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Multi-keyword conjunctive query is the most common searchable encryption (SE) scheme and gives practical search capability.
Tis paper focuses on constructing a conjunctive query scheme with high privacy and accurate query result. For efciency, this
paper introduces a novel counter vector (CV) data structure instead of inverted index and builds the CV index database with
three-tuple keywords. We use two kinds of cryptography primitives to encrypt the CV index database, respectively. One is
symmetric encryption for efciency, which gives two schemes, CVX and ICV. Experiments show that both CVX and ICV have
much higher efciency than the existing schemes. Te other is BGN homomorphic encryption for privacy and gives the scheme
HCV. HCV reduces much RP information leakage and even achieves “ideal” leakage for 3-keyword query. Experiments show that
the HCV scheme achieves high privacy while compromising not so much storage.

1. Introduction

With the wide application of cloud computing and the
commercialization of 5G, more and more people tend to
outsource their data. Some remote storage systems [1, 2]
help clients with limited resources to manage large amounts
of data at a very low cost. Although it brings great conve-
nience and higher efciency, the security and privacy issues
cannot be ignored. For example, famous social networking
site Facebook may have leaked data for millions of users to
a political frm Cambridge Analytica [3]. Encryption is
a simple solution to protect data security, but it would
prevent the data from being searched. Searchable encryption
(SE) can address this issue by providing a way to search
without decryption. Xiaodong et al. proposed the frst SE
scheme in 2000 [4]. Tey realized the retrieval of a keyword
on the encrypted data. Later, a series of practical SE schemes
[5–9] were proposed.

Te schemes mentioned above can only support single-
keyword queries. However, a practical system needs to fnd
the documents containing a set of keywords, which was
called conjunctive query. A naive method of conjunctive
query is to perform single-keyword query for each keyword

one by one and then flter the desired ones. Nevertheless, if
the resultant document set is very large for a keyword, this
method will have low efciency. Besides, this method causes
signifcant information leakage, as it reveals the resultant
document sets for each queried keyword. A passive attacker
in [10, 11] can leverage the common leakages in SSE schemes
to reveal the user’s query. Recently, Zhang et al. [12] pro-
posed an even more powerful attack, in which the attacker
can adaptively inject new documents. With this power, the
attacker can recover the content of user’s query by learning
which added documents match it [3].

Some conjunctive SSE schemes are proposed to com-
promise security and efciency. Golle et al. frstly proposed
the conjunctive equality queries [13]. Each conjunctive
query builds a set of tokens that can be used to identify
matching documents in the database. Teir methods only
leak the set of matching documents. However, the workload
of the server is heavy. Moreover, the communication
complexity between server and client is high. Te scalability
of this solution is limited [14]. Cash et al. [14] proposed the
frst conjunctive query scheme with sublinear searching
complexity, that is, “Oblivious Cross-Tags” (OXT). Before
that, all other solutions can only work linearly in the
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database’s size. Nevertheless, the OXT protocol leaks some
“partial” information to the server, containing the queries
themselves and the database contents. Result pattern (RP)
leakage is one of the information leakages mentioned in
OXT. Te adversary can use it to steal information. Te fle-
injection attacks [12] have exploited RP leakage to reveal all
queried keywords with 100% accuracy [15].

Kamara and Moataz [16] proposed highly efcient SSE
schemes with worst-case sublinear search and achieved
optimal communication complexity. Tey used the set
operations (union, intersection, and complement) for ef-
ciency. Also, their methods can support conjunctive, dis-
junctive, and Boolean queries. However, set operations
inevitably cause information leakage. For the sake of ef-
ciency and functionality, Kamara’s method does not prevent
RP information leakage. It leaks more than many other
solutions. Nevertheless, Kamara’s method of building the
inverted index is very worthy of our reference. Lai et al. [15]
analyzed the result pattern (RP) leakage and proposed
“Hidden Cross-Tags” (HXT). Te HXT protocol eliminates
keyword-pair result pattern (KPRP) leakage presented in the
OXT protocol, leaving only the minimal and signifcantly
smaller whole result pattern (WRP). Tus, the HXTprotocol
ofers high security than the OXT protocol. Although the
HXTprotocol is efcient and practical, it cannot get the full
query results because of using Bloom flter to build an index
database.

Yin et al. [17] proposed an efcient and privacy-
preserving multi-keyword conjunctive query over the
cloud.Tey used the binary tree structure and homomorphic
encryption to achieve high query efciency and small privacy
leakage. Tis method supports the multi-keyword con-
junctive query and protects its privacy. However, the scale of
this scheme is limited for the tree-based index.Tey gave the
experiment result based on eight keywords, not enough in
most of the settings.

Te existing scheme mentioned above cannot achieve
unnecessary information leakage and precise query results.
We make progress on these issues and give an afrmative
answer by constructing a practical SSE scheme. Our con-
struction has been focused on the conjunctive queries, like
OXT and HXT, since such queries are the most common in
many practical settings. In our construction, we assume that
the server is honest but curious and there are only one reader
and one writer.

1.1. Our Contribution. We make progress on the multi-
keyword conjunctive query and construct a method with
high privacy and accuracy query result. Te main contri-
bution of this paper can be summarized as follows:

(1) First, we progress on the multi-keyword conjunctive
query setting since it is a common search method for
most people. Unlike the index database based on
inverted index, we propose a novel data structur-
e—counter vector (CV)—to construct the index
database, which is the basis of our proposed solu-
tions. Using CV, we built a map from three-tuple
keywords to a fle-path collection containing all the

three keywords, and we designed an algorithm to
build the CV database as quickly as possible.
Compared to Kamara and Moataz’s multi-map [16],
CV achieves a higher search efciency while com-
promising storage efciency. Although the number
of three-tuple keywords is much larger than the
keyword pair, storage space’s natural growth is
limited due to the sparsity inverted index database.
However, due to the original single-word inverted
index database’s sparsity, the actual growth of
storage is limited. Experiments show that when the
keywords’ weight is less than 110 and the number of
keywords is not more than 512, the CV database
would add about 30% storage to the keyword-pair
database, and the search efciency improved dozens
of times.

(2) Second, we propose three schemes CVX, ICV, and
HCV, using two kinds of cryptography primitives
and CV data structure. CVX is the basic scheme
and has a much higher search efciency than
Kamara’s IEX. However, CVX’s search efciency is
greatly afected by the weight of keywords (i.e., the
number of documents containing a keyword). For
this reason, we propose the improved ICV, which
is more efcient for heavy-weight keywords. For
HCV, it uses BGN homomorphic encryption al-
gorithm to reduce the RP leakage [18]. We prove
that HCV achieved ideal leakage for a 3-keyword
query. All of these schemes have a strong practi-
cability. Tey are easy to implement and can work
on a PC.

(3) Tird, we analyze our scheme’s security and evaluate
the performance of all three schemes. Te experi-
ments show that both CVX and ICV have much
more searching efciency than Kamara’s IEX. When
the keywords’ weight is larger, ICV has a signifcant
advantage over CVX. For HCV, we analyze its pri-
vacy, indicating that it leaks less than Cash’s OXT
and gives the accuracy query results better than the
probabilistic result of Lai’s HXT.

We compared the performance of some schemes, and
Table 1 gives the details.

1.2. Related Work. Xiaodong et al. [4] gave the frst SSE
scheme, whose search complexity is linear to the size of
database. Later, Goh [8] introduced a search index for
each fle and made the search cost to be proportional to
the number of fles. Curtmola et al. [7] presented the
inverted index to achieving sublinear search complexity.
Tis scheme defned two formal security models and gave
a formal security defnition. To support expressive
queries, Golle et al. frstly proposed the conjunctive
equality queries [13]. In each conjunctive query, a set of
tokens can be built to identify matching documents in the
database. Teir methods leak little information; however,
the performance is not so good and the scalability of this
solution is limited.
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To support more scalable and expressive queries, Cash
et al. [14] proposed the Oblivious Cross-Tags (OXT) pro-
tocol with worst-case sublinear search complexity. Te OXT
protocol divides conjunctive search process into s-term and
x-terms. Te s-term is for a regular single-keyword search
and x-terms are used to acquire document identifers
containing multiple keywords. However, the OXT protocol
cannot avoid the “keyword-pair result pattern” (KPRP)
leakage, which can be exploited in recent attacks [10, 12].
Since then, a line of extensions [19–21] have been made for
OXT. However, such schemes actually trade of perfor-
mance, security, and functionality. To improve the efciency
of OXT, Kamara and Moataz [16] introduced two schemes
LEX-2Lev and LEX-ZMF, and both achieve worst-case
sublinear search complexity for Boolean query. Lai et al.
[15] proposed “Hidden Cross-Tags” (HXT) protocol, which
achieved conjunctive query and reduced the leakage of OXT.
Te HXT protocol used the “Cross-Tags Set” (XSet) data
structure and a lightweight Hidden Vector Encryption
(HVE) to encrypt it, and then it avoids the KPRP leakage. In
fact, HXT’s XSet is actually a Bloom flter, and thus it cannot
give the precise query result.

Very recently, some conjunctive SSE schemes with
extended functions are proposed. Wang et al. [22] pointed
out that the scheme proposed in article [23] is not correct.
A new SE scheme was proposed by adopting a special
additive homomorphic encryption scheme to achieve the
multiplicative homomorphic property efciently. Fur-
thermore, they enhanced the security on the user side. Ma
et al. presented a practical SSE protocol that supports
conjunctive queries without KPRP leakage [24]. Tey
proposed a novel SSE protocol called “Practical Hidden
Cross-Tags” (PHXT). Using subset membership check
(SMC), the PHXTprotocol maintains the same storage size
as OXTwhile preserving the same privacy and functionality
as HXT. Fan et al. [25] proposed a verifable conjunctive
keyword search scheme based on cuckoo flter (VCKSCF),
which signifcantly reduces verifcation and storage over-
head. Gan et al. also focused on the verifable conjunctive
SSE [26] and presented an efcient verifable SSE (VSSE)
scheme for conjunctive queries with sublinear search
overhead. VSSE is built on the OXTprotocol and completes
the verifcation through Symmetric Hidden Vector En-
cryption (SHVE) and greatly reduces the computation

payload in the verifcation process. For IoT application,
Zhang et al. [27] proposed a lightweight and efcient
attribute-based encryption scheme for data sharing and
searching (namely, LSABE). Teir scheme can signifcantly
reduce the computing cost of IoTdevices with the provision
of multiple keyword searching for data users.

Tis paper is organized as follows. We give the pre-
liminaries in Section 2. In Section 3, we depict the details of
the CVX SSE scheme, containing the proof of correctness
and evaluation of the efciency and security. Section 4
depicts the ICV scheme. In Section 5, we introduce the HCV
scheme. Te experiment results are shown in Section 6. We
conclude our method in Section 7.

2. Preliminary

We frst depict the notations and defnitions. Ten, we list
part of them in Table 2.

2.1. Notations. We denote all binary strings with length n as
0, 1{ }n and all fnite binary strings as 0, 1{ }∗. Let

[n] � 1, . . . , n{ }, and 2[n] is the corresponding power set. An
element x sampled from a distribution χ is denoted as x⟵ χ.
x⟵A represents that the elementx is output by algorithmA.
For a tuple v of n elements, its ith element can be denoted as vi

or v[i]. Given an element s ∈ v, let l− 1(s) denote the index of s

in v. For a set S, we use #S to represent its cardinality. For
a string s, |s| means its bit length and si means its ith bit. Given
strings s and r, s‖r refers to their concatenation.

Multi-map (MM) is an abstract data type. Typically, it
can be instantiated by an inverted index. MMwith capacity n

is a collection of n label/tuple pairs (li, Vi)i≤n. Getting the
tuple associated with label li can be denoted as Vi � MM[li].
Similarly, associating the tuple Vi to label li can be denoted
as MM[li] � Vi.

Te symbol D � (D1, . . . , Dn) denotes a document
collection. Each document contains a number of keywords
from the universe W. Te ith keyword in W can be denoted
as W[i], and the document identifer can be denoted as
id(Di). Each multi-map can be regarded as a database and
denoted as DB. Te document collection containing key-
word w can be written as DB(w), and the set of keywords in
W that co-occur with w can be written as coDB(w)⊆W.

Table 1: Property comparison.

Scheme PI RPH Conj Query computation Query comm
CGKO’06-1 [7] — — — O (r) (1)
CGKO’06-2 [7] — — — O (r) O (r)
Cash’13-OXT [14] √ — √ O ((q− 1) r) O (q · r)

Kamara’17-IEX [16] — — √ O(q2 · M1) O (q2/2)
Kamara’17-BIEX [16] — — √ O (q2 · (M1 + l · M2)) O (q3/2)
Lai’s SHVE [18] √ √ √ O (q · r) O (q · r)

Yin’s scheme [17] — √ √ O (r) O (q)
HCV (our scheme) — √ √ O (􏼆(q − 1)/2􏼇 · r) O (􏼆(q − 1)/2􏼇 · r)

We substitute many leakages by upper bounds and assume some search times’ interaction. “PI” means probabilistic (Bloom flter) indexing, “RPH” means
result pattern hiding, “Conj” means supporting conjunctive query or not, and “Query comm” means the size of message from client. For notations, qmeans
the number of queried keywords, n � # do cuments, N � 􏽐

w

|DB(w)|, m � |W|, M � maxw|DB(w)|, r � |DB(w1)| for the conjunctive query and |DB(w)| for

single-word query, p � #processors, and M1 � max #DB(wi)􏼈 􏼉i∈[q].
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Informally, for a private-key encryption scheme, if its
ciphertexts do not reveal any partial information about the
plaintext even to an adversary that can adaptively query an
encryption oracle, we say it is secure against chosen-
plaintext attacks (CPAs). Similarly, if its ciphertexts are
computationally indistinguishable from random even to an
adversary that can adaptively query an encryption oracle, we
say it is random-ciphertext-secure against chosen-plaintext
attacks (RCPAs) [28].

2.2. Result Pattern Hiding Searchable Encryption. Lai et al.
[15] proposed result pattern (RP) hiding searchable en-
cryption to resist RP leakage proposed by Cash et al. [14]. RP
leakage is the leaked information obtained by the server
during query. In [15], Lai et al. analyzed the RP leakage and
gave three forms: single-keyword result pattern (SP) leakage,
keyword-pair result pattern (KPRP) leakage, and multiple
keyword cross-query intersection result pattern (IP) leakage.

Te KPRP leakage is a “nonideal” leakage and can be
eliminated. Consider an n-keyword conjunction query
w1 ∧ · · · ∧wn; during this process, the server gets the set
DB(w1)∩DB(wi) of documents containing every pair of
query keywords of form (w1, wi), 2≤i≤n, and it can acquire
the fnal query result, which is the set ∩ n

j�1DB(wj) of
documents matching all n query keywords.

Only the fnal query result, which is called whole result
pattern (WRP) leakage, cannot be avoided during this
process. In addition, other leaks are intermediate links in the
query process and can be reduced in some ways.

2.3. Bilinear Groups and Homomorphic Encryption

2.3.1. Bilinear Groups of Composite Order. Given a security
parameter k, generate a tuple (N, g,G, GT, e), whereN� p · q

and p, q are two k-bit prime numbers. G and GT are two
fnite cyclic multiplicative groups of composite order N,
g ∈ G is a generator, and e: G × G, G⟶ GT is a bilinear
map with the following properties:

(i) Bilinearity. e(ga, hb) � e(g, h)ab for any (g, h) ∈ G2

and a, b ∈ ZN.
(ii) Nondegeneracy. If g is a generator of G, then e(g, g)

is a generator of GT with order N.

(iii) Computability. Tere exists an efcient algorithm to
compute e(g, h) ∈ GT for all (g, h) ∈ G.

2.3.2. BGN Homomorphic Encryption. Te Bone-
h–Goh–Nissim (BGN) [29] homomorphic encryption in-
cludes three algorithms: key generation, encryption, and
decryption. We give the detailed depiction as follows.

(i) Key generation: Given a security parameter k,
generate a tuple (N, g, G, GT, e) as described in
Section 2.3.1. Set h � gq; then, h is a random gen-
erator of the subgroup of G of order p. Compute the
key pair, containing the private key sk � p and the
public key pk � (N, G, GT, e, g, h).

(ii) Encryption: let m denote the message to be
encrypted, choose a random number ∈ ZN, and
compute the ciphertext c � E(m, r) � gmhr ∈ G.

(iii) Decryption: Given the ciphertext c � E(m, r) �

gmhr ∈ G, then compute cp � (gmhr)p � (gp)m. Set
􏽢g � gp and compute the discrete log of cp base 􏽢g

according to Pollard’s lambda method (see [30]
(p.128) and [17]).

3. The Basic Scheme

In this section, we will introduce the basic multi-keyword
conjunctive query scheme proposed in this paper. First
of all, we give the details of a counter vector data
structure.

3.1. Counter Vector and Counter Vector Database

3.1.1. Counter Vector. A counter vector cv with length n is an
array of n integers. Given a three-tuple(w1, w2, w3), suppose
DB(w1) contains seven fles fid1, . . . , fid7, and we can get
counter vector cv as in Table 1. A collection of counter-
vectors compose of CV database..

Given a counter vector cv � x1, . . . , xn􏼈 􏼉, we can easily
query the 2-conjunctive keywords (w1, w2) and 3-
conjunctive keywords (w1, w2, w3) as follows:

(1) Initialize a result set T � ∅.
(2) For i � 1, . . . , n,

Table 2: Notations and terminologies.

Notation Meaning
k A security parameter
idi Te document identifer of the ith document
n Number of documents in the database
Wi All w contained in idi
(li, Vi) (label, value) pairs
W, K Te set of all keywords, the key used to encrypt
D Te set of all documents (D1, . . . , Dn)

DB, EDB Database (idi, Wi)
n
i�1, encrypted DB

DB (w), coDB (w) Inverted index ids: w ∈Wid􏼈 􏼉, keywords co-occurring with w

MM, EMM Multi-map, encrypted MM
CV, ECV Counter vector, encrypted CV
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(a) For 2-conjunctive queries, if (xi ≥ 1), then we
append fidi in T.

(b) For 3-conjunctive queries, if (xi �� 2), then we
append fidi in T.

In fact, our constructions are mainly based on the
counter vector. First, we make database (DB) containing CV
and MM. Ten, we encrypt them separately to get
EDB� (EMM, ECV). During the search, we decrypt and get
the counter vectors frst and then query them to get the
result.

3.1.2. Counter Vector Database. In the proposed mecha-
nism, we need to construct CV database. Te details are
shown in Algorithm 1.

Step 1: sort the original inverted index according to the
length of DB (w).
Step 2: for each keyword pair (wi, wj), initial a integer
vector cv with length #DB(wi), and compute
DB(wi ∧wj).
Step 3: for each three-tuple(wi, wj, wk), compute
DB(wi ∧wj ∧wk) and get the counter vectors as in
Table 1.

Once fnishing all three tuples, we can get the CV
database.

Here, we give a defnition of symbol ⊗ , which will be
used in the following algorithm. For two counter vectors
cv1 � (c1,1, c1,2, . . . , c1,n) and cv2 � (c2,1, c2,2, . . . , c2,n), where
ci,j ∈ 0, 1, 2{ }, i � 1, 2, 1≤j≤n, defne c � c1 ⊗ c2 as follows.

If c1,j � c2,j � 2, then c[j] � 1; else, c[j] � 0.

3.2. Description of CVX Scheme. CVX mechanism is the
basic scheme we proposed. It consisted of three modules:
Setup, Token, and Query. Te Setup generates an index
database DB and encrypts it to EDB. Token outputs a token
with the key and keyword set. Query returns the queried
result once given the token and EDB.Tese modules contain
several algorithms:

(i) A CV encryption scheme 􏽐
CV

� (Setup,Token,Get),
which is adaptive secure.

(ii) A black-box multi-map encryption scheme
􏽐MM � (Setup,Token,Query).

(iii) A private-key encryption scheme SKE� (Gen, Enc,
Dec), which is RCPA-secure.

(iv) A pseudo-random function F.
(v) A function GetTag ·{ }, which is used to get tags given

the counter vector and document database.

Te CV structure is a multi-map data structure with
diferent contents from the MM, so CV andMM support the
same encryption algorithm, but it will be diferent in the
process of Search. We choose a black-box MM encryption
scheme as in Kamara and Moataz [16].

Te project is depicted as follows.

(i) Setup. In the Setup modules, an index database
DB was generated and encrypted to be EDB.
Given the security parameter k, compute the keys
for encryption. Ten, given the keyword/docID
pairs, we can generate an inverted index database
MM and get a counter vector using Algorithm 1.
MM maps each keyword w ∈W to encrypted
identifers in DB (w). CV maps each three-
tuple(wi, wj, wk) to a vector of integers. Finally,
encrypt the MM and CV using algorithms 􏽐MM
and 􏽐CV, respectively. We can get encrypted
multi-maps (EMM) and encrypted counter vec-
tors (ECV). All the output of Setup mainly
contains the encrypted structures EDB = (EMM,
ECV) and their keys.

(ii) Token. Given the key and a set of queried keywords
w � (w1, . . . , wq), the Token algorithm outputs the
token TK= (gtk, ltk). gtk is the global token used to
query the MM. ltk is local token used to query the
CV. ltk contains 􏼆( q − 1)/2􏼇 subtokens. Take q � 5
for example, gtk is calculated from w1, and ltk
contains two subtokens (stk) computed from
(w1, w2, w3) and (w1, w4, w5), respectively.

(iii) Query. We can get the output result of Query using
the following steps. First of all, input the EMM and
global token , and we can get the encrypted multi-
maps mm=DB (w1). Second, from ECV using the

local token ltk � stk1, . . . , stk⌈(q−1)/2⌉􏼚 􏼛, get

encrypted counter vectors
cvi, i � 1, . . . , 􏼆(q − 1)/2􏼇. Tird, decrypt them us-
ing the exiting encryption schemes 􏽐MM and 􏽐CV
separately. Subsequently, for each cvi, get the set Si

of tags according to the counter, compute the in-
tersection S � ∩ Si, and output the set S.

We detailed the CV-based conjunctive SSE scheme
CVX� (Setup, Token, Query) in Algorithm 2.

3.3. Correctness and Efciency. In this subsection, we prove
the correctness and analyze the efciency of our scheme.

3.3.1. Correctness. To show the correctness of CVX, we
consider the operations of the counter vectors. For a com-
mon conjunctive query w � (w1 ∧ · · · ∧wq), the output of
CVX.Query (EDB, tk) is

T � 􏽜

⌈(q−1)/2⌉

i�1
Ti. (1)

We want to get T for conjunctive queries, where

T � 􏽜

q

i�1
DBi. (2)

We know that

Security and Communication Networks 5



T � 􏽜

q

i�1
DBi

� DB w1( 􏼁∩DB w2( 􏼁∩DB w3( 􏼁( 􏼁∩DB w1( 􏼁∩

DB w4( 􏼁∩DB w5( 􏼁∩ · · · ∩DB w1( 􏼁

∩DB wq−1􏼐 􏼑∩DB wq􏼐 􏼑􏼑

� 􏽜

⌈(q−1)/2⌉

i�1
Ti.

(3)

3.3.2. Efciency. Te Query complexity of BVX is
O(􏼆(q − 1)/2􏼇􏼁. Te size of tokens is O(􏼆(q − 1)/2􏼇􏼁. Te
community complexity achieves optimal because the search
result has no redundancy. Te storage complexity is

O strg 􏽘
w

#DB(w)⎛⎝ ⎞⎠ + 􏽘
w

Cw ×(#co(w) + #co(w, v))( 􏼁⎛⎝ ⎞⎠.

(4)

Input: inverted index
Output: CV database

(1) sort the original inverted index according to #DB(w);
(2) for 0≤ i≤N − 1, i≤ j≤N do
(3) compute Si,j � DB(wi)∩DB(wj);
(4) if Si,j ≠∅ then
(5) initial the tmpi,j of length #DB(w) with 0;
(6) while tagl ∈ Si,j, l ∈ [#DB(w)] do CV[l]+ � 1;
(7) end
(8) end
(9) for0≤ i≤N − 2, i≤ j≤N − 1,j≤ k≤N do
(10) if (Si,j ≠∅)and(Si,k ≠∅) then
(11) compute S � Si,j ∩ Si,k;
(12) if S≠∅ initial the CV with length #DB(w), let CVi,j,k � tmpi,j; while tagl ∈ S do CVi,j,k[l]+ � 1;
(13) end
(14) end

ALGORITHM 1: Generation of CV database.

(1) —Setup
Input: k, inverted index
Output: K, EDB

(2) a. initialize a multi-map MM, for all w ∈W, pad the MM(w) according to DB(w);
(3) b. initialize a counter-vectorCV, generate the CV database using Algorithm 1;
(4) c. compute (Kg,EMM)⟵ 􏽐

MM
.Setup(1k,MM);

(5) d. compute (Kl,ECV)⟵ 􏽐
CV

.Setup(1k,CV);

(6) set K � (Kg, Kl) and � (EMM, ECV);
(7) return (K,EDB).
(8) —Token(K,w):

Input: a subset V � w1, . . . , wq􏽮 􏽯

Output: token tk
(9) compute gtk�H (w1);
(10) For l � 1: 􏼆( q − 1)/2􏼇

(11) select a three-tuple (w1, wi, wj);
(12) compute ⟵H1(w1)‖H2(w2)‖H3(w3) ;
(13) stkl⟵H(d);
(14) set ltk � stkl􏼈 􏼉l�1: ⌈(q−1)/2⌉;

(15) return tk � gtk, ltk􏼈 􏼉;
(16) —Query(EDB, tk):
(17) parse EDB as (EMM,ECV);
(18) parse tk as (gtk, ltk), parse ltk as (stk1, . . . , stk⌈(q−1)/2⌉);
(19) a. compute T⟵ 􏽐

MM
.Get(EMM, gtki);

(20) b. for all j � 1, . . . , 􏼆( q − 1)/2􏼇, compute cvj⟵ 􏽐
CV

.Get(ECV, stkj);

(21) c. for j � 1, . . . , 􏼆( q − 1)/2􏼇, compute t � cv1 ⊗ · · · ⊗ cv⌈(q−1)/2⌉
(22) T � GetTag(t)

ALGORITHM 2: Basic CV SSE.
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Cw is a constant relating to w. #co(w) is the number of
keyword sets which contain pairs (w, v), w, v ∈W. #co(w, v)

is the number of keyword sets which contain three-
tuple(w, v, u), w, v, u ∈W. strg is the storage complexity
of 􏽐MM, which is a black-box multi-map encryption scheme
used in this paper.

3.4. Security Analysis. CVX is adaptive secure on condition
of controlled disclosure [6]. We mainly consider its leakage
functions, which include the Setup leakage and Query
leakage. Te details of the CVX leakage profle is depicted
below. Its Setup leakage is

L
cvx
S (DB) � L

mm
S (MM),L

cvx
S (CV)( 􏼁, (5)

where Lmm
S (MM) and Lcvx

S (CV) are the Setup leakages of
the multi-map encryption schemes and counter vector
encryption schemes, respectively. Te Query leakage is

L
cvx
Q (DB, w) � L

mm
S (MM),

L
mm
Q MM, w1( 􏼁,

L
cv
Q CV, w1, w2i, w2i+1( 􏼁,

. . .

L
cv
Q CV, wq−1, wq􏼐 􏼑,

TagPati(DB, w)i∈[1,...,⌈(q−1)/2⌉],

(6)

where for all 1≤i≤􏼆( q − 1)/2􏼇,

TagPati(DB, w) � fi(id)( 􏼁id∈DB w1∩w2∗i( )∩DB w2∗i+1( )􏼒 , . . . ,

fi(id)( 􏼁
id∈DB w1∩wq−1( 􏼁∩DB wq( 􏼁􏼓,

(7)

and fi is a random function from 0, 1{ }∣id∣+log #W to 0, 1{ }k.
If the defnition of adaptive security is similar to Kamara

and Moataz [16] (Defnition 4.2), we give the theorem as
follows.

Theorem 1. CVX is (Lcvx
S ,Lcvx

Q )-secure on the condition
that 􏽐MM and 􏽐CV are adaptively (Lmm

S ,Lmm
Q )-secure, SKE

is RCPA-secure, and F is pseudo-random.

Proof. Suppose SCV and SMM are the simulators guaran-
teed to exist from 􏽐MM and 􏽐CV’s adaptive semantic se-
curity. To simulate EDB, the simulator S for CVX takes the
Setup leakage as input:

L
cvx
S � L

mm
S (MM),L

cv
S (CV)( 􏼁, (8)

computes EMM⟵SMM LS(MM)􏼈 􏼉, ECV⟵SCV(Lbv
S

(CV)), and outputs EDB � (ECV,EMM).

If a token was simulated, it takes the Query leakage as
input:

L
cvx
Q (EDB, w) �

L
mm
S MM1( 􏼁,

L
cv
Q CV, w1, w2∗i, w2∗i+1( 􏼁,

· · · ,

L
cv
Q CV, w1, wq−1, wq􏼐 􏼑,

TagPati(EDB, w)􏼁1≤i≤⌈(q−1)/2⌉,

(9)

and then, a token tk � (gtk, ltk) can be acquired. For all
1≤i≤􏼆( q − 1)/2􏼇, we set ltk � (stk1, . . . , stk⌈(q−1)/2⌉).

Te gtk can be simulated as

gtk⟵ SMM L
cv
Q CVi, w1, w2∗i, w2∗i+1( 􏼁, cv􏼐 􏼑. (10)

For all 1≤i≤􏼆( q − 1)/2􏼇, stk is simulated as

stki � SMM L
cv
Q CV, wi( 􏼁, tagid( 􏼁

id∈DB wi( )∩DB wj( 􏼁∩DB wk( )
􏼒 􏼓.

(11)

As we know, for all probabilistic polynomial-time ad-
versaries A, the probability Real(k) outputs 1 and Ideal(k)
outputs 1 is very close. Tat is, if the ΣCV and ΣMMare
adaptive security, the SKE is RCPA-security, and the F is
pseudo-randomness, then the simulated EDB and tk are
indistinguishable from the real EDB and tk. It shows that
the leaked random tag is indistinguishable from the
encrypted identifer in the Real(k) experiment. □

4. Improved CV Scheme (ICV)

4.1. Description of ICV. Firstly, we set #DB(w) to be
the weight of keyword w. When the average weight of
all keywords is larger, the CVX will be less efcient. For
this reason, we improve the CVX and propose ICV
scheme, which is more efcient when the average weight
is heavy.

Similar to CVX, ICV has three modules (Setup, Token,
and Query) and fve security algorithms that are ΣCV, ΣMM,
private-key encryption scheme SKE, pseudo-random
function F, and GetTag ·{ } function.

Te biggest diference between CVX and ICV lies in the
construct of DB. In CVX, the MM is the inverted index,
while ICV uses two-dimensional inverted index to construct
MM. Tat is, for each keyword pair (wi, wj), 1≤i, j≤ ∣W ∣ ,
compute the DB (wi ∩wj), pad it to the value of MM [i, j],
and then we get a two-dimensional MM, i.e., each label li,j
corresponds to the set DB(wi ∩wj).

Obviously, we can query a keyword pair easily using the
MM. For a single-keyword query, we only need to let i � j,
that is, to acquire DB(wi ∩wi). For q-conjunctive query,
where q≥ 3, we can parse it to (q − 2)three-tuples,
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w1 ∧w2 · · · ∧wq � w1 ∧w2 ∧w3( 􏼁∧ · · · ∧ w1 ∧w2 ∧wq􏼐 􏼑,

(12)

and then, query each three-tuple to get a set Si, 1≤i≤q − 2,
and then output the result S � ∩ q−2

i�1 .
Te scheme is depicted as follows.

(i) Setup. In the Setup process, an index database is
generated and encrypted. Firstly, given the security
parameter k, we can compute the keys. Ten, cal-
culate the two-dimensional index database MM
using the keyword/docID pairs. For every keyword
pair wi, wj ∈W, MM maps it to encrypted identi-
fers in DB (wi ∩wj). Otherwise, given a new
keyword wk, compute a binary counter vector cvi,j

with length ∣ DB(wi ∩wj) ∣ ; if
tagii ∈ DB(wi ∧wj · · · ∧wk), set the cvi,j[ii] to be
value “1”; otherwise, set it to “0.” Up to now, CV
maps each three-tuple (wi, wj, wk) to a vector of
binary integers with length #DB(wi ∩wj).
Finally, encrypt the MM and CV using algorithms
ΣMM and ΣCV, respectively. We can get EMM and
ECV. All the output of Setup mainly contains the
encrypted structures EDB� (EMM, ECV) and
their keys.

(ii) Token. Given the key and a set of queried keywords
w � (w1, . . . , wq), suppose q≥ 3, and the Token
algorithm generates the token TK � (gtk, ltk). gtk

is the global token obtained from (w1, w2) and is
used to query the MM. ltk contains q − 2 subtokens,
(stk1, . . . , stkq−2). Each stki is calculated from
(w1, w2, wi), i � 3, . . . , q.

(iii) Query. We can get the results of Query through the
following steps. First of all, input the EMM and
global token gtk, we can get MM�DB (w1 ∩w2).
Ten, parse the ltk � (stk1, . . . , stkq−2), for each
stki, query ECV and get encrypted counter vectors
ecvi, i � 1, . . . , q − 2, and decrypt them to cvi using
ΣCV, separately. Finally, for each cvi, run GetTag ·{ }

to get the set Si. If we have all the subtokens pro-
cessed, compute the intersection S � ∩ Si and
output the set S.

Te details of the ICV SSE scheme ICV� (Setup, Token,
Query) are given in Algorithm 3.

4.2. Correctness and Efciency. We now analyze the cor-
rectness and efciency.

4.2.1. Correctness. To show the correctness of ICV, we
consider the operations of the counter vectors. For a com-
mon conjunctive query w � (w1 ∧ · · · ∧wq), we can get the
following equation, which gives the correctness of the ICV.

T � 􏽜

q

i�1
DBi

� DB w1( 􏼁∩DB w2( 􏼁∩DB w3( 􏼁( 􏼁

∩ DB w1( 􏼁∩DB w2( 􏼁∩DB w4( 􏼁( 􏼁

∩ · · · ∩ DB w1( 􏼁∩DB w2( 􏼁∩DB wq􏼐 􏼑􏼐 􏼑􏼑

� S∩DB w3( 􏼁( 􏼁∩ · · · ∩ S∩DB wq􏼐 􏼑􏼐 􏼑.

(13)

4.2.2. Efciency. Te Query complexity of ICV is O(q − 2).
Te sizes of tokens are O(q − 2). Te community complexity
achieves optimal because the search result has no re-
dundancy. Te storage complexity is

O strg 􏽘
w,v

#DB(w∩ v)⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + 􏽘
w,v

Cw,v ×(#co(w, v))􏼐 􏼑,

(14)

where Cw,v is a constant relating to w, v and strg is the
storage complexity of ΣMM, which is a black-box multi-map
encryption scheme used in this paper.

4.3. Security Analysis. Because the CVX and the ICV use the
same data structures MM and CV and use the same algo-
rithm for security, their safety performance is equivalent and
can be proved in the same way.

5. Hidden Result Pattern CV SSE (HCV)

In this section, we propose our new hidden result pattern
conjunctive keyword query scheme. Tis scheme employs
Yin et al.’s scheme [17] to decrease the result pattern leakage.
Unlike Lai’s HXT scheme, we do not use the Bloom flter to
construct index database, so our HCV can achieve accurate
query and even ideal leakage when q� 3. Te details of HCV
are given as follows.

5.1. Description of HCV. HCV mechanism consists of three
modules: Setup, Token, and Search. In Setup module, an
index database DB was generated and encrypted to EDB.
Token outputs a token tk for searching with the key and
keyword set. Query returns the queried result once given the
token and EDB. Tese modules contain several algorithms:

(i) A hidden vector CV encryption scheme
􏽐

HCV
� (Setup,Token,Get), which uses BGN ho-

momorphic encryption technique to protect its
privacy.

(ii) A black-box multi-map encryption scheme
􏽐
MM

� (Setup,Token,Query).

(iii) A private-key encryption scheme SKE� (Gen, Enc,
Dec), which is RCPA-secure.
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(iv) A pseudo-random function F.

Te project is depicted as follows.

5.1.1. Setup. In the Setup process, an index database is
generated encrypted. Firstly, it generates a MM and CV
database using the samemethod as 􏽐

CVX
.Setup.Ten, encrypt

the MM and CV, respectively.
MM is encrypted using the existing black-box encryp-

tion scheme ΣMM, outputting EMM. CV is encrypted using
ΣHCV based on BGN homomorphic encryption technique.
All the output of Setup mainly contains the encrypted
structures EDB� (EMM, ECV) and their keys.
ΣHCV is depicted as follows.

(a) Initialize: Compute a pair of public key
pk � (N, G, GT, e, g, h) and the private key sk � p,
according to the given security parameter k. Further,
a one-way hash function H: 0, 1{ }∗ ⟶ ZN was
initialized by the data user, and three random
numbers R0, R1, and R2 were chosen from ZN. Te
tuple sk, R0, R1, R2􏼈 􏼉 and keyword dictionary W are

kept secret, and the key pk, H􏼈 􏼉 is sent to the cloud
server.

(b) Encrypt CV: for each three-tuple w � (wi1
, wi2

, wi3
),

we can get a cv tw � t1, . . . , tn􏼈 􏼉, ti ∈ 0, 1, 2{ }, and the
user encrypts it as

ci � e(g, g)
H Rti

‖i􏼐 􏼑·q
, (15)

where R0, R1, R2 are three random numbers owned
by the data user. Ten, each counter vector tw can be
encrypted to c � c1, . . . , cn􏼈 􏼉, and all of the encrypted
counter vectors constitute the ECV.

(c) Encrypt fles: encrypt each fle fj ∈ D using the
existing SKE encryption scheme, and then send them
to the cloud server, as well as the EMM and ECV.

5.1.2. Token. It is the same as CVX.

5.1.3. Query. Te conjunctive query between client and
server can be done as follows.

(1) —Setup
Input: k, inverted index
Output: K, EDB

(2) a. initialize a multi-map MM,
(3) for all wi, wj ∈W, 1≤ i, j≤ #W,
(4) compute MM(i, j)⟵DB(wi ∩wj);
(5) b. initialize a binary integer vector cv with length #DB(wi ∩wj),
(6) for all wk, k≠ i, j,
(7) compute Si,j,k � DB(wi ∩wj ∩wj);
(8) for each s ∈ Si,j,k,
(9) cv[MM(i, j)− 1(s)] � 1;
(10) c. compute (Kg,EMM)⟵ 􏽐

MM
.Setup(1k,MM);

(11) compute (Kl,ECV)⟵ 􏽐
CV

.Setup(1k,CV);

(12) set K � (Kg, Kl) and EDB � (EMM, ECV);
(13) return (K,EDB).
(14) —Token(K, w):

Input: a subset V � w1, . . . , wq􏽮 􏽯

Output: token tk
(15) compute global token tk⟵ hash(w1‖w2)

(16) compute local token ltk � (stk1, . . . , stkq−2):
(17) for i � 1, . . . , q − 2, do
(18) stki � hash2(gtk‖hash1(wi+2));
(19) output tk � (gtk, ltk)

(20) return tk;
(21) —Query(EDB, tk):
(22) parse EDB as (EMM,ECV);
(23) parse tk as (gtk, ltk), parse ltk as (stk1, . . . , stkq−2);
(24) (a)compute T⟵􏽐MM.Get(EMM, gtki);
(25) (b)for all j � 1, . . . , q − 2, compute
(26) cvj⟵􏽐CV.Get(ECV, stkj);
(27) (c)compute t � cv1& · · ·&cvq−2,
(28) S � GetTag(t)

(29) output S;

ALGORITHM 3: ICV SSE.
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(a) Te client sends the token tk to server. Server
parses it as some subtokens stki􏼈 􏼉, for each i, query
the ECV, and if one of the queries returns ∅, then
return ∅ to the client and end the search. Oth-
erwise, send a new query request command to
client.

(b) Once received query request, client initializes a in-
teger vector V of length n, sets each element of V to
a fxed value, which can be chosen from 0, 1, 2{ },
chooses n random numbers r0, r1, . . . , rn, and en-
crypts the vector V as E(V), where

E(V)[i] � g
H Rv‖i( )+p·ri . (16)

Client sends the subtokens and E(V)s to the server.
(c) After receiving the subtokens and E(V)s, the cloud

server performs the search operation. For each
subtoken stki, the server initializes a 1 × n vector Pi,
computes Ti � ECV[stki], and then for each
0≤j≤n − 1, computes e(E(V)[j], h) and matches it
with the jth element of Ti. If e(E(V)[j], h) �� Ti[j],
it sets P[j] � 1; otherwise, it sets P[j] � 0. Ten, the
server gets each Pi using the same method and
computes the intersection of P � ∩Pi.

(d) Finally, the server computes S � GetTag P{ } and
outputs S as the search result.

Te details of the HCV SSE scheme HCV� (Setup,
Token, Query) are given in Algorithm 4.

5.2. Correctness and Efciency. In this subsection, we prove
the correctness and analyze the efciency.

5.2.1. Correctness. Te correctness of HCV can be proved
using the following equation. While it is true, the
check operations in 􏽐

HCV
.Query is valid, and the result is

correct.

e(E(V)[i], h) � e g
H Rv‖i( )+p _ri , g

q
􏼒 􏼓

� e(g, g)
H Rv‖i( )+p _ri( )·q

� e(g, g)
H Rv‖i( )q+pq _ri( )

� e(g, g)
H Rv‖i( )q( )

� T[i].

(17)

5.2.2. Efciency. Te search complexity of HCV is
O(􏼆(q − 1)/2􏼇􏼁. Te sizes of Tokens are O(􏼆(q − 1)/2􏼇􏼁. Te
communication complexity achieves optimal because the
search result has no redundancy. For CVX and HCV, they
have the same CV data structure before encryption, while
the encryption algorithm of CVX keeps the length of en-
cryption unchanged, and HCV extends the length of

encryption to N times, so the storage complexity of HCV is
N times over CVX, where N is determined by HCV’s se-
curity parameter k.

5.3. Security Analysis. In this section, the privacy and se-
curity of the HCV can be analyzed. We keep our eyes on two
types of security: one is the RP leakage, and the other is the
privacy of outsourcing data and conjunctive queries.

5.3.1. RP Leakage Comparison. We consider two leakage
components: KPRP and WRP, and illustrate the diference.
For example, given a database containing six documents
labelled by idi􏼈 􏼉1≤i≤6 and each document contains some
keywords. Te details are listed in Table 3.

Consider the conjunctive query w1 ∧w2 ∧w3. Suppose
the keyword w1 is the least frequent. For the three queried
keywords, the inverted indexes are listed below:
DB(w1) � id1, id4, id5􏼈 􏼉, DB(w2) � id1, id2, id4, id6􏼈 􏼉, and
DB(w3) � id2, id4, id5, id6􏼈 􏼉.

Firstly, we compute the RP leakage component in Cash’s
OXT:

RP � 􏽛

3

j�2
DB w1( 􏼁∩DB wj􏼐 􏼑􏼐 􏼑 � id1, id4􏼈 􏼉∪ id4, id5􏼈 􏼉. (18)

As shown in Table 4, the RP leakage reveals 4 entries of
the inverted index.

Lai’s HXT protocol eliminates the “partial query”
(KPRP) leakage, which is a part of RP leakage. It only has the
leakage of whole result pattern (WRP). Actually, in HXT,
WRP � ∩ 3j�1DB(wj). Te HXT protocol reveals the exact
result of the query, that is, only id4{ }. However, the HXT
protocol leaks two entries w2 and w3 as shown in Table 4.

Our scheme HCV reveals the exact result id4{ }, which is
ideal leakage. Besides, HCV reveals nothing about the entry.
Te server only gets the encrypted keyword-tuples. Te
leakage comparison is given in Table 5.

5.3.2. HCV Privacy-Preserving

(1) Outsourcing Data Is Privacy-Preserving. In HCV scheme,
the outsourced data include a fle collection and an index
database, both of which are encrypted. Te encrypted fles
are secure because the server does nothing to them. Consider
the encrypted index, and it includes two data structures, MM
and CV data structures. For MM, we use a black-box MM
encryption scheme, and the security is not discussed here.
For the CV structure, as described in Section 5.1, it contains
n encrypted elements represented as
e(g, g)H(Rti

‖i)q, i � 1, 2, . . . , n, where ti ∈ 0, 1, 2{ }. Teorem 2
shows that the cloud server can get nothing related to ti.

Theorem 2. If H is a secure one-way hash function, the cloud
server can get nothing related to ti ∈ 0, 1, 2{ } from the
encrypted CV database.
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Proof. Now we prove the correctness of the theorem.
On the one hand, for each encrypted element

e(g, g)H(Rti
‖i)q, to get the value of Rti

, the server can inverse
the function H or exhaust the value of Rti

. However, H is

a one-way function, it cannot be inverted. Meanwhile, Rti
is

a very large integer (i.e., 1024 bit). It is impossible currently
to exhaust it. To guess the value, the cloud server only has 1/3
probability to get correct result for each element, as
ti ∈ 0, 1, 2{ }.

On the other hand, for diferent encrypted elements, e.g.,
e(g, g)H(Rti

‖i)q and e(g, g)
H(Rtj

‖j)q, if i≠ j, the server cannot
know whether ti and tj have the same value as H is a secure
one-way hash function.

Te cloud server gets nothing about ti(1≤i≤d) from the
encrypted tag array [17]. □

(2) Conjunctive Query Is Privacy-Preserving.Te conjunctive
query contains three steps: query request, query processing,
and query response.

(1) —Setup
Input: Security Parameter k, Inverted Index
Output: K, EDB

(2) Generate key K � Kg, Kl􏽮 􏽯 according to k;

(3) Get the EMM as in 􏽐
CVX

.Setup;

(4) Compute CV database using Algorithm 1;
(5) Encrypt CV as equation (15) to acquire ECV;
(6) set K � Kg, Kl􏽮 􏽯, EDB � EMM,ECV{ }

(7) return (K,EDB).
(8) —Token
(9) Te same as CVX.
(10) —Query;

Input: tk, EDB
Output: result

(11) initialize a 1 × n tag vector S;
(12) initialize a 1 × n bool vector P;
(13) initialize a 1 × n integer vector T;
(14) (a) Server parse tk � (gtk, ltk), and parse ltk � stk1, . . . , stk⌈(q−1)/2⌉􏼚 􏼛;
(15) for l � 1: 􏼆( q − 1)/2􏼇 do
(16) if[stkl] �� ∅ ;
(17) returnresult � ∅;
(18) Server send Query Request command to Client.
(19) (b) for l � 1: 􏼆( q − 1)/2􏼇 do
(20) set a vector Vl and encrypt it to E(Vl) as equation (16), send stkl and E(Vl) to Server.
(21) (c) Server do as follows:
(22) set each element of P to integer 1 forl � 1: 􏼆( q − 1)/2􏼇 do
(23) set T � ECV[stkl],
(24) for i � 0: n − 1 do
(25) if T[i] �� e(E(Vl)[i], h) then
(26) P[i] � P[i]&1;
(27) else
(28) P[i] � 0;
(29) Finally, the Server computes S � GetTag P{ };
(30) returnS

ALGORITHM 4: HCV conjunctive searchable encryption scheme.

Table 3: Counter vector.

DB(w1) fid1 fid2 fid3 fid4 fid5 fid6 fid7

w1 ∩w2 1 0 1 1 0 1 1
w1 ∩w2 ∩w3 1 0 1 0 0 1 0
Counter vector 2 0 2 1 0 2 1

Table 4: Te database.

ID Keywords
1 w1, w2, w6, w7, w8
2 w2, w3, w4, w5
3 w4, w5, w6, w7
4 w1, w2, w3
5 w1, w3, w6
6 w2, w3, w7

Table 5: Leakage comparison for query w1 ∧w2 ∧w3.

RP (from OXT) (id1, w2), (id4, w2), (id4, w3), (id5, w3)

WRP (from HXT) (id4, w2), (id4, w3)

WRP (from HCV) (id4, encrypted keyword tuple)
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Figure 3: HCV performance. (a) Setup. (b) Storage.
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In the query request, the query vector Q � (k0, k1,

. . . , kd−1) is encrypted to be E(Q) � (E(k0), E(k1),

. . . , E(kd−1)), where for each ki, we have E(ki) �

gH(Rki
‖i)+p·ri . Te encryption guarantees ki is secure.

Meanwhile, as each query uses a random value ri, the en-
cryption is nondeterministic. Tat is, for two queries, the
honest-but-curious server cannot determine whether they
have the same queried keywords.

For the query processing, the server receives the query
vector E(Q) � (E(k0), E(k1), . . . , E(kn−1) which is
encrypted, calculates e(E(ki), h), and matches the result
with the ith element in the encrypted tag array. In this
process, the server can only get information about the access
pattern and search pattern, which our scheme allows.

For the query response, the search result is returned to
the client by the cloud server. Te search result consists of
some encrypted fles, and the encryption algorithm can be
nondeterministic, e.g., AES-CBC. Tus, the adversary can-
not correlate two queries even if they use the same queried
keywords [17].

6. Experiment Evaluation

All experiments were run on Intel(R) Core(TM) i5-8400
CPU@2.80GHz processor with 8 GB RAM. We use
a commodity Windows 10 system. For CVX and ICV
scheme, we implement our work in Python, while for HCV,
we did the experiment in C++ for efciency. To show our
solution’s practicability, the data used in the experiment are
from the NSF e-mail dataset. Te whole set contains 30799
keywords and 49078 fles. We sampled and selected some of
them for the experiment.

We use the common hash algorithm HMAC-SHA1, and
the encryption algorithm for CVX and ICV is AES-CBC. In
both the CVX and ICV schemes, Setup, Token, and Search
algorithms are contained. While Setup and Token algo-
rithms are implemented locally by the client, Query is
implemented by the server. We assume that the client has
sufcient computing resources, so only the efciency of
Query is considered here. In HCV scheme, we use the
homomorphic encryption algorithm BGN and mainly ex-
periment on the Setup performance. We generate the BGN
parameters through type a1 pairing in PBC library, based on
the curve y2 � x3 + x (the group order N is a 1024 bit
number).

Firstly, we test the performance of CVX and ICV, and we
compare them with Kamara’s IEX. To perform a search,
Kamara’s scheme needs to perform q − 1 decryption and then
compute the intersection of q − 1 sets. CVX only needs to
perform 􏼆( q − 1)/2􏼇 decryption, and then do the intersection
of 􏼆( q − 1)/2􏼇 vectors. Take q � 4 for example, and we im-
plement 220 experiment. For each keyword w, we assumed
that DB(w) represents the weight of w. Obviously, search
efciency is closely related to keywords’ weight.Te larger the
keywords’ weight, the less efcient the query operation.

For the sake of simplifcation, we use the mean value of
all keywords’ total weight as the metric to test the Query
efciency. In the case of low weight, we compare the Search
efciency of CVX and ICV with Kamara’s scheme. Te

experiment shows that Search efciency of CVX and ICV is
not signifcantly diferent. However, both of them are
dramatically better than Kamara’s IEX. Te experimental
results are shown in Figure 1. Te abscissa is the mean value
of keyword weight, and the ordinate is the Query time in
seconds. Te keywords sampled range from 756 to 779.

Ten, we fnd that when the weight mean value is larger,
the CVX is not so efcient, so we proposed ICV. When the
weight is larger, the advantage of ICV is obvious. Compared
with CVX, ICV is more suitable for larger mean weight
value. Figure 2 shows the experimental results. Te abscissa
is the mean value of keyword weight, and the ordinate is the
Query time in seconds. Te keywords sampled range from
203 to 537.

Secondly, we test the performance of HCV, which uses
BGN homomorphism technology with high computational
complexity to encrypt the index database. Terefore, we
focus on the experiment of Setup which contains generating
CV database and encrypting CV using BGN algorithm. We
mainly tested the time complexity and storage complexity of
Setup, both of which are closely related to the number of
keywords and the weight of keywords. Our experiments are
based on the sampled NSF dataset, which can be divided to
two types. One contains about 512 keywords, and the other
contains about 256 keywords. Our experiments mainly
depict how the keyword number and weight afect the Setup
efciency. When the number of keywords is about 512, we
set the mean weight as 23/51/83/112. When the sampled
keyword number is about 256, we set the mean weight as 53/
76/95/116. Te experimental results are shown in Figure 3.
Figure 3(a) describes the time complexity of HCV Setup
process. Te horizontal axis is the mean weight, and the
vertical axis is the time of Setup process. If we fx the number
of the keywords, the storage complexity depends on the
number of counter vectors, mainly correlated to the key-
words’ weight. Figure 3(b) describes the relationship be-
tween the number of counter vectors and the keywords’
weight, which can depict storage complexity. Te horizontal
axis is the mean weight, and the vertical axis is the number of
the reserved counter vectors.

7. Conclusion

Tis paper proposed a novel CV data structure, which has
been used in our proposed CVX, ICV, and HCV conjunctive
query SE scheme. In CVX, the search efciency is greatly
improved compared with Kamara’s IEX. Furthermore, when
the weight of the keywords is larger, the search efciency will
decrease dramatically. So, we improved the CVX and pro-
posed the ICV, which is more efcient but leaks more in-
formation than CVX. In HCV, we use the homomorphic
encryption technology (BGN) to encrypt the CV data
structure for the sake of resisting the RP information
leakage. Security analysis shows that our scheme is secure,
and performance evaluation also validates its efciency.
However, homomorphism encryption is used in our scheme
and causes large computation and heavy storage, so our
scheme can only be used for small datasets. In future work,
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we will study the scalable scheme and consider more security
properties.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this paper.

Acknowledgments

Tis work was supported by the National Nature Science
Foundation of China under grant nos. 62072466 and
U1811462.

References

[1] A. Adya, W. J. Bolosky, M. Castro et al., “FARSITE: federated,
available, and reliable storage for an incompletely trusted
environment,” in 5th Symposium on Operating System Design
and Implementation (OSDI 2002), D. E. Culler and
P. Druschel, Eds., pp. 9–11, USENIX Association, Boston,
Massachusetts, USA, 2002.

[2] I. Clarke, O. Sandberg, B. Wiley, W. Teodore, and
H.. Freenet, “A distributed anonymous information storage
and retrieval system,” in Proceedings of the Designing Privacy
Enhancing Technologies, International Workshop on Design
Issues in Anonymity and Unobservability, pp. 46–66, Springer,
Berkeley, CA, USA, July 2000.

[3] Y. Wang, J. Wang, S. Sun, M. Miao, and X. Chen, “Toward
forward secure SSE supporting conjunctive keyword search,”
IEEE Access, vol. 7, pp. 142762–142772, 2019.

[4] D. Xiaodong, D. Song, andW. A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings the 2000 IEEE
Symposium on Security and Privacy, pp. 44–55, Berkeley, CA,
USA, August 2002.

[5] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving
keyword searches on remote encrypted data,” in Applied
Cryptography and Network Security, Tird International
Conference, ACNS 2005, John Ioannidis, A. D. Keromytis, and
M. Yung, Eds., pp. 442–455, New York, NY, USA, 2005.

[6] M. Chase and S. Kamara, “Structured encryption and con-
trolled disclosure,” in Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Teory and Ap-
plication of Cryptology and Information Security, M. Abe, Ed.,
pp. 577–594, Springer, Singapore, 2010.

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved defnitions and
efcient constructions,” in Sabrina De Capitani di Vimercati,
A. Juels and R. N. Wright, Eds., pp. 79–88, ACM, Alexandria,
VA, USA, 2006.

[8] E. Goh, “Secure indexes,” IACR Cryptol. ePrint Arch.vol. 216,
p. 2003, 2003.

[9] S. Kamara, C. Papamanthou, and Tom Roeder, “Dynamic
searchable symmetric encryption,” inTeACMConference on
Computer and Communications Security, CCS’12, Y. Ting,
D. George, and V. D. Gligor, Eds., pp. 965–976, ACM,
Raleigh, NC, USA, 2012.

[10] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: ramifcation, attack and
mitigation,” in 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, Te Internet Society, San
Diego, California, USA, 2012.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
abuse attacks against searchable encryption,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, I. Ray, N. Li, and C. Kruegel, Eds.,
pp. 668–679, ACM, Denver, CO, USA, 2015.

[12] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: the power of fle-injection attacks on searchable
encryption,” 25th USENIX Security Symposium, USENIX
Security 16, pp. 707–720, USENIX Association, Austin, TX,
USA, 2016.

[13] P. Golle, J. Staddon, R. Brent, andWaters, “Secure conjunctive
keyword search over encrypted data,” in Applied Cryptog-
raphy and Network Security, Second International Conference,
ACNS 2004, M. Jakobsson, M. Yung, and J. Zhou, Eds.,
pp. 31–45, Springer, Yellow Mountain, China, 2004.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and
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