.5% test ac-
curacy. Finally, [345] resorted to 3- and 4-gram represen-
tations but focused on the dynamic API usage after process
execution. Tis resulted in 94% accuracy, but when coupled
with static feature sets based on frequency, it improved the
accuracy beyond 97%. Te shortfall of n-grams is that se-
quences exceeding that of 4 or 5 are impractical to model due
to the number of permutations of API calls, which signif-
icantly hinders the ability for models to attend to diferent
behaviors. For this reason, we can pursue graph-based ap-
proaches in an attempt to consider diferent behaviors
simultaneously.

5.3. Graph-Based Approaches. Graph-based approaches to
malware detection have a long history. Te earliest appli-
cation of graph-based includes the use of control fow graphs
(CFG) to evaluate unique control fow sequences of a pro-
gram. A CFG is created as a directed graph where the nodes
represent individual or blocks of program instructions and
the edges represent the control fow between statements
[310]. Within each CFG, we have a subgraph that is iso-
morphic to the whole graph. Trying to map a subgraph from
one sample to another is part of the set of problems which
includes the subgraph isomorphism problem which is NP-
complete [362]. In Figure 11, we can see an illustration for
the control fow from the Trojan.Emotet virus. Tis in-
struction segment belongs to the set of instructions that are
responsible for spawning a child process which depends on
the initial call to CreateEvent at the top of Figure 11. When
examining such a control fow, the question becomes which
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segment(s) of instructions are responsible for malicious
behavior. While this segment was carefully selected to show
the behavior of Emotet, extracting similar segments from the
entire malicious execution is cumbersome, especially when
they include diversions and dead-ends. Extracting such
segments as signatures and generalizing these signatures to
fag future malware samples is the goal of CFG-based
malware classifcation.

Most applications of CFGs look at extracting some
subset of the fow of sequences to compare to other samples
to establish a baseline for malicious control fow. One ap-
proach used by [363] looked at jmp, jcc, call, ret, inst, and ret
opcode instructions and built the CFG based on only these
instructions, thereby creating a reduced graph and leaving
placeholders for the rest. Based on these, the authors created
unique signatures for malware detection. In [364], the au-
thors looked at the system call functions, which included
call, jump, and conditional jump expressions in the x86 Intel
instruction set. In [365], the authors looked at the most
frequent subgraphs and simply excluded the rest.Te sample
set used by [366] included 25,145 functions which were 5
nodes (simple instructions) large and 15,439 unique func-
tions which were 5 nodes long. Setting the threshold at 5
ensures that only atypical calls and procedures are included.
One of the issues associated with CFGs is that the control
fow is either (a) similar among all executables, regardless of
malicious activity (also known as boilerplate code) or (b) is
sometimes appended with benign code segments that are
never executed but can confuse string-based scanning
techniques [366]. Tis was considered by [367] in their CFG
reconstruction based on system call logs extracted using
Procmon. Teir approach did not look at functions that were
not loaded by the dynamic linker in order to remove
boilerplate code. However, this is a double-edged sword as

malware does not only rely on its Import Address Table
(IAT) to fetch the APIs it needs, it can load those statically
as well. An alternative approach used in [368] looked at
contrast subgraphing [369], which is the opposite of graph
isomorphism since it looks for the smallest subgraph of G1
that does not belong in G2. Tis approach lends itself well to
looking for characteristically signifcant diferences be-
tween malware and benignware, rather than developing
signatures that look for similarities among classes. Alter-
natively, one can consider creating signatures as coopcode
graphs that belong to malware families and therefore create
high-level signatures that can be used to classify malware
families based on the coopcode graph similarity [319].
While opcodes have been investigated extensively, Win-
dows API usage has been shown to perform well at
detecting polymorphic variants, [143, 160, 364] but the
large size of potential subgraphs remains a limitation to
graph-based approaches. Going more in depth, [370] ex-
amined not just the API functions used but also their
function input arguments among fle system, registry,
socket, and process operations. Tis provides additional
insight into the calling process, such as through bytes
written to when using WriteFile or destination key when
setting a registry value using RegSetValue. Te work of
[289] looked at the opcode similarity to detect polymorphic
variants. Te authors developed a weighted directed graph
where the edges were probabilities that one opcode fol-
lowed the next. Tey then computed scores between
metamorphic viruses and between viruses and benign fles
and developed a threshold score for maliciousness. Tis
approach performed well since metamorphic viruses are
created with a selected fewmetamorphic engines; therefore,
the signatures developed are in fact tracing obfuscation
used by a given mutation engine [364, 371].

<&CreateEventW>

<&snwprint>
<&GetProcessHeap>
<&HeapFree>
<&CreateEvent>

00401C90

<&GetModuleFilename>
call 401C90

<&memset>
<&CreateProcess)

<&CloseHandle> ret <&CloseHandle>
<&CloseHandle>

<&WaitForSingleObject>
<&CloseHandle>
<&CloseHandle>

<&CloseHandle>

<&CloseHandle>

Figure 11: A CFG representation of the disassembled instructions for Trojan.Emotet produced in Ghidra.
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Another factor to consider when using CFGs is how to
establish a comparison between CFGs from malicious and
nonmalicious control-fows. Te authors in [362] examined
the detection of metamorphic code based on a cross-
comparison of the control fow graphs of known mal-
ware. Te authors normalized the code to remove dead or
unreachable code, removed common subexpressions, re-
moved dead paths, and analyzed indirect control fow
transitions to remove longer chains of control fow and avoid
misdirections. Te authors recorded a 96.5% true positive
rate while producing almost no false positives. Te Jaccard
similarity matrix was used in [367] between system call
subsequences. Te cosine similarity is another approach
used [372], but all similarity metrics sufer from drawbacks
because they are all subject to the selection of subgraph as
discussed earlier. Even with reliable subgraphs that perform
well on a particular set of malware, the work of [373]
demonstrated that 23 algorithmic graph features including
betweenness centrality, closeness, degree centrality, density,
and number of edges and nodes can be used in adversarial
analysis and result in a 100% misclassifcation rate. Teir
approached target IoTmalware, but android malware, is also
an ongoing feld of study [374–376]. With all the short-
comings that come with the graph-isomorphism problem,
newer advances in this feld remove the need for graphs all-
together and convert the entire graph into feature vectors
[373, 377]. Once features are vectorized, this opens up the
door for other machine learning models to act as dis-
criminators for the classifcation step.

5.4. Natural Language Processing Approaches. Te use of
natural language processing (NLP) approaches applied to
API call sequences was a natural extension to developing
models that can predict malicious behavior. Malicious be-
havior is not simply a product of individual API usage or
frequency of APIs, but it is rather a consideration of the
pattern in the API usage over time. Similar to how word
usage and context can provide an indication of whether or
not an email is spam or not, the context of API called in
succession can tell you something about malicious intent.
Tis has the efect of being able to attend to diferent be-
haviors simultaneously and allows the model to learn what
malicious behaviors exist on its own.

Many popularized vectorization techniques used in NLP
applications have also been migrated for the purpose of
malware research. Two of these techniques were displayed in
the work of [378] which used a bag-of-words (BoW) model
and term frequency-inverse document frequency (tf-idf).
Te background specifcs of these techniques will be dis-
cussed in the next section. Teir work created fxed
lengthened vectors from behavioral reports produced in
virtual machines and automated the feature extraction step.
Finally, an ensemble of ML techniques, such as random
forest, k-nearest neighbors (k-NN), support vector machine
(SVM), and XGBoost, were used, with majority voting
summarizing the end predictions over the models. An ap-
plication that did involve APIs was carried in [1] who looked
at both dynamic and static behaviors and hand-crafted

groups of signatures based on operation. Te authors cre-
ated 11 diferent types of malicious operations, spanning
from registry operations to device I/O to kernel operations.
APIs were converted to semantic blocks which looked at the
largest common subsequences between dynamic and static
behavior. Following the sequencing, tf-idf was used to
vectorize the contribution of each API, with a focus on rarely
used APIs that drive malicious behavior. In [160], tf-idf was
used to convert the sequence of a unique event name to
a representation for a machine learning mode to learn which
included both 1-dimensional convolutional neural network
(CNN) and long short-term memory (LSTM) architectures.
A similar line of work was used in [379] where a LSTM was
used to model sequential API usage of 20 thousand malware
samples run on a Windows 7 machine using the Cuckoo
sandbox. Te authors only considered 342 API calls but
limited their investigation to those that were used at least
10 times among all samples in the training set. When
coupled with tf-idf, this has the efect of focusing more on
rarely used APIs, and by limiting the minimum threshold to
10, there are enough training examples for themodel to learn
the importance of those features. In a more recent work in
[380], graph neural networks (GNN) were used to identify
dynamic malware execution in a sandbox using the tech-
niques developed in [315] and used in [381]. Windows APIs
were vectorized with n-gram and td-idf, with malware ex-
ecution being performed in sandbox snapshots with dif-
ferent benignware excecutions to simulate diferent potential
host environments. Te use of GNNs allowed the model to
learn patterns in API usage by combining learned patterns
from neighboring nodes that represent difernet hierachies
in process execution. Tis has the efect of not only learning
the API usage of a single process, but that of all the processes
that are daughter or parent processes of any given running
process - thereby magnifying the discriminatory power of
the model in identifying malicious behavior.

In addition to the form of vectorization, modern NLP
models allow the model itself to learn the importance of each
word (or API) relative to the context of the surrounding
words. For this purpose, word embeddings were developed
which can learn the semantic relationship between words
and map that relationship to vector space [382]. Tis has the
efect of allowing models that are closely related to have
similar cosine-similarity scores. A modest application by
[383] used 300-dimensional word embeddings followed by
a similarity matrix to cluster malware and benignware using
k-means. Tis way, the cluster index was a dense repre-
sentation of malware and benignware. A more end-to-end
approach was used in [381] whereby API stack traces were
modeled as an NLP problem. Embedding dimensions of size
50 to 200 were used to map the API stack trace that included
APIs that communicated all the way to the kernel. With the
use of a transformer architecture which learns latent rep-
resentation of the sequences, F1 scores as high as 96.2% were
obtained when considering registry APIs. Te authors in
[384] looked at developing a semantic transition matrix to
segregate API calls which have similar contexts into clusters.
Tis was conducted by capturing the relationship between
API calls that represent malware and benignware using
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Word2Vec [382], a word embedding technique which has
more powerful encoding ability than vanilla word embed-
ding approaches. More powerful encoders translate to better
ability to learn context, which was evident in their FP rate of
only 1%. A similar use of Word2Vec was followed by an
LSTM in [385] to analyze opcodes and API function names.
In total, 1369 API function names and opcodes were used, of
which 958 were API calls.

Several works have made use of the Windows PE
malware API sequence dataset [379], a dataset of over API
call sequence extracted from 7017 malicious binaries from 8
malware classes including Adware, Backdoors, Downloaders
Droppers, Apyware, Trojans, Viruses, and Worms. For this
dataset, [386] achieved poor results with a 0.38 F1 score
when using a 32-dimensional embedding to represent the
API sequences followed by a 2-layer LSTM. Teir approach
used 342 API calls and discarded those that were used less
than 10 times. Similar poor results were obtained in [387]
which reported F1 scores ranging from 0.33 to 0.72 for the 8
malware types based on a similar LSTM approach. Te work
of [388] went one step further and compared an LSTM
approach to that of a transformer and fnally to a bi-
directional encoder representation from transformers
(BERT). BERTrelies on learning latent representations from
both directional contexts from before and after sequences,
meaning that it does a better job encoding context of the API
sequence. In [388], they also used the Windows PE malware
dataset and found similar issues classifying the 8 classes with
a weighted F1 score of 0.51 on their best performing BERT
model. One approach that did fnd success using BERT was
that of [389] who implemented fastText [390], a text vec-
torizing technique based on n-gram. While removing re-
dundant API calls, such as NtDelayExecution, accuracies as
high as 96.76% using BERT were obtained.

6. Conclusions

Tis paper provides a systematic review of commonly used
obfuscation techniques used by malware variants and mu-
tation engine kits. Tis survey of the literature touched upon
several key indicators of obfuscation employed by malware,
which serves to better understand the nature of the reverse-
engineering process. Our work makes four core
contributions.

We noted the scope of malware and obfuscation
worldwide and presented some of the key red-fags noted by
antivirus (AV) vendors and researchers. Te numbers
suggest an aggressive increase in the number of threats and
the monetary cost associated with breaches, system in-
trusions, and downtime. In addition, we discussed some of
the string scanning techniques that are still very much in use
by AV vendors to this day.

We provided an examination of the popular obfuscation
techniques used to translate the opcode sequences of mal-
ware into semantic equivalent but diferent instructions.
Tese techniques have been integrated into popular muta-
tion engines for over a decade now and render much of the

reverse-engineering and legacy signature-based techniques
obsolete if used efectively. Tis presents a fundamental
problem for researchers and practitioners, but it has led to
the feld of dynamic analysis which examines the run-time
behavior of malicious executables.We also touched upon the
structure of metamorphic mutation engines, along with
encryption and compression, two very important behaviors
that serve as key indicators of maliciousness for a given
binary.

We provided a review of popularized malware data-
sets that are commonly used in malware research. Tese
datasets span applications in mobile malware, intrusion
detection, networking, and binaries. We also touched
upon some antiemulation and antiarmoring tactics in use
by malware to protect from examination under virtual-
ized environments.

Finally, some common approaches to feature analysis are
introduced which discusses the various ways Windows APIs
are categorized and vectorized to identify malicious binaries,
especially in the context of identifying obfuscated malware
variants.
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[342] A. Pektaş and T. Acarman, “Classifcation of malware
families based on runtime behaviors,” Journal of Information
Security and Applications, vol. 37, pp. 91–100, 2017.

[343] M. Rhode, L. Tuson, P. Burnap, and K. Jones, “LAB to SOC:
robust features for dynamic malware detection,” in Pro-
ceedings of the 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks – Industry
Track, pp. 13–16, Portland, OR, USA, June. 2019.

[344] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas,
“OPEM: a static-dynamic approach for machine-learning-
based malware detection,” in Proceedings of the International
Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special
Sessions, l. Herrero, V. Snášel, A. Abraham et al., Eds.,
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