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Due to the expanding scope of Industry 4.0, the Internet ofTings has become an important element of the information age. Cyber
security relies heavily on intrusion detection systems for Internet ofTings (IoT) devices. In the face of complex network data and
diverse intrusion methods, today’s network security environment requires more suitable machine learning methods to meet its
security needs, and the current machine learning methods are hardly competent. In part because of network attacks by intruders
using cutting-edge techniques and the constrained environment of IoT devices themselves, the most widely used algorithms in
recent years include CNN and LSTM, with the former being particularly good at extracting features from the original data space
and the latter concentrating more on temporal features of the data. We aim to address the issue of merging spatial and temporal
variables in intrusion detection models by introducing a fusion model CNN and C-LSTM in this paper. Fusion features enhanced
parallelism in the training process and better results without a very deep network, giving the model a shorter training time, fast
convergence, and computational speed for emerging resource-limited network entities. Tis model is more suitable for anomaly
detection tasks in the resource-constrained and time-sensitive big data environment of the Internet of Tings. KDDCup-99,
a publicly available IBD dataset, was applied in our experiments to demonstrate the model’s validity. In comparison to existing
deep learning implementations, our proposed multiclass classifcation model delivers higher accuracy, precision, and recall.

1. Introduction

Internet of Tings (IoT) is a new network system consisting
of a cloud data center and subnodes under it that integrates
computing, controlling, and communication technologies.
In the era of industry 4.0, wireless network technology and
diverse smart devices are increasingly applied to the In-
dustrial Internet of Tings (IIoT), and more and more in-
dustrial applications are interactively connected through the
intelligence and real time of signal processing. Trough
a large number of distributed IoTdevices, ubiquitous sensors
are deployed throughout real scenarios. Tey detect envi-
ronmental data through various types of sensors and
transmit them to processing centers through various types of
IoT transmission protocols.Te processing center uses cloud

computing and big data technologies to extract valuable
information from this data and upgrade services. IoT has
been frequently employed in various felds such as health-
care, smart home, and intelligent transportation. By 2024,
IoT is anticipated to reach 83 billion devices [1]. Te diverse
category of IoT devices will set of the IoT architecture for
innovation.

In addition, cybercrime is growing dramatically in size,
complexity, and cost [1] due to the increasing spread of IoT
devices with distributed and large numbers in individual
homes, national grids, smart cars, and industrial assembly
lines, and the complexity of IoT defending systems [2].
Table 1 lists several typical cyber-attacks. Te rise of various
old and new types of cyber-attacks signifes that the use of
resume frewalls and signature certifcate-based defending is
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in great demand, and instead, a proactive approach must be
taken to discover threats. Intrusion detection systems have
become a crucial tool for identifying and defending against
network attacks in the form of malicious network trafc as
security threats continue to spread across the Internet. By
extracting features for analysis of network trafc and alerting
once unsafe trafc is detected, intrusion detection systems
enable network monitoring [3].

Anomaly detection is recognized as one of the key tools
for dynamic network security threat detection [4]. Tere are
numerous methods available for network anomaly de-
tection. To improve the performance of anomaly detection
systems when processed by intrusion detection systems,
artifcial intelligence techniques are applied to various types
of active-defending systems. However, reliable anomaly
detection of massive and complex multidimensional data in
industrial IoT is still a tricky task. In recent years, deep
learning has excelled in various classifcation tasks, but
a large amount of classifcation variables in the network
stream complicates the anomaly detection process using
gradient descent methods. Even though there are numerous
methods for anomaly detection, most people do not try to
use CNN (convolutional neural network) for anomaly de-
tection, compared to machine learning. As research has
intensifed in recent years, deep learning has increasingly
emerged in the feld of complex high-level data processing,
such as image and signal processing. Deep learning in-
terprets the internal rules and data expressions of data such
as word, image, and sound by extracting the internal features
of sample data during the learning process.Te ultimate goal
is that deep learning models have the ability to analyze and
learn from input data and eventually recognize data such as
characters, images, and sounds. Among them, two models
are widely used: recurrent neural networks (RNN) that
mainly extract time-step features for problems of NLP and
voice recognition, and CNN with powerful spatial feature
extraction for image classifcation and regression. Zeiler [5]
visually understands the functions of the intermediate fea-
ture layer and the operation of the classifer through the large
convolution neural network model, indicating that CNN is
very sensitive to the local structure of data. CNNs refect the

spatial properties of data by extracting spatial cues such as
color, level, and edges in images using convolutional per-
ceptual felds and shared weight coefcients while RNN uses
gate units to efciently simulate serialized data to refect the
temporal properties of the data. Te LSTM method is
mentioned in all model surveys for univariate and multi-
variate time series data mentioned by Lindemann et al. [6].
To achieve high performance, Kim and Cho [7] constructed
a C-LSTM network.Tey frst used preprocessing to initially
construct temporal correlations of the dataset, then used
CNN to extract these features, and fnally used LSTM to
extract spatial and temporal features. To ensure that the
features extracted by CNN are potentially correlated and
more efective than the temporal features extracted by
LSTM, Preciado-Grijalva and Iza-Teran [8] used two sliding
windows to generate time-dependent subsequences based on
C-LSTM. Meanwhile, Yin employed a modifed LSTM-
based self-encoder to extract more anomalous features
from the input sequence. Although CNN and LSTM are both
part of their network, the input that LSTM accepts only
comes from CNN extraction, and the spatialized extraction
of CNN disrupts the temporal aspects of the original data at
the potential level, which impacts LSTM’s learning efect to
some extent.

We propose an improved network structure based on the
study of the interaction between CNN and LSTM direct
serial methods for extracting data features. Te network
consists of a CNN and a C-LSTM using temporal convo-
lution, both of which receive input from the original dataset,
and the CNN and C-LSTM will focus on extracting spatio-
temporal features in the intrusion data, respectively, with the
modifed C-LSTM using one-dimensional temporal con-
volution and the LSTM focusing more on purely temporal
features of the intrusion data while ignoring some spatial
features; the CNN will learn more to reconstruct the spatial
features of the intrusion data and do parallel and fusion
between the two instead of serial, which can improve the
performance of the detection model. In the absence of
deeper network depth, anomaly detection achieves higher
scores in various metrics. Te signifcant contributions of
this paper are as follows:

Table 1: Several common types of network attacks.

Attacks Quantity

DoS and DDoS
DoS attack is designed to overload system resources to the point where they can no
longer respond to legitimate service requests. And DDoS is initiated by controlling

a large number of hosts infected with malware

MITM
As an “indirect” intrusion attack, a man-in-the-middle (MITM) type of network

attack allows an attacker to eavesdrop and steal communications from two
computers without directly afecting the network

DNS spoofng
Spoofng through the domain name system (DNS) is also a form of

man-in-the-middle attack, where a hacker can change the DNS records returned to
the querier to a response record of the attacker’s choosing

URL resolution Trough URL interpretation, an attacker can change and forge certain URL
addresses and access to personal or company private data

Zero-day attacks
Zero-day attacks are computer vulnerabilities that have not been discovered by
security vendors but may be in the hands of hacker groups, and once they are

discovered, 0 day vulnerability attacks can spread rapidly
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(1) A network model based on our C-LSTM and CNN
fusion is proposed to detect intrusion data using
shallow, small-scale deep learning models. Te model
utilizes the ideas of C-LSTM and exploits its advan-
tages. To retrieve temporal aspects of the intrusion
data on a partially parallel model, a one-dimensional
convolution is employed in place of the two-
dimensional convolution in the original C-LSTM.

(2) Fusing our C-LSTM and CNN to obtain a balance on
temporal and spatial features. Compared to the
original C-LSTM which presents the fnal prediction
results and scores by a single model, our fusion model
is trained and predicted independently by twomodels.
Te learning method of fusion learning determines
that it does not extract features by CNN and then
learn features by LSTM but fuses the features learned
by C-LSTM and CNN separately, which extends the
dimensionality of the features. In this way, even if the
features extracted by the CNN are insufcient, the
C-LSTM can be supplemented and extended. In terms
of the evaluation of several classifcation metrics, this
model outperforms the C-LSTM model.

(3) In light of the model fusion learning method, its two-
part model does not require a deep model depth to
learn every feature of the entire dataset and is faster
in its training and convergence than other methods.
Te two parts of our network, C-LSTM and CNN,
only need to learn the sensitive part of the data
features and combine them for prediction, rather
than learning all the features separately. Such
a mechanism facilitates its performance on resource-
constrained devices.

2. Related Work

Tis section summarizes machine learning methods for
anomaly detection based on a review of researchers’ research
on anomaly detection or intrusion detection in recent years.
As shown in Table 2, in the feld of anomaly detection, many
researchers classify a segment of the data as normal or
anomalous by extracting contextually relevant information
from the data. However, in general, this discriminative
approach also requires modeling of the data system, so
detection methods are divided into three categories: mod-
eling based on data statistics, modeling based on temporal
features, and modeling based on spatial features. Either the
error in the context of the data predicted by the time series is
used as the core of detection [9], or the original data is
reconstructed without a priori knowledge, and normal and
abnormal values are defned using thresholds [10]. Te core
of all these detection methods is to extract the necessary
features from the original data space that afect its de-
termination as normal or abnormal and thus perform
a credible classifcation.

2.1. Issues on Intrusion Detection System. Researchers have
already done in-depth research in the area of intrusion
detection for cybersecurity of IoT, cloud data centers, and

blockchain systems. Tey have investigated the general
anomaly detection problem by discussing anomaly detection
in time-series data in short chapters.

Hawkins [11] and Abraham and Chuang [12], as early
developers in this feld, have conducted in-depth research on
the network security of wireless network, Internet of Tings,
blockchain system, and other network systems, especially the
network security intrusion problem. However, many re-
searches on anomaly detection have found this kind of
problem and usually discuss the intrusion problem high-
lighted by abnormal data in several sections. Markou and
Singh [13, 14] have published research showing that among
the intrusion detection methods up to 2003, the intrusion
detection system based on feature extraction has been widely
used these days. Stephen and Arockiam [15] designed
a protocol suitable for resource-constrained nodes but with
lossy routing and explored an integrated approach to detect
Sybil attacks on the IoT.

2.2. UnsupervisedMethod inAnomalyDetection. Münz et al.
used the unsupervised learning method of K-means [16].
Tey discussed and derived the prime number of clusters by
statistical methods. By calculating the prime number and the
spatial distance of each fow data, the distance data are used
as the standard for distinguishing abnormal and normal
data. Zhang and Zulkernine adopted the random forest
method based on unsupervised learning [17], calculated the
closeness in each case, and designed a mathematical stan-
dard based on statistics to distinguish normal and
abnormal data.

2.3.Machine Learning inAnomalyDetection. Kaur et al. [18]
used CNN models to detect attacks in data streams. Tey
trained and validated their model with the cicids2017 and
cicids22018 datasets. Although their approach covers a wide
range of intrusion data types, their performance metrics fall
short of practicality. To detect intrusions in a massive data
environment, Hassan et al. [19] designed an integrated deep
learning model using CNN and wdlstm (long-term memory
with decreasing weights). CNN was used to fnd the best
features, and wdlstmmethod was used to prevent overftting
in neural networks [20]. Te Bayesian neural network is
studied in, and the LSTM based self-encoder is used to
replace some previous data extraction and analysis struc-
tures, and then, the MLP is used to perform the fnal pre-
diction step. Chen and Lin constructed time-step features of
the original data using a sliding window preprocessing al-
gorithm. Ten LSTM models were used to extract

Table 2: Several abnormal trafc detection methods.

Authors Model Dataset Year Score
G. Bae CNN KDD99 2019 Acc� 97.34
A. Diro LSTM AWID 2018 Acc� 98.22
Q. Tian Svm UNSW-NB15 2019 Acc� 97.00
Y. N. Kunang DNN NSL-KDD 2021 Acc� 83.33
In-young C-LSTM Webscope 2018 Acc� 99.62
Chunyong Yin C-LSTM-AE Webscope 2021 Acc� 98.6
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information on the preprocessed high-dimensional data
[21]. Te LSTM model studied by Malhotra et al. [9] was
based on sensor data and normal signals. Tey used the
trained LSTM model to predict the succeeding signal as
a criterion for judging, and then, the actual input and the
criterion were calculated to derive the error distribution for
anomaly detection.

Tese methods use models that model serialized data to
learn temporal features and thus have the ability to predict
predictive classifcation. Just like RNN, after training RNN,
RNNwill have the ability to predict future data. In this way,
the output of the model can be used as a criterion to
compare with the actual data. Te result of the comparison
will be determined by a set threshold value to determine
whether it is normal or abnormal. Tis approach is based
on periodic trafc data and performs better on its dataset.
However, if periodicity is not predominantly represented
on the data set, the predicted results will not be accurate for
the actual data.

As mentioned previously, many attempts have been
made to detect intrusion data using various methods.
However, few attempts have been made to focus on spatio-
temporal features of the data to conduct research. Most
studies, in order to improve the performance of a single
dataset, usually model only the key features in the datasets
that have a high degree of impact, while few studies have
talked about taking both temporal and spatial features into
account. In contrast, spatio-temporal information is crucial
for data analysis and reconstruction because it integrates the
spatio-temporal features of the original data. In order to
utilize both temporal and spatial information in complex
trafc data for anomaly identifcation, a suitable learning
method is therefore required.

3. Modeling of C2-LSTM

Using models that make compromise judgments on tem-
poral and spatial features, C2-LSTM is a modifed C2-LSTM
model designed to evade attacks to achieve deception of
resource-constrained models by intrusion data. In the C2-
LSTM, the CNN and the improved C2-LSTM learn the
spatial and temporal dimensions of the intrusion trafc,
respectively.

3.1. Problem Defnition. Set D � X1, X2, . . . , Xk  is a input
set which represents k kinds of labeled network trafc data
in anomaly detection. k includes q kinds of anomaly
samples and p kinds of normal samples.To be specifc, p is
much bigger than q, and p + q � k. Y � y1, y2, . . . , yk  is
a set of label results for input D. Te work in [22–24] tries
to fnd outliers in the data and edit to identify them, while
the work in [25, 26] is for the classifcation and labeling of
the target sequence, whether it is abnormal or normal. Te
former is a regression method that regresses the input data
into an exact value. Te latter is a clustering or classif-
cation problem to classify it into one of the predefned
categories. Te issue studied in our paper is a classifcation

problem, i.e., classifying the input data into a corre-
sponding type yı.

3.2. Our C-LSTM. CNN and LSTM are the two components
of C-LSTM. Similar to C-LSTM, he uses self-encoders based
on LSTM and CNN to extract fused spatio-temporal features
from the data. Figure 1 shows its model structure.

Te C-LSTM uses preprocessed data as input. Te
convolutional layer uses convolutional kernels for learning
and feature extraction, and the parameters of each layer are
optimized by a back-propagation algorithm. Convolutional
operations can extract various features from the data space
level. Te frst few layers of convolution may only extract
some low-level features. For images, these are picture cor-
ners, single lines, edges of objects, etc. that are not sensitive
to the impact of the results, while higher level features that
afect the model performance will be extracted north in the
deeper layers of the network. Te pooling layer reduces
the computational efort by partitioning and sampling the
data, down sampling a large matrix into a smaller one, and
can prevent overftting at the same time. Te feature data
are transported to the LSTM. First, the CNN is composed
of a convolutional layer and a pooling layer for auto-
matically extracting a sequence of high-level spatial fea-
tures of the network trafc. We use a one-dimensional
convolution operation to extract the temporal features of
the input data directly by temporal convolution instead of
the normal two-dimensional convolution of C-LSTM.
After the convolution, an activation function is used to
perform the transformation of the non-nonlinear func-
tion. As a result, the model is able to capture features of
more dimensions.

Suppose it is an input vector of intrusion data and n is
the dimensionality of its features. Equation (1) yields the
output value from the i-th convolutional layer.

yi � σ bi + Wi∙x( , (1)

where b is the bias of the feature mapping, W is the weight of
the kernel, and σ is an activation function.

We use circular units running from left to right to enable
the LSTM layer to understand the temporal properties of the
trafc data extracted from the upper CNN layer. Tis makes
the model in this layer to have a stronger understanding of
the feature transformation relationships on the time scale.
His input is the output of the pooling layer of the upper layer,
which is gated to control the discarding or adding of in-
formation for forgetting or remembering. Gating is an in-
formation selective pass-through structure based on
a multiplicative mechanism, consisting of a sigmoid func-
tion and a dot product operation that updates the cell state of
each gate according to its activation. Sigmoid functions have
output values in the interval [0, 1], with 0 representing
complete discard and 1 representing complete pass-through.
Cell management through these gates handles the upper
layer of input to input, output and forgetting gate opera-
tions. Te hidden value of the LSTM cell, ht, is updated once
per step t.
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ft � σg Wfxt + Ufct−1 + bf , (2)

it � σg Wixt + Uict−1 + bi( , (3)

ot � σg Woxt + Uoct−1 + bo( , (4)

ct � ft∙ct−1 + it∙σc Wcxt + bc( , (5)

ht � ot∙σh ct( . (6)

Equations (2)–(4) use the symbol I: update the gate, take
sigmoid for the splicing result to indicate whether the
previous result needs to be updated, F: forget the gate, take
sigmoid for the splicing result to indicate whether the
previous result is discarded andO: synchronize the gate, take
sigmoid to indicate whether synchronization is required. C
and h, which stand for cell states and hidden values, re-
spectively, are used in equations (5) and (6). Te forgetting
gate, the input gate, and the output gate work together to
calculate these two values. Tese gates have only few linear
interactions with the other parts. σ is an activation function.
Te network using LSTM units provides excellent learning
capabilities through modeling signal time feature, which
yields the most advanced results in anomaly detection.

3.3. Fusion Model C2-LSTM. C2-LSTM uses a CNN and
C-LSTM for fusion. For the purpose of extracting spatio-
temporal features from the intrusion data center, CNN and
C-LSTM are used as two independent strong learners.
Anomaly detection is performed by splicing the two features
through fusion. Te two learners work parallelly to generate
and evaluate the fnal result; or in other words, there is no
reliance between them. Figure 2 illustrates its model
structure.

Te features retrieved by the CNN and the C-LSTM are
fused by fusion, and the features are stitched together after
both the CNN and LSTM have derived their own values.

S1 � σ bi + Wi∙x( , (7)

S2 � ot∙σh ct( , (8)

S � S1 , S2  , (9)

where S1 is the output of the C-LSTM, and S2 is the output of
the LSTM. S is the stitching of the two feature matrices in the
last dimension. Here, we use the concatenate method to
blend features and models. At the end of the model,
a concatenate layer is built to combine the features extracted
from the previous model. We spliced the tensors in the last
dimension and ensured the alignment of the two parts of
features in the last dimension. Tis makes the fused features
rely on more than just the results of the previous operation
step, combining features of diferent properties.

In trafc detection, the fully connected layer is responsible
for reducing the sensitivity of the parameters in the learning
process. And Softmax is used to output the fnal classifcation
score. Tey are the layers used for the output of the C2-LSTM
model. In the upper part, the output of the fusion matrix is
stretched, and this vector will be fed to the fully connected
layer. Tis layer uses equation (10). D denotes the output of
the fully connected layer, and σ is the activation function.

Di �  σ bi + Wi∙h( . (10)

Te output of the fully connected layer is multiclassifed
by softmax and softmax layer classifes the raw data into
normal and abnormal classes.

3.4. Schema and Super Parameters. Te input of C2-LSTM is
41∗ 1 trafc input, and the parameters of various types of
structures can be adjusted under the design conditions of the
model. Te input of the C2-LSTM is 41∗ 1 trafc data. Under

input1 Conv1D

LSTM

Maxpooling1D
Relu

Tanh

input2

concatenate

Dense and Flatten

softmax

Figure 2: Model structure of our C2-LSTM which consists of
a CNN and our C-LSTM.

input

Conv1D

LSTM

Maxpooling1D

Relu

Tanh

Figure 1: Model structure of our C-LSTM which consists of one-
dimensional convolution, LSTM, and one-dimensional
maxpooling.

Security and Communication Networks 5



the design conditions of the model, the parameters of various
types of structures can be adjusted, such as the depth of CNN
and LSTM, the design of convolution, and the gating strategy
of LSTM.Tese settings will determine the fnal performance
of the whole model, such as accuracy or learning speed. In
contrast, the C2-LSTM fusion method determines that it does
not require a high number of layers. Before entering the
LSTM, he becomes 19∗ 32 spatially feature-rich data by
convolution layer and pooling layer. We use ReLU as the
activation function of the model. After recent years of re-
search, ReLU learns faster than Tanh, and he ensures that the
product of the parts is all always 1, and there is no problem of
gradient disappearance of the sigmoid.

3.5. C2-LSTM Anomaly Detection Algorithm. Te workfow
of C2-LSTM anomaly detection is as follows: frst, preprocess
and normalize sample raw data to handle dirty data and
construct input sets X1 and X2. Ten, the input datasets are
learned with CNN and C-LSTM, respectively, and the outputs
of both are two feature matrices S1 and S2. By dimensional
stitching of feature fusion, S1 and S2 are reconstructed into S.
Te reconstructed features S will be used in the fnal prediction
to get the fnal classifcation of that trafc.Te specifc algorithm
is shown in Algorithm 1.

4. Experiment and Analysis

We use Python 3.7 as the programming language and the
CUDA version of Tensorfow 1.14.0 as the neural network
framework. Te lab deploys comparison experiments in the
same environment and trains models on 4 GeForce RTX
2080 Ti with 12G video memory. We use small batch
training in the experiments with a batch size of 512. Te
details of the experiments are as follows.

4.1. Data Sets and Preprocessing. KDD99 is a dataset for
monitoring abnormal connections from normal connec-
tions, from the DARPA Intrusion Detection Evaluation

Project in 1998. Te KDD99 dataset is a feature extract
version of the DARPA dataset (DARPA is the original
dataset), and the training data for the experiment were
7weeks of network trafc. Tis dataset was utilized in the
KDDCUP competition in 1999 and later became known as
the KDD99 dataset. Although the dataset is too old and may
have obsolescence issues, KDD99 was very popular among
researchers and sets the stage for deep learning and in-
telligent computing to make a big splash in intrusion
research.

Each entry in the dataset is labeled, specifcally into 2
types of anomalous attacks and 1 type of normal. We train
a random sample at a time to learn the characteristics of each
anomaly type in order to make predictions for each
input data.

In the experimental study, the network intrusion de-
tection packet kdd_cup_data_10percent from KDDCup99 is
marked as the training set and corrected as the test set. Te
kddcup_data_10percent packet is a 10% sample of the
kddcup_data packet. Since the data processed for the ex-
periment is network trafc, inputting a segment of network
trafc predicts the category to which it belongs (39
attacks + normal). For such a classifcation problem, we
conducted similar experiments in diferent models and
evaluated these models by accuracy, precision, recall, and
f1 score.

To explain our evaluation metrics, the following ex-
planation is given. Suppose a correct sample is incorrectly
considered as wrong in a dichotomous classifcation prob-
lem, and this wrong data is labeled as false positive (FP). A
false negative (FN) indicates that an abnormal instance is
labeled as normal. Similarly, true positives (TP) and true
negatives (TN) indicate abnormalities and correctly identify
normal instances. Te area enclosed by axes under the ROC
curve is defned as the AUC (area under the curve), which
has values between 0.5 and 1 in a 1∗ 1 coordinate system.
Te closer the AUC is to 1.0, the better the prediction equals
to 0.5, the lowest truthfulness and no application value.
Diferent metrics can be evaluated in this way:

Input: D1 � X1
1, X2

1, . . . , Xk
1 , D2 � X1

2, X2
2, . . . , Xk

2  are the input sets, and label Y � y1, y2, . . . , yk  is the corresponding
Output:A trained anomaly detection model M

(1) Initialize the model M
(2) Initialize the iteration count T, batch size N, threshold δ
(3) for q� 1 t o T do
(4) for m� 1 to 2 do
(5) for each batch Xi

m 
N

i�1 do
(6) Transfer Xi

1 into S1 via CNN by equation (7)
(7) Transfer Xi

2 into S2 via CNN by equation (8)
(8) Splice S1 and S2 into S
(9) Predict y(i)′ based on Z via the estimation network
(10) Update M to minimize loss
(11) end for
(12) if loss< δ: break
(13) end for
(14) return M

ALGORITHM 1: Anomaly Detection Algorithm Based on C2-LSTM.
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Figure 3: (a) Comparison of the metrics on the test data set and (b) comparison of the metrics on 100 epochs during training.
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accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

AUC �
1
2



m−1

i�1
xi+1 − xi( ∙ yi+1 + yi( .

(11)

Data preprocessing using python consists of numerical
replacement text, numerical normalization, and tag unique
hot coding. Numerical replacement text mainly converts the
values of the 41 feature values of each connection that are
strings into numerical form.Te most-valued normalization
is used in numerical normalization. Te preprocessing ends
into 4 fles (train_x, train_y, test_x, test_y).

4.2. Analysis of Indicators. To build our model and conduct
experiments, we utilized two models; the CNN can extract
spatial features up to dimensionality, while the C-LSTM is

more sensitive to changes on time steps. We designed ex-
periments to evaluate the efect of CNN and C-LSTM fusion.
We set the number of convolution cores of the convolution
layer to 32 and the step size to 3. Te window size of the
pooled layer is 2. Te number of LSTM cells is 64. In this
experiment, we evaluated four models including CNN,
LSTM, C-LSTM, and C2-LSTM. After each model was
trained on the training dataset for 100 calendar hours at
a learning rate of 1e-2, the performance (precision, accuracy,
recall, and Auc score) on the test dataset was collected as
shown in Figure 3. Te fusion model with C2-LSTM has the
highest scores in terms of training accuracy, precision, recall,
and Auc. From the test results, we can conclude that our
C-LSTM outperforms the single CNN and LSTM. Proving
that it can extract more key features in time series, our
C-LSTM also demonstrates better temporal feature extrac-
tion and is higher than the original LSTM in terms of AUC,
accuracy, and precision metrics compared to the single
LSTM. At the same time, it is slightly lower than the LSTM in
terms of recall metrics, which we believe is due to the one-
dimensional CNN in front of the model that makes it focus
more on single temporal features and ignore spatial features
in some dimensions.
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Figure 4: Train these two models with 100 epochs of training data for comparison.
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4.3. Comparison with Our C-LSTM. In the paper [7], the
authors use sliding windows to construct preprocessed
temporal correlation data and use LSTM to extract
temporal features. In order to achieve better results in
temporal feature extraction with the fused model, our
improved model replaces the C-LSTM’s two-dimensional
convolution and sliding window operation for extracting
temporal features with a one-dimensional temporal
convolution and fuses it with the CNN. To demonstrate
the efectiveness of the improvement and fusion, we take
out the improved model separately and compare it with
the C2-LSTM. We evaluate the classifcation results of the
C-LSTM model with one-dimensional convolution and
the C2-LSTM. As shown in Figure 4, the two models are
trained with 100 epochs of training data with a learning
rate of 1e-3. Te lowest loss values and best performance
across all metrics are obtained by the fused C2-LSTM. Te
fused C2-LSTM based on fusion can extract superior
features for further classifcation, according to the
experiments.

4.4. Time Performance Requirements. Driven by the new
digital revolution represented by IoT technologies, these
emerging resource-constrained network entities usually
have limited computing power or more sensitive latency
characteristics. Terefore, the training and detection time
of the network and its own lightweight are also discussed in
our consideration and comparison experiments. We
compared the training time and prediction time for CNN,
LSTM, our modifed C-LSTM, and our fused C2-LSTM.
Te experimental conditions were a GeForce RTX 2080 Ti
with 12G video memory. Te training time is the total
training time when training 100 epochs with a batch size of
512, and the prediction time is the overall prediction time
when predicting 494021 data using the trained model.
Figure 5 depicts the performance at training time, with the
fused C2-LSTM converging fastest at a lower loss. Our C2-
LSTM ofers faster prediction and training speed compared

to simple CNN, as seen in Table 3.Tis is due to the fact that
our fusion model possesses superior capability in pre-
diction without requiring deep network layers.

5. Conclusions

We have proposed a new architecture combining CNN and
enhanced C-LSTM to better adapt to the emerging IoT
anomaly intrusion detection with massive data and high
latency sensitivity. In addition, we demonstrate that the
architecture that extracts spatial and temporal features
separately in parallel from CNN and C-LSTM before
fusing them can better learn both spatial and temporal
correlations of data simultaneously to better cope with
complex IoT environments. Based on this, we have
evaluated diferent anomaly detection methods and used
C2-LSTM to extract superior features for classifcation in
fully connected networks. According to the results of the
experiments, the model has performed at the highest level
in terms of accuracy, precision, completeness and AUC
score. Furthermore, its model structure determines that it
can boost detection performance without a deep network
and can also evaluate temporal performance at a higher
level. It is challenging to sustain its existing edge over
shallow networks in the face of ultrahigh latitude data,
though, as the complexity of the data keeps growing.
When faced with such data, we have intended to use PCA
to downscale and process the data, but using data pre-
processing methods will inevitably introduce some la-
tency, which is not permitted in industrial IoT devices
listed with high latency sensitivity, and we will continue to
work in this direction in the future.
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Figure 5: Convergence speed of training.

Table 3: Time consumption for training and prediction.

CNN (s) LSTM (s) Our C-LSTM (s) Ours (s)
Training time 956.35 1919.03 1339.25 1880.49
Testing time 3.06 3.09 2.81 2.62
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