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When there are loopholes in smart contracts or changes in demand, the existing three-tier model can only implement partial on-
chain upgrades and the security of on-chain upgrades cannot be guaranteed. In this study, we optimized the three-tier smart
contract model and proposed a four-tier smart contract model that includes the proxy, verification, business, and storage layers.
The proxy layer is used to link contracts with other layers, the verification layer is used to check the integrity, boundary values, and
abnormal processes of contracts, the business layer is used to execute business logic, and the storage layer is used to store data
uniformly. On the basis of the proposed model, an on-chain upgrade and verification algorithm is proposed, which implements
on-chain upgrade, on-chain verification, and version compatibility of contracts. We then design an information exchange system
based on the proposed model and algorithm and test it based on the FISCO BCOS platform. Experiments show that, compared to
the three-tier model, the proposed four-tier model and algorithm can implement the on-chain upgrade and reduce the contract

complexity and data migration cost at the cost of some overall deployment.

1. Introduction

Szabo first proposed the concept of smart contracts in 1994
and provided a classic definition, which is a computer
program that can implement the terms of a contract [1]. It
was difficult to ensure the correct execution of computer
programs in a noncomplete trust environment before the
emergence of blockchain, which led to smart contracts not
getting much attention until the advent of Bitcoin in 2008
[2]. As the underlying technology of Bitcoin, the charac-
teristics of decentralization, trustworthiness, and data im-
mutability of the blockchain meet the requirements of smart
contracts for operating platforms [3]. Ethereum, which
emerged in 2013, provides a Turing-complete smart contract
programming language that supports complex business
logic, and smart contracts are gradually being applied in
many fields [4]. The enterprise-level consortium chain
projects Hyperledger Fabric and FISCO BCOS are under-
lying blockchain technology platforms, the latter was jointly
developed by several Chinese enterprises, both have good
support for Turing’s complete smart contract language [5, 6].
With the development of smart contracts, some researchers
have begun to think that a smart contract is a piece of

tamper-proof program code running on the blockchain
system. Owing to the short development time of smart
contract, it still faces several security problems. In 2016, the
Ethereum-based crowd funding project “DAO” was
attacked, causing a loss of $60 million [7]. In 2018, the US
chain caused a loss of 6 billion RMB owing to the data
overflow loophole of the smart contract BatchOverFlow [8].
Mense and Flatscher studied and analyzed 19,366 smart
contracts in Ethereum and found that 8,833 of them had
security problems [9]. A large number of information se-
curity emergencies show that it is urgent and necessary for
current smart contract technology to improve on-chain
scalability.

The smart contract has the characteristic that it cannot be
modified after deployment of the chain, while this ensures
the accuracy of program operation, but it increases the
difficulty of contract maintenance. Off-chain testing of
contracts can only prevent known vulnerabilities, but cannot
detect unknown vulnerabilities in the chain. There is no
efficient on-chain upgrade for smart contracts up to now.
The traditional method is to redeploy the complete contract,
which has problems such as destroying the original life cycle
of the contract, causing incompatibility between old and new
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contract data and affecting normal use of users. The existing
three-tier smart contract model includes interface layer,
business layer, and data layer. The problem is that the data
layer in three-tier contract cannot be upgrade and it also
ignores the security of the upgrade on the contract.

This paper studies the upgradeability of smart contracts,
optimizes the existing three-tier contract model, redefines
the storage layer, abstracts the underlying library table
contract in a library table-oriented development method,
and implements the unified data storage. This paper adds a
verification layer for the contract model, and a transaction
rollback mechanism is introduced to verify the correctness
and security of the contract while the test data not upload on
the chain. According to the model proposed in this study,
the smart contract on-chain upgrade algorithm and on-
chain verification algorithm are proposed, and the model
and algorithm are verified based on the FISCO BCOS
platform. The experiment analyzed the model’s performance
from the aspects of smart contract complexity, deployment
cost, on-chain upgrade cost and data migration cost.
Contract complexity is a measure of the complexity of the
contract’s business logic. The contract with lower complexity
will has higher execution efficiency. The contract con-
sumption cost is measured by gas; the gas means the con-
sumption of on-chain storage and computing resources by
on-chain transactions. The lower the gas consumption, the
fewer the on-chain resources are consumed by the contract
transactions. The experimental results show that, compared
with the traditional contract model, the layered structure
model increases the cost of contract deployment and reduces
the upgrade cost of the contract chain. Compared with the
three-tier contract model, the contract deployment cost of
the four-tier smart contract model increases by an average of
19.1%, the complexity of the storage layer contract is reduced
by 18.8% on average, and the data migration cost of the
storage layer contract is reduced to 0. Therefore, our four-
tier smart contract model reduces contract complexity and
data migration costs at the cost of some overall deployment.

2. Related Research

Smart contracts not only serve as the carrier of business
logic on the chain but also serve as a bridge for users to
interact with the blockchain. They are the key technol-
ogies for the application of blockchain technology in all
walks of life. However, they also present many security
risks.

In the field of security detection of smart contracts, in
2018, Sidney et al. proposed a formal verification method
using the Isabelle/HOL framework to build smart contract
models to verify the security of smart contracts at the
bytecode level [10]. Joon-Wie et al. aimed to have safer
smart contracts against emerging threats, proposed an
approach of sequential learning of smart contract weak-
nesses using machine learning-long-short term memory
(LSTM) to detect new attack trends [11]. In 2019, Zhang
et al. proposed a symbolic execution-based method and
tool DEFECTCHECKER to detect contract defects that
may lead to the bad behavior of smart contracts on the
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Ethereum blockchain platform [12]. In 2020, Wang et al.
proposed ContractWard, an automatic vulnerability de-
tection model for Ethereum smart contracts. This model
uses machine learning technology to detect vulnerabilities
in smart contracts, extracts binary features from the
simplified operation codes of smart contracts, uses five
machine learning algorithms and two sampling algo-
rithms to construct the model [13]. Chen et al. proposed
an improved smart contract verification tool, Artemis, in
2021, and evaluated the effectiveness and efficiency of the
tool’s vulnerability detection on 12899 smart contracts
[14]. In the area of on-chain governance of block chains,
in 2019, Kondapally et al. proposed the idea of using the
chameleon hash function to sign blocks, when the current
block is signed using the chameleon hash function, once
the main verifier agrees to the modification proposal of the
block using a digital signature, the current block will be
updated [15]. In 2020, Baudlet et al. proposed a new
blockchain consensus and governance model that aims to
pass the model protection zone, which is not affected by
higher-level governance issues and is validated with the
existing PoS and PoW [16]. In the same year, Taner et al.
designed a decentralized decision-making voting scheme
based on identification so that users can implement the
on-chain governance of the blockchain by interacting
with smart contracts [17]. In 2021, Reijers et al. approach
the questions of “on-chain” and “off-chain” governance
by reflecting on a long-running debate in legal philosophy
regarding the construction of a positivist legal order [18].
In the field of smart contract upgrade methods, in 2020,
Angelo et al. proposed a method of using differentiated
codes to support smart contract off-chain upgrades by
classifying a large number of smart contracts [19]. In the
same year, Shao et al. developed a smart contract vul-
nerability monitoring framework that introduces a log
anomaly analysis method into the blockchain log system,
transmits the detection results to related contracts, and
finally implements prompts for off-chain upgrades of
smart contracts [20]. In 2021, Rodler et al. proposed the
EVMPatch framework, which can automatically patch
defective smart contracts immediately, provide a bytecode
rewriting engine for Ethereum, and automatically rewrite
common off-the-shelf contracts into upgradeable con-
tracts [21]. In 2022, Zhu and Huang split smart contracts
regarding the proxy mode, carried out the implementa-
tion and research of the contract upgrade capability, and
proposed a smart contract upgrade method under the
proxy mode [22].

Security detection, on-chain governance and contract
upgrade methods for smart contracts have gradually become
a focus of industry research. Breakthroughs in these fields
will help solve the security problems of smart contracts. The
research on contract upgrade methods mostly focuses on off-
chain contract upgrades; the released contracts cannot be
quickly upgraded on the chain, and when there is a loophole
in the contract, the loss cannot be stopped in time. Therefore,
this study uses the upgrade method of the contract chain as
the starting point to study the upgrade model of the smart
contract chain.
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3. Analysis of the Upgrade Problem on the Smart
Contract Chain

3.1. Traditional Smart Contract. Due to the tamper-proof
feature of blockchain, smart contracts cannot be changed
after they are deployed on the chain, so contracts need to be
tested extensively to ensure the correctness and security
before they are deployed on the chain. The contract testing
conducted off-chain can only prevent known vulnerabilities
and cannot detect unknown vulnerabilities, such as it cannot
detect on-chain vulnerabilities. For smart contracts, there is
still no efficient solution to the vulnerabilities that appear
after deployment on the chain.

When there are loopholes in smart contracts or changes
in demand, the traditional solution is to redeploy a complete
contract. This upgrade method has the following problems:

(1) The original life cycle of the smart contract is
destroyed, and a new life cycle is restarted after the
new contract is deployed

(2) The data of the old and new contracts are incom-
patible, and the data of the old contract should be
migrated

(3) The address of the contract will be updated when
redeploying a new contract, affecting the normal use
of the user

3.2. Existing Smart Contract Models. In the smart contract
chain under the full life-cycle model of smart contracts, there
are two ways to achieve partial upgrades:

(1) We use the delegate invocation opcode to forward
the function invocation to the target contract. Be-
cause the delegate invocation retains the context of
the contract and changes the state of the contract, the
value of the variables in the contract can be changed
by remotely invocating the target contract.

(2) The contract is divided into three layers: proxy,
business, and storage. The proxy layer is used as the
entry point of the contract invocation, the business
layer is responsible for processing the business
logic of the contract, and the storage layer is re-
sponsible for defining the data structure and data
storage.

The three-tier smart contract model structure is loosely
coupled. It divides traditional smart contracts into three
subsets: entry set, business set, and contract data set. When
the contract business needs to be expanded or there are
loopholes in the contract, based on the smart contract
designed by the three-tier contract model, a low-cost up-
grade of the contract business set of the chain can be
implemented. The three-tier contract model better solves the
problem of local upgrades in the contract chain, but it also
has the following two shortcomings:

(1) Only low-cost on-chain upgrades of business logic
can be performed, regardless of the upgrade of data-
storage-related contracts, that is, low cost on-chain

upgrades cannot be performed when storage con-
tracts was changed.

(2) The vulnerabilities of smart contracts often appear in
an on-chain production environment after offline
testing. The three-tier contract model does not
consider the on-chain testing of contracts, that is, the
security of on-chain upgrade of smart contracts
cannot be guaranteed.

4. Four-Tier Contract Model

4.1. Formal Definition. Based on the three-tier contract
model, a four-tier model for smart contracts (hereafter re-
ferred to as the four-tier contract model) is proposed. Based
on the principle of separation of concerns, this study splits
the traditional smart contract into proxy layer, business
layer, storage layer, and verification layer, optimizing the
storage layer and adding a verification layer compared to the
three-tier model, while the remaining two layers basically
same as the proxy layer and business layer of the three-tier
model. The four-tier contract model is represented by a six-
tuple: {P, T, L, D, R, G}.
The meaning of each element is as follows:

(1) P represents the proxy contract set for the model

(2) Trepresents the verification contract set of the model
(3) L represents the business contract set in the model
(4) D represents the storage contract set in the model

(5) R represents the correspondence between contract
subsets in the model

(6) G represents the upgrade of the contract subset in the
model, G={P,,T,,L,,D,}

Let Z={SC, R} and SC={P, T, L, D} denote a complete
smart contract. R={(i, j); i, j€{1, n}} represents the cor-
respondence between the contract subsets, and it is defined
that there are four correspondences including one-to-one,
one-to-many, many-to-one, and many-to-many between
contract subsets.

The proxy and business contracts both have a one-to-
many relationship (i=1, j=#n). A proxy contract can link
multiple business contracts to contract invocations. Only the
proxy contract is visible to the user; the proxy contract and
the verification contract are a pair of multirelationships
(i=1, j=n), which are divided into multiple verification
contracts according to the principle of single responsibility.
The proxy contract can choose partial verification and can
also perform process verification on all contracts; the ver-
ification contract and the business contract are the same.
One-to-one (i=1, j=1) or one-to-many (i=1, j=n) rela-
tionships can be verified as one-to-one or one-to-many;
business contracts and storage contracts are many-to-many
(i=n, j=n) relationships, where each storage contract
consists of two parts: the general library table operation and
the definition of the data structure.

Given a sequence of smart contract models {Z0, Z1, .. .,
Zn-1, Zn}, we define the contract subset upgrade case
Gm = {Pg,Tg,Lg,Dg}, g=10, 1}, where 0 identifies the



contract subset which continues to be in use, 1 identifies the
contract subset that needs to be upgraded. The upgrade of
any contract subset will not affect the use of other contract
subsets. The upgrade of the contract only needs to deploy a
new version of the proxy contract and configure the contract
addresses of other contract subsets, but it will cause changes
to the user’s invocation entry, while other contract subsets
only need to update the contract link address after rede-
ploying the new version of the contract, and will not affect
the user’s invocation.

There are four situations for upgrading smart contracts,
as shown in Table 1. Case 1 (Py, Ty, Lo, Do) will affect user’s
invocation, which is not in line with the design concept of
this model. Therefore, this study only considers the other
three cases, that is, the change in the proxy contract is not
considered, and the upgrade of the contract will not affect
the user, it does not cause any changes.

4.2. Overall Design of the Model. The four-tier contract
model was applied to the contract layer of the blockchain
architecture. The smart contract, designed based on the four-
tier contract model, includes four subsets: proxy, verifica-
tion, business, and storage contract sets. The application
layer interacts with the data layer through contract invo-
cations. The application layer is a decentralized application
(DAPP), and the data layer uses blocks and state databases
for storage.

The contract subsets of the four-tier contract model are
independent of each other, implementing componentiza-
tion. One layer of the contract is redeployed, and the other
layers are not affected. The overall design of the model is
shown in Figure 1.

As shown in Figure 1, a user request is forwarded to the
contract layer after being classified and processed by the DAPP
in the application layer. The contract layer first receives the
request from the proxy contract, then the proxy contract in-
vocations the business contract or verification contract, and
finally, the storage contract sends the request to the data layer.
Blockchain initiates transactions and accesses the blockchain’s
state database. The contract descriptions of each layer of the
four-tier contract model are as follows:

(1) Proxy contract: three main functions are imple-
mented: first, for ordinary requests from users, adapt
to the corresponding business contract; second, for
upgrade requests from users, update the contract
address and link to the new version of the contract;
third, to achieve the polymorphism of the proxy
contract, call the contract update function that can
be linked to a different implementation of the
contract.

(2) Business contract: this mainly includes functions
such as on-chain business logic processing, trans-
action definition, and invocation of storage con-
tracts. It implements the transactions of each
participant through business functions, tracks the
execution status of the transaction, and returns the
results to the proxy contract.
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(3) Storage contract: it mainly stores data permanently,
abstracts this layer in the form of a library table, and
invocations it in an SQL-like manner to achieve
compatibility between old and new contracts.

(4) Verification contract: this is mainly used to verify
upgrade-related information, contract integrity, and
detect contact points before the contract upgrade. To
ensure the purity of the data on the chain, the test
data on the chain is not dropped using assertion
rollback and last row rollback.

The two optimizations of the four-tier contract model
compared with the three-tier contract model are as follows:

(1) Storage layer optimization: the storage contract was
designed as a library table-oriented development
method. Based on the precompiled contract of
FISCO BCOS, the storage contract and business
contract are further decoupled, the visibility of the
storage contract is weakened, the chain of the storage
contract is implemented, low-cost upgrades and
compatibility between old and new contracts
achieved.

(2) Add a verification layer to improve the security of
on-chain contract upgrades and implement multi-
angle on-chain verification of contracts.

The basic process of deploying and upgrading smart
contracts based on the four-tier contract model is shown in
Figure 2 and described as follows:

(1) After completing the formulation of the smart
contract terms, carry out the contract splitting op-
eration, and split the complete contract terms into
four contract subsets: proxy, verification, business,
and storage contracts.

(2) Test the four contract subsets under the chain. If
there is a loophole in the contract, repair the cor-
responding contract and deploy the smart contract
that passes the test on the chain after completion.

(3) When the user needs to upgrade the contract on the
chain, invocate the verification contract to verify the
new version of the contract on the chain and update
the contract address after the verification is passed.
Users can upgrade only one layer of contracts
without changing other contracts. As long as the
proxy contract does not change, the user’s invocation
is not affected.

(4) Upgraded smart contracts require version manage-
ment. The business contract set includes a version
management contract to save all version information of
the contract to trace and manage different versions.

5. On-Chain Upgrade and
Verification Algorithm

This section proposes an on-chain upgrade algorithm and a
verification algorithm, which are designed according to the
proposed four-tier model to implement its main functions.
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FI1GURE 1: Design diagram of the four-tier model of smart contract.

5.1. On-Chain Upgrade of the Contract. The on-chain up-
grade of the contract consists of three steps:

Step 1: User identity verification. Only users with
contract upgrade authority can perform contract up-
grade-related operations.

Step 2: Verification of the contract chain. The contract
can only be updated to the contract subset of the
platform after verification.

Step 3: Update the contract’s invocation address and
destroy the old version of the contract.

The parameters that need to be provided for the on-chain
upgrade of the contract are the new version of the contract
address, user address, user id, and corresponding operations.
Algorithm 1 is the upgrade algorithm of the contract chain, as
shown in Algorithm 1.

5.2. On-Chain Verification of Contract. On-chain verifica-
tion of contracts includes user information verification,
contract integrity verification, and contract point detec-
tion. User information verification is mainly used to check
whether the user has the authority to verify on-chain
verification of contracts, which is mainly used to detect
necessary methods, such as necessary business function,
fallback function, and contract destruction functions.
Contract point detection is mainly used for boundary value

detection, expected value detection, and abnormal process
detection. The parameters that need to be provided for the
verification of the contract chain are the contract address,
user address, user id, and corresponding operations to be
verified. Algorithm 2 is the on-chain verification algorithm
for the contract shown in Algorithm 2. The verification of
the on-chain contract uses the assertion rollback and last
line rollback methods. After the verification succeeds or
fails, the transaction will be rolled back to achieve the
purpose that the data on the chain is not affected.

6. Reference Implementation and Testing

The model and algorithm proposed in this paper are ap-
plicable to current mainstream blockchain platforms, such
as FISCO BCOS, Hyperledger Fabric, and Ethereum. This
section implements a message interaction system based on
the FISCO BCOS platform, implements smart contracts
using solidity, and tests and analyzes the four-layer contract
model.

6.1. System Deployment and Contract Implementation. In
this section, we build a consortium blockchain system
consisting of five organizations, five nodes, and three groups,
a multigroup parallel method for networking. Where each
node of the consortium blockchain in the multigroup
parallel network belongs to multiple chains, which can be
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FIGURE 2: Smart contract deploy and upgrade process.

used for the horizontal expansion of different businesses of
multiple parties, or the vertical expansion of the same
business. The system contains three chains: the identity
chain, information chain 1, and information chain 2. The
system network topology is shown in Figure 3.

A smart contract is implemented based on the proposed
four-tier model. The business types include information in-
teraction, identity management, and contract version man-
agement, and the overall contract is split into proxy contracts,
verification contracts, business contracts, and storage contracts.
The proxy contract is used as the entry point of the contract
invocation for client programs and users to interact with smart
contracts. The deployment results are shown in Figure 4.

6.2. Contract Testing and Analysis

6.2.1. Contract Complexity. This section uses the smart
contract static analysis tool solidity metric to test contract
complexity, and compares and analyzes the complexity of
unlayered, three-tier, and four-tier contracts. If the com-
plexity of a contract is lower, the contract’s logic will be
simpler, and its execution efficiency will be higher. The
contract complexity of the business part was tested for the
three types of contracts in the system, and the test results are
shown in Figure 5.

In Figure 5, the complexities of the unlayered contracts
are 167, 124, and 92; the three-tier contracts are 108, 65, and
63; and the four-tier contracts are 108, 85, and 63. It can be
seen that the unlayered contract has the highest complexity,
and the three- and four-tier structure contracts have the
same complexity, indicated that contract hierarchy can re-
duce the contract’s complexity.

In Figure 6, the complexities of the unlayered contracts
are 187, 164, and 122, respectively, the complexities of the
three-tier contracts are 85, 85, and 85, and the complexities
of the four-tier contracts are 69, 69, and 69. It can be seen
that the unlayered contract has the highest complexity,
followed by the three-tier structure contract, and the four-
tier structure contract has the lowest complexity. This shows

that the four-tier structure contract reduces the complexity
of the storage layer contract.

6.2.2. Contract Deployment Cost. This section tests the
overall deployment cost of unlayered, three-tier, and four-
tier structured contracts, using gas consumption as a metric.
The test results are shown in Figure 7. It can be seen that the
more layers a contract has, the higher its deployment cost is.
The increase in deployment cost of layered structure con-
tracts is due to the increase in code volume caused by
layering and the need for multiple deployments in layers
during deployment, which is in line with expectations. The
improvement of this model is a way to exchange the de-
ployment cost of the contract for the low-cost upgrade on
the contract chain. We have achieved a balance between
functionality and performance to some extent, and the in-
creased deployment cost is acceptable compared to the
improved upgrade capability on the contract chain.

6.2.3. The On-Chain Upgrade Cost of the Contract. In this
section, we test the on-chain upgrade cost of the business
part of the unlayered, three-tier structure, and four-tier
structure contracts, and the cost is measured by the gas
consumption. The test results are shown in Figure 8. It can be
seen that the on-chain upgrade cost of the unlayered con-
tract is the highest and increases with the increase of data
volume, while the on-chain upgrade cost of the three-tier
and four-tier contracts is the same and does not change with
the increase of data volume. Therefore, it can be concluded
that the layered structure of contracts can effectively reduce
the on-chain upgrade cost of the business part of contracts.

6.2.4. Contract Data Migration Cost. In this section, we test
the data migration cost due to the upgrade of the storage part
of the unlayered contract, the three-tier structure contract
and the four-tier structure contract, and the cost is measured
in terms of gas consumption. The test results are shown in
Figure 9, which shows that the data migration cost increases
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Input:
contractAddr
userAddr
userld
operation
Output:
bool
@ Begin
2) Role < invokeUserContract (userAddr, userId)
3) If (verifyAuthority (role, operation))
(4) return false
(5) ValidationContractInstance < loadValidationContract ()
6) If (IverifyContract (validationContractInstance, contractAddr))
(7) return false
(8) ProxyContractInstance < loadProxyContract()
) Updatelnfo « updateContractAddr (proxyContractInstance, contractAddr, operation)
10) DestroyInfo « destroyOldContract()
@11 If (Isave (updatelnfo, destroylnfo))
12) return false
(13) return true
(14) End

ArGoriTHM 1: Contract on-chain upgrade algorithm.

Input:
contractAddr
userAddr
userld
operation
Output:
bool
1) Begin
2) Role «— invokeUserContract (userAddr, userld)
3) If ('verifyAuthority (role, operation))
(4) return false
(5) ContractInstance « loadContract (contractAddr)
(6) For (function: fuctionList)
(7) If ('boundaryValueTest (contractInstance, function))
(8) revert()//rollback operation
9) return false
(10) If (lexpectedTest (contractInstance, function))
@11 revert()
12) return false
(13) If (lexceptionTest (contractInstance, function))
(14) revert()
15) return false
(16) revert()
@17) return true
(18) End

ArcoriTHM 2: Contract verification algorithm.

with the increase of data volume for the unlayered contract
and the three-tier structure contract, and the data migration
cost for the four-tier structure contract is 0, which is due to
the fact that the storage layer of the four-tier structure

contract uses the library table-oriented development method
to store the data uniformly in the system contract, so the
upgrade of the storage layer of the four-tier structure
contract does not require data migration.
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FIGURE 3: Network topology of the block chain system.
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FIGURE 4: Proxy contract deployment results.
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6.3. Brief Summary. In the experiment in this study,
compared with the three-tier structure contract model, the
deployment cost of smart contracts designed based on the
four-tier smart contract model increases by an average of

contract deployment cost.

19.1%, the complexity of the storage layer contract is
reduced by an average of 18.8%, and the data migration
cost of the storage layer contract is reduced to 0. There-
fore, the advantage of the four-tier smart contract model is



10

Gas consumption for upgrading on the

Gas consumption of blockchain storage data

1.0x10°

8.0x10°

business contract chain

2.0x10°

3.4x10*

3.2x10*

3.0x10*

2.8x10*

2.6x10*

2.4x10*
10

6.0x10°

4.0x10°

Security and Communication Networks

Information exchange Identity Management Version management
contract Contract contract

Business type

- Unlayered contracts
- Three-tier structure contract
- Four-tier structure contract

FIGURE 8: Test result of on-chain upgrade cost of business contracts.
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that the complexity of the contract and cost of data mi-
gration are reduced. However, the disadvantage is that,
with the overall deployment, the cost of the contract
increases.

7. Summary and Outlook

In this paper, we propose a four-layer contract model to
address the problem of on-chain upgrade of smart contracts.
Compared with the three-tier model, the four-tier model
adds a verification layer to detect the integrity, boundary
value, and abnormal process of the contract and uses the
contract rollback mechanism to achieve the purpose of not
uploading the test data to the chain; redefine the storage
layer to store data uniformly; and achieve the purpose of
compatibility of different contract data with the develop-
ment method oriented to the library table and the proposed
upgrade algorithm and verification algorithm on the con-
tract chain, and the on-chain upgrade; Last, the on-chain
upgrade, on-chain verification, and version compatibility of
the contract are implemented. The four-tier smart contract
model reduces the contract’s complexity in the storage layer,
eliminates the cost of data migration, and increases the
contract’s overall deployment cost. The cost of increasing the
early deployment cost is exchanged for low-cost and flexible
upgrades to the later contract. We are going to improve the
execution efficiency of the proposed four-layer model, and
design and propose an evaluation system for the execution
efficiency metrics. In addition, we are currently working on
the application and improvement of the four-layer model of
smart contracts based on Ethereum and Hyperledger Fabric,
etc. We will disclose the relevant experimental data and
results in a new research document.
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