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Backdoor attacks have been recognized as a major AI security threat in deep neural networks (DNNs) recently.Te attackers inject
backdoors into DNNs during the model training such as federated learning. Te infected model behaves normally on the clean
samples in AI applications while the backdoors are only activated by the predefned triggers and resulted in the specifed results.
Most of the existing defensing approaches assume that the trigger settings on diferent poisoned samples are visible and identical
just like a white square in the corner of the image. Besides, the sample-specifc triggers are always invisible and difcult to detect in
DNNs, which also becomes a great challenge against the existing defensing protocols. In this paper, to address the above problems,
we propose a backdoor detecting andmitigating protocol based on a wider separate-then-reunion network (WISERNet) equipped
with a cryptographic deep steganalyzer for color images, which detects the backdoors hiding behind the poisoned samples even if
the embedding algorithm is unknown and further feeds the poisoned samples into the infected model for backdoor unlearning
and mitigation. Te experimental results show that our work performs better in the backdoor defensing efect compared to state-
of-the-art backdoor defensing methods such as fne-pruning and ABL against three typical backdoor attacks. Our protocol
reduces the attack success rate close to 0% on the test data and slightly decreases the classifcation accuracy on the clean samples
within 3%.

1. Introduction

Deep neural networks (DNNs) have a wide range of the
current applications in the artifcial intelligence applications
such as image recognition, speech recognition, and natural
language processing [1–3], in which security and privacy
protection are considerable issues [4]. Te massive amount
of data and growing computing power have facilitated the
development of DNNs, but the DNN models are still very
expensive in training. Users often choose to train DNN
models on the third-party platforms (e.g., Amazon EC2) or
even use third-party trained models directly to reduce
training costs. However, it is vulnerable to backdoor attacks,
which can misclassify any input using attacker predefned
triggers (pattern patches) and replace the corresponding
label with a predefned target label. Tose models with

backdoors behave normally just like the clean peer-to-peer
models for clean samples without triggers, which are
equivalent to highly stealthy viruses that disguise themselves
as normal and perform great damage [5].

Te backdoor attack greatly threatens DNNs in practical
applications for reducing the trustworthiness of the DNN
models and even leading to safety-critical areas. Te sepa-
ration of data and model training in deep learning allows
attackers to often gain and modify the training samples to
mislead DNNs by adding some invisible perturbations to
a small proportion of datasets, such as the local patches or
the steganographic data in the lower right corner of an
image, and even setting weights that afect the model during
training [6–10]. Te ability of infected DNN models to
correctly classify clean samples makes it difcult for users to
detect the presence of backdoors. In addition, the hidden

Hindawi
Security and Communication Networks
Volume 2023, Article ID 9308909, 12 pages
https://doi.org/10.1155/2023/9308909

https://orcid.org/0000-0002-1458-2297
https://orcid.org/0000-0001-8190-8309
https://orcid.org/0000-0002-0243-9995
https://orcid.org/0000-0002-1716-1332
https://orcid.org/0000-0002-5702-5749
mailto:lfwei@shmtu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9308909


nature of triggers makes it difcult for users to identify them.
Tus, the invisibility and stealthiness of triggers make
detecting backdoor attacks a considerable challenge [11–13].

Most of the existing backdoor defensing methods are
divided into two types: model-based defense and data-based
defense.Te former detects whether the model is infected by
a backdoor, and the latter considers whether the data contain
a trigger. Recently, Li et al. [14] reveal that existing backdoor
attacks were easily mitigated by current defenses [15–17]
mostly because their backdoor triggers are sample-agnostic,
i.e., diferent poisoned samples contain the same trigger no
matter what trigger pattern is adopted. Tus, they propose
an attack method, called as sample-specifc backdoor attack
(SSBA), which makes it more difcult to detect and remove
the backdoors since most of the current defensing protocols
reconstruct and detect backdoor triggers according to the
same behavior on diferent poisoned samples [15–17]. SSBA
is an invisible backdoor attack that generates invisible
sample-specifc triggers by the pretrained encoder-decoder
network. Te reason why current mainstream defensing
methods have difculty in detecting sample-specifc triggers
is that their success based on the assumption that the triggers
are sample-agnostic based types. For example, pruning-
based defenses assume that the neurons associated with
the backdoor are diferent from those activated by the clean
samples. Te defender can remove the hidden backdoor by
pruning out the potential neurons. However, the non-
overlap between the two neurons is that the sample-agnostic
trigger pattern is simple, and the DNNs only need a few
independent neurons to encode this trigger.Tis assumption
might be easily broken when the trigger is sample-specifc.

Inspired by image steganalysis technique [18], we fnd
that the intensity values of the images at the same position of
diferent color channels have a strong correlation for the
poisoned images regardless of whether the triggers are
sample-specifc or invisible; that is, the triggers in the
poisoned images belong an additional perturbation with
a weak correlation among those color channels. In addition,
since the poisoned samples of the backdoor attack are
bounded to the target label, the correlation between the
trigger pattern and the target label can be efectively broken
by randomizing the class target.

We propose a new backdoor detecting and removing
protocol, which can detect backdoors regardless of whether the
triggers are specifc to poisoned samples or not. Specifcally, it
detects whether a color image contains a trigger by the feature
that the additional perturbation can be retained in the wider
separate-then-reunion network (WISERNet). To address the
weakness that poisoned samples in backdoor attacks are always
bounded to the target label, our protocol breaks the correlation
between the trigger pattern and the target label by backdoor
unlearning and leads to model purifcation. In summary, our
contributions are as follows:

(i) A backdoor defensing method based on secure
image steganalysis is proposed. Te poisoned image
contains a trigger that can be considered as an
additional perturbation, and the intensity value at
the same location has a strong correlation between

diferent color channels, while the trigger has a weak
correlation between its channels. Te protocol is
proved valid whether the trigger is visible or
invisible.

(ii) A secure backdoor detecting and removing protocol is
designed.We design a novel protocol to achieve the goal
by detecting the poisoned images in the training dataset
based on the wider separate-then-reunion network
regardless of whether the trigger is specifc to the poi-
soned samples andby retraining themodel for backdoor
unlearning with the detected poisoned images.

(iii) Extensive experiments are conducted in the pro-
posed protocol. We empirically show that our
protocol is robust against three state-of-the-art
backdoor attacks. Compared with the state-of-
the-art backdoor defensing protocols, fne-pruning
[15] and ABL [19], our protocol reduces the success
rate of backdoor attacks to nearly 0% on both target
classifcation and face recognition tasks and retains
the accuracy after removing the backdoors.

2. Related Work

2.1. Backdoor Attacks. A common method for implementing
backdoor attacks is data poisoning.When themodel is training,
the poisoned samples are injected into the training dataset.
After that, the model is infuenced by the poisoned samples,
deviates from the desired training efect of the original training
data, and changes “slightly” in the desired direction according
to the feature of the poisoned samples, which allows the at-
tacker to modify the model and implant a backdoor [20].
According to the visibility of trigger, backdoor attacks based on
data poisoning can be classifed into two categories: visible
backdoor attack and invisible backdoor attack.

2.1.1. Visible Backdoor Attack. Gu et al. [21] frst proposed
the backdoor attack BadNets to inject backdoors by mod-
ifying part of the training data, whose triggers can be of
arbitrary shapes, such as squares. Chen et al. [22] frst
demonstrated that data poisoning attacks can create phys-
ically implemented backdoors. Liu et al. [23] proposed
a Trojan attack to design triggers based on the values of
internal neurons in DNNs, which strengthens the connec-
tion between the trigger and the internal neurons, enabling
the efect of implant backdoors with fewer poisoned samples.
Chen et al. [24] improve the steganography of the trigger by
combining generative adversarial network techniques to
implant the trigger as a watermark into clean samples and
reducing the variability between the trigger features and the
clean sample features. Tere are many other works [25, 26]
implemented in optimizing triggers, and although all of
these attack methods have high success rates, the triggers are
visible and can be easily detected by people.

2.1.2. Invisible Backdoor Attack. Zeng et al. [27] proposed
that poisoned samples can be identifed by frequency in-
formation and constructed frequency invisible poisoned
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samples, thus achieving the invisibility of triggers. Li et al.
[14] proposed to generate sample-specifc triggers by the
pretrained encoder-decoder network. Considering the
steganography perspective, Li et al. [28] proposed an opti-
mized framework to constrain the generation of triggers by
regularization and embed the triggers in the bit space using
image steganography to make the triggers invisible.

2.2. BackdoorDefenses. Due to the great potential damage of
backdoor attacks to artifcial intelligence applications, an
increasing number of backdoor defensing protocols are
proposed to mitigate such security threats. Te existing
defensing approaches include model-based defense and
data-based defense.

2.2.1. Model-Based Defenses. Model-based defense is to
detect whether a model is infected with backdoors. Liu et al.
[15] found that neurons associated with backdoors are
usually dormant during inference of benign samples and
therefore proposed to prune the associated backdoor neu-
rons to eliminate backdoors in the model. Zhao et al. [29]
proposed to repair infected models using quantitative clean
samples by pattern connectivity techniques [30]. Liu et al.
[31] proposed a neural network-based artifcial intelligence
scanning technique inspired by EBS [32] to determine
whether a model has a backdoor; however, it is efective for
single-trigger attacks and inefective for multitrigger attacks.
Wang et al. [17] proposed a defense method called neural
cleanse (NC) by synthesizing each class’s triggers and
comparing the triggers’ size. If the smaller trigger is sig-
nifcantly smaller than the other triggers, the model is
considered to be infected with a backdoor. Recently, Li et al.
[19] proposed the concept of antibackdoor and designed
a generic antibackdoor learning protocol ABL, which can
automatically prevent backdoor attacks during model
training.

2.2.2. Data-Based Defenses. Data-based defense is to detect
whether a sample contains a trigger. Gao et al. [16] proposed
amethod, known as the STRIP, to flter malicious samples by
overlaying various images onto the images of training
samples and observing the randomness of their classifcation
results. Bao et al. [33] proposed an image preprocessing
method to identify the trigger region using GardCAM [34]
technique, remove it, and replace it with a neutral-colored
box because the region where the triggers in the poisoned
samples are located has a high impact on themodel inference
stage. Udeshi et al. [35] proposed to make a trigger in-
terceptor using the dominant color of the image for locating
and removing backdoor triggers in poisoned samples. Han
et al. [36] proposed an evaluation framework to preprocess
the input samples using data enhancement techniques to
disrupt the connection between the backdoor and the trigger
in the poisoned sample, making the triggers invalid during
inference, and fne-tuning the infection model using another
data enhancement technique to eliminate the efect of
backdoors.

Liu et al. [15] proposed the approach, named as fne-
pruning (short for FP), which has a degraded defense per-
formance for diferent models and datasets. Li et al. [19]
proposed a more complex implementation of antibackdoor
learning, which divides the model training stages into two
stages: backdoor isolation and backdoor unlearning, and the
choice of a turn-period from its backdoor isolation process
to backdoor unlearning progress is more critical. For dif-
ferent attack methods and data sets, the choice of the turn-
period also has diferent efects on the performance of the
model. Our protocol performs well for diferent datasets,
models, and attack methods.

3. Overview

In this section, we defne our attack model, give the as-
sumptions and goals of defensing protocols, and, fnally,
provide an intuitive overview of our approach for identifying
and mitigating backdoor attacks.

3.1. Attack Models and Defense Assumption. In our attack
model, the user trains a DNN model on the training dataset,
denoted as Dtrain, that can be obtained from a third party, or
even the training process of the DNN can be outsourced to
an untrustworthy third party. An attacker may poison part
of the training data, set the size and position of the triggers at
will, and adjust the training stage of the model, but not
access the validation dataset and manipulate the inference
stage of the model. Te attacker’s goal is to return to the user
a trained infected backdoor model that behaves like the
uninfected model in terms of the output on the clean
samples but classifes into the target label specifed by the
attacker when the samples contain the triggers.

Te attacker assumed in our work is more powerful. Te
attacker proposed by Li et al. [14] can only access the training
dataset and cannot manipulate the training stage of the
model. Te attacker proposed by Liu et al. [23] cannot access
the training data and can only modify the trained model.Te
attacker defended in our work not only has access to the
training dataset but also can manipulate the training stage of
the model. It is reasonable for the attacker to consider an
attacker with limited capabilities. However, the attacker
should be assumed to be more powerful since advances in
technology and defense methods.

We also assumed that the defender has access to the
trained DNNmodel and can use a clean set of samples to test
the performance of the model.

3.2. Design Goals. Our defensing protocol includes two
specifc goals:

(i) Backdoor detecting: After the training stage of the
DNN model, a backdoor detector constructed by
WISERNet can successfully detect whether a sample
image contains a trigger, i.e., whether it is
a poisoned image.

(ii) Backdoor mitigating: Since there is a strong corre-
lation between triggers and target labels in backdoor
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attacks, this weakness is exploited to reinput the
poisoned samples into the infected model and re-
train the model to achieve backdoor unlearning.

3.3. Design Intuition. We describe our high-level intuition
for detecting triggers in poisoned samples and overview our
defense.

3.3.1. Key Intuition. Te invisibility of the trigger and the
low poisoning rate make it difcult for the defender to detect
whether the sample is poisoned or not. We derive the in-
tuition behind our technique from the basic properties of
a backdoor trigger, namely that whether the trigger is in-
visible or not, it can be regarded as additional noise, and this
noise can be a special pattern or a string representing the
target label. For a poisoned image, the intensity values of the
three bands at the same position exhibit a strong correlation,
and their expectations are similar from the perspective of
statistics. On the contrary, the additional noise added in the
poisoned sample has a weaker correlation between the bands
and may not even correlate.

To verify the above statement, we analyzed 10,000
poisoned images generated in BadNets [21], Blend Attack
[22], and SSBA [14]. Given X � 0, 1, . . . , 255{ }(C×W×H),
a poisoned image of the size of W × H, it comprises three
bands, namely the red, the green, and the blue band. Te
correlation between the diferent bands of the poisoned
image is defned as follows:

Corrj,k �
􏽐

K
i�1 Mi − M( 􏼁 Ni − N( 􏼁

�������������

􏽐
K
i�1 Mi − M( 􏼁

2
􏽱 �������������

􏽐
K
i�1 Ni − N( 􏼁

2
􏽱 , (1)

where j, k ∈ R, G, B{ }, K � W∗H, M and N indicate band
map matrix vector of poisoned image, and M and N are the
mean of the elements in the vector. In the experiment,
Table 1 reveals the correlation between the intensity values
and the corresponding color bands, and they all show strong
correlation. Te triggers generated in the three backdoor
attacks have no efect on the correlation of the intensity
values among bands. On the other hand, for BadNets, the
added triggers show almost zero correlation between bands.
Even for Blend Attack and SSBA, they exhibit weak
correlation.

We note that it is difcult to detect whether an image is
a poisoned one based on the weak correlation of the trigger
among diferent bands. In the pipeline of our defensing
method as shown in Figure 1, the backdoor target label is
a frog, and the trigger is the invisible additive noises, which
are embedded into the clean picture by pretrained encoder.
In the training stage, we adopt the poisoned samples and
clean samples to train DNNs and then get the backdoored
DNN which classifes poisoned samples to the target label,
while performing perfect on clean samples. Te pretrained
detector detects the training set and adds the sample to the
detection set if it is predicted to be poisoned. Ten, the
detection set was re-entered into the backdoored DNNs for
backdoor unlearning, which gets clean DNNs. In the in-
ference stage, the clean DNNs will behave normally on the

test samples, and the poisoned samples will not be classifed
into the target label.

4. Our Protocol Design

We will describe the details of the approach to detecting
triggers and backdoor unlearning in this section, as outlined
in Algorithm 1. Table 2 describes the symbols used in
Algorithm 1.

4.1. Backdoor Detection Design. Let Dtrain � xi, yi􏼈 􏼉
n

i�1 in-
dicates the training set containing n samples, where xi ∈ X

and yi ∈ Y � 1, 2, . . . , K{ }. Te DNN model learns a func-
tion fw: xi⟶ yi with parameters w, and yi denotes the
label. Dpoison indicates the poisoned training set, and Dclean
represents the clean training set. Specifcally, Dtrain consists
of Dpoison and Dclean, i.e.,

Dtrain � Dpoison ∪Dclean, (2)

where Dpoison ⊂ Dtrain, c � |Dpoison|/|Dtrain| indicates the
poisoning rate, Dclean � (xi, yi)((xi, yi) ⊂ Dtrain/Dpoison􏽮 􏽯.
Specifcally, Ddetect indicates the set consisting of poisoned
samples detected by the detector, where Ddetect ⊂ Dpoison.
Since it is difcult to detect all the poisoned samples in the
training set, some of the clean samples are also included in
Ddetect. Te more clean samples are included in Ddetect, the
lower the classifcation accuracy of the model on the clean
samples will be after it performs backdoor unlearning.
Defne the detection rate � |Dtrain|/|Dtrain|, and ρ plays a key
role in the fnal model performance.

4.1.1. Observation. Te trigger generation in most backdoor
attack methods is similar to the steganography algorithm
applied to images, in which additional noise is embedded in
the image. For example, for the attack proposed in [22],
G(x) � α · t + (1 − α) · x,∀x ∈ X, where G(x) generates
poisoned sample, and t indicates the backdoor triggers. Te
trigger generation in SSBA is also motivated by the DNN-
based image steganography [37].

Based on the observation and the key intuition, we can
detect whether the image is poisoned based on steganalysis.
Convolutional neural network structure is widely used in
gray-scale image steganalysis. For color image, the sum-
mation normal convolution reserves strongly correlated
patterns but compromises uncorrelated noise or weak
correlated noise. In the process of training the detector, it is
necessary to preserve the characteristics of the trigger as
much as possible. Te wider separate-then-reunion network
(WISERNet) [18] chooses a channel-wise convolution in the
bottom convolution layer, which can well preserve the
features of extra added noise in the image. In addition,
WISERNet initializes the convolution kernel using the high-
pass flter of the null domain richmodel [38] to better extract
noise (trigger) features.

4.1.2. How to Build the Detector. We use theWISERNet [18]
as a core for the backdoor detector. Since the image
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convolution operation afects the additional noise [18], the
sum in the convolution layer retains the strong correlation
pattern but damages the irrelevant noise. Terefore,
WISENet uses the normal convolution summation opera-
tion in the upper convolution layer rather than using the
sum operation in the bottom convolution layer. WISERNet
can be divided into three parts in turn: separation, reunion,
and prediction. Te separated part is composed of channel
convolution layer. Te main purpose of convolution in the
bottom convolution layer is to suppress the relevant image
content. WISERNet gives up the sum in the bottom con-
volution layer and selects the channel volume to reduce the
weakening of the network to the irrelevant noise. Te re-
union part is composed of three wide and relatively shallow
normal convolution layers that retain summation. Te
number of kernels in each convolution layer will gradually
increase to augment the capacity of WISERNet. Te typical

practical method of deep learning network is to design it
deeper. However, the deeper the network is, the more output
is involved in the summation, and as a result, the more
severely the weakly correlated signal is damaged. Terefore,
WISERNet designs the upper convolution layer wider to
improve its detection performance. Te prediction part is
composed of four layers of fully connected neural networks
to make the fnal prediction.

As shown in Figure 2, the image is input during the
detection process dividing it into red, green, and blue bands,
and then, convolution at the channel level is applied sep-
arately. Te initialization of the convolution kernel weights
in each channel is then performed using 30 high-pass flters
in the null domain rich model, and as a result, 30 channel
feature maps are generated. Finally, the three independent
channels are joined together to form a 90 channel output,
which is used as the input to the second convolution layer.

Backdoor
Confguration

Target Label:"Frog"

Trigger:

Clean
Samples:

Poisoned
Samples:

Clean
Sample:

Poisoned
Sample:

Frog

Frog

Spider

Training Stage

Backdoored DNN

Samples contain
trigger?

Detector Backdoored DNN

Backdoor
unlearning

Inference Stage

· · ·

· · ·

Correct
Label

Correct
Label

Clean DNN

Yes

Figure 1: Te pipeline of our defensing method.

Table 1: Te correlation between the intensity of diferent color bands and those of corresponding triggers.

Attack Types Red vs. green Red vs. blue Blue vs. green

BadNets [21] Intensity 0.9512 0.8950 0.9737
Trigger 0.1781 0.1970 0.2710

Blend Attack [22] Intensity 0.9596 0.9121 0.9744
Trigger 0.6672 0.5545 0.8046

SSBA [14] Intensity 0.9542 0.9005 0.9695
Trigger 0.6424 0.5960 0.6798

Table 2: List of symbols.

Symbol Description
Xc � Xi􏼈 􏼉

n

i�1 Te clean samples set
A Te backdoored DNN model
B Te clean DNN model
D Te detector
∅ Te empty set
G(x) Te function to generate poisoned sample
θ Te model parameters
∇ Gradient operator
y Sample label. Te sample is clean if y� 1 (poisoned if y� 0)
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From the second convolutional layer forwards, a standard
convolutional approach is used, with the structure of the
convolutional operation layer, the batch normalization layer,
the activation function layer, and the average pooling layer
in order. Since the complexity of the convolutional layers
afects the feature extraction and processing, the number of
convolutional kernels in each convolutional layer is corre-
spondingly quadrupled to maintain the complexity of the
convolutional layers for better noise feature extraction and
processing. After the normal convolutional layer, the output
feature maps are then combined as variables in 32 steps and
input to the fully connected layer. Te fully connected layers

contain 800, 400, 200, and 2 neurons, respectively, and the
three hidden layers use the ReLU activation function. Te
last fully connected layer performs the fnal classifcation
prediction result, and if the prediction result is a poisoned
sample, the backdoor is buried in the model.

4.2. Backdoor Mitigation Design. Despite the detection of
poisoned samples in the training set by the detector, the
backdoor in the model still exists. Let
(X, Y) � (x1, y1), (x2, y2), . . . , (xn, yn)􏼈 􏼉 be the training
samples, and the training of the model in the backdoor

Input: A clean sample Xc � Xi􏼈 􏼉
n
i�1, a training set Dtrian, a backdoored DNN model A.

Output: A clean DNN model B.
(1) Initialize Ddetect � ∅, ρ � 0, and detector D.
(2) //step 1: generate poisoned-clean pair samples.
(3) set Xp � G(x),∀x ∈ Xc, where G(x) generate poisoned sample;
(4) set χ � Xc + Xp; y � 1; x ∈ Xc; y � 0; x ∈ Xp;
(5) //step 2: Train detector D.
(6) set δ⟵ 0, learning rate η � 0.01;
(7) for epoch � 1, 2, . . . , m do
(8) for minibatchB ⊂ χ do
(9) Update θ of detector D with stochastic gradient descent;
(10) gθ � E(x,y)⊂B[∇θL(x + δ, y, θ)];
(11) θ � θ − ηgθ;
(12) //step 3: detect poisoned samples in training set.
(13) set Ddetect � ∅, ρ � 0;
(14) for i � 0; i + +; i≤ |Dtrain| do
(15) //D(·) indicates the inference result of detector D
(16) while ρ≤ 0.04 do
(17) if D(xi) � 0 then
(18) Ddetect � Ddetect.append(xi), where xi ∈ Dtrain;
(19) ρ � |Ddetect|/|Dtrain|;
(20) break;
(21) //step 4: Backdoor unlearning.
(22) input Ddetect into A and update model by using equation (5);
(23) return the clean model B.

ALGORITHM 1: Backdoor detection and removal.

Detecting
picture

Te red band

Te green band

Te blue band

64×64
30channesl

32×32
72

channels

16×16
288

channels

8×8
1152

challens

800
nerous

400
neurous

200
neurous

64×64
30channesl

64×64
30channesl

Poisoned
picure

Clean
picture

Figure 2: Te architecture of wider separate-then-reunion networks [18].
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attack can be achieved by minimizing the following em-
pirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 +

1
m

􏽘

m

1
Dpoison l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃, (3)

where n and m are the number of clean samples and poi-
soned samples in the training set, respectively. l indicates
the loss function such as the cross-entropy loss commonly
used in DNN training.

Equation (3) shows that the backdoor injection process
can be considered an instance of multitask learning. Te
main task is the training on the clean samples, whereas the

other task is the training on the poisoned samples, that is, the
backdoor task. To prevent the model from learning the
backdoor task and thus achieving the goal of backdoor
unlearning, it can be achieved by minimizing the following
empirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 −

1
m

􏽘

m

1
Dpoison l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃. (4)

Equation (4) maximizes the backdoor task compared
to (3).

Since it is difcult to detect all the Dpoison in the training
set, and the training set of detected poisoned samples is also
containing some clean samples, it makes the classifcation

accuracy of the model on clean samples drop signifcantly.
Terefore, we use the detection dataset Ddetect instead and
achieve the efect of backdoor unlearning by minimizing the
following empirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 −

1

m
′ 􏽘

m′

1

Ddetect l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃. (5)

5. Experiments

In this section, we implement our protocol based on the
datasets of CIFAR10 [39] and VGGFACE2 [40]. We ex-
perimentally test the trigger performance and analyze the
efects of trigger location, trigger size, and the string rep-
resenting the target label by the attack SSBA on the per-
formance of the detector. In addition, we experimentally
analyze the efect of the size of the detection rate ρ on the
performance of the model and arrive at the value of ρ for
which the defensing protocol achieves better results when
targeting a variety of backdoor attacks. Finally, the efec-
tiveness of this protocol is compared with existing typical
backdoor defensing protocols to analyze the efectiveness of
our protocol.

5.1. Experiment Setup. Te implementation of the detector
is based on the Cafe toolbox [41]. Te network is trained
using small batch stochastic gradient descent with an
initial learning rate of 0.001, a learning rate adjustment
strategy set to inv, and a fxed momentum of 0.9. Te
maximum number of training iterations is set to 20,000,
and the batch size is 16 during training. All training and
testing procedures are performed on a server with the

hardware of NVIDIA GeForce RTX 2080 GPU and 10 GB
of RAM. Te software used for the server is Linux (3.2.x)
operating system and Python 3.6.3. To evaluate the de-
fensing approach, we consider two classical image clas-
sifcation tasks: object classifcation and face recognition.
Te detailed information about each task and the asso-
ciated dataset are described in Table 3.

Object Classifcation (CIFAR10 [39]): Tis task is
commonly used to evaluate attacks against DNNs and
was chosen to train the model PreActResNet [42] using
the CIFAR10 dataset. Te original dataset contains 10
classes, which contains 50,000 training datasets and
10,000 test datasets.

Face Recognition (VGGFace2 [40]): Tis task recog-
nizes the faces of 200 people by training the model
ResNet [43]. Te original dataset contains 3.31 million
images. We randomly select 200 categories which
contain 400 images for training and another 50 images
for testing.

According to the backdoor attacks, we use three already
infected object classifcation models and face recognition
models by BadNets [21], Blend Attack [22], and SSBA [14].
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Te poisoning rate c � 10% and the target label are set to 0.
Figure 3 shows the poisoned samples generated by the three
attacks. Te backdoor trigger is set to a white square located
in the lower right corner of the image, which only accounts
for 1% area of the image for BadNets and Blend Attack, and
the blending rate (trigger transparency) is set to 0.2 for the
Blend Attack. For SSBA, the trigger is generated by the
encoder that is a U-Net [44] style DNN trained on the clean
samples, which achieves the invisibility and sample-specifc
of the trigger.

We adopt three efective performance metrics: attack
success rate (ASR), which is the classifcation accuracy on
the poisoned test set, clean accuracy (CA), which is the
classifcation accuracy on the clean test set, and detection
success rate (DSR), which is the success rate of detecting
poisoned samples on the training set. Table 4 shows ASR and
CA of the three backdoor attacks on the two
classifcation tasks.

5.2. Te Efect of Backdoor Detection. Te success rate of
detecting poisoned samples by the detector is the key factor
to judge the efectiveness of our protocol. For the above three
attacks, the data are poisoned accordingly and then detected
by the detector. In each experiment, frst 10,000 images in
the training set are randomly selected to add triggers, and the
way of adding triggers is kept the same as in the experimental
setup. Ten, 6000 pairs of clean-poisoned images are ran-
domly selected and input into the WISERNet for training,
while the remaining 4000 pairs are used for testing. Table 5
shows the detection success rates for the three attacks under
the two tasks, respectively. 99% of the poisoned images can
be detected for both the BadNets and Blend Attack on given
datasets. For SSBA, above 94 % of the poisoned images can
be detected on the CIFAR10 dataset and 99% on the
VGGFACE2 dataset.

Considering the efects of changing the shape and po-
sition of the trigger and the diferent strings representing the
target labels in SSBA on the detection success rate, we
discuss the efects on the detection success rate by modifying
the shape and position of the trigger and the strings and then
feed them into the already trained WISERNet.

Figure 4 shows the efect of diferent trigger shapes and
positions in BadNets on the detection success rate and the
efect of diferent representative strings in SSBA on the
detection success rate, both experiments on the VGGFACE2
dataset. Te model (model1) is the detector trained with the
poisoned samples generated by the BadNets, and the triggers
are 9 × 9 white squares in the lower right corner of the
image.Te other model (model2) is the detector trained with
the poisoned samples generated by SSBA method, and the
string embedded in the image is 0. In Figure 4(a), the trigger
shapes are set to white blocks with circles, ovals, and tri-
angles and then input into model1 to get the detection
results. In Figure 4(b), the position of the trigger is set at the
four corners of the image, respectively, and then input into
model1 for detection. In Figure 4(c), the strings embedded
into the images are set to 0, 1, 2, and 3, respectively, and then
input into model2 to get its classifcation results. Figure 4

shows that the content of the representative string in SSBA
does not afect the efciency of the detector, and it can
achieve more than 96 % detection success rate for poisoned
images. When the size of the trigger does not cover the entire
picture, it changes its position and shape that can afect the
efciency of the detector.

Te position and shape of the triggers afect the detection
success rate, but the content of the representative string in
SSBA does not afect the detection success rate. Since the way
of adding the trigger in SSBA makes the trigger and the
features of clean samples fused, its feature position also
overlaps with the position of the main features of those clean
samples. Tus, the trigger position and shape are not critical
factors in the training process of WISERNet. Furthermore,
the trigger features in BadNets difer from the main features,
and the position and shape have some infuence on the
results.

5.3. Te Efect of Backdoor Mitigation. Te performance of
the model after backdoor unlearning can be optimal in
equation (4) if all poisoned samples in the training set are
detected and no clean samples are mistakenly detected as
poisoned samples. However, it is hard to arrive that the
detection method does not detect 100 % of the poisoned
samples. In addition, it may be afected by the dataset, such
as the trigger set in BadNets attack is the white square in the
bottom right corner of the image, yet some of the images in
the CIFAR10 dataset are also white in the bottom right
corner, which will lead to the wrong detection. Terefore,
there will be a small number of clean samples included in
Ddetect. Usually, the larger the value of |Ddetect|, the lower the
success rate of the attack after the backdoor unlearning.
However, if a number of the clean samples are included in
Ddetect, w will make the classifcation accuracy on the clean
samples drop signifcantly. Terefore, we experimentally
investigate the correlation between the value of ρ and the
performance of our protocol.

In the CIFAR10 dataset, the poisoning rate is set to 10%,
and thus, there are 5,000 poisoned images in the training set.
Set ρ values at 0.02, 0.04, 0.06, 0.08, and 0.1. Te optimal
range of ρ values is experimentally derived, which maintains
the classifcation accuracy on benign samples while reducing
ASR. Figure 5 shows the implementation on the CIFAR10
dataset with diferent ρ values for diferent backdoor attacks.
It can be found that our protocol is efective against all three
attacks at diferent ρ. Te backdoor attack rate can drop to
very close to 0% while the classifcation accuracy of the
model on clean samples maintains at a high level. We also
fnd that the best performance of our protocol is achieved
when ρ≤ 0.04.

5.4. Comparison with the Existing Defensing Protocols. To
further evaluate the efectiveness of our protocol, we con-
sider three state-of-the-art backdoor attacks and compare
with two typical backdoor defensing techniques. Table 6
demonstrates our proposed method on the CIFAR-10
dataset and the VGFACE2 subset dataset. FP [15] and ABL
[19] are following the confgurations specifed in their
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original papers. In addition, the last convolutional layer of
the neural network in FP is pruned, and ASR of the model
signifcantly decreases when 60 % of the neurons are pruned.

Let epoch T � 107 and turn-period Tte � 25 be set in the
training of the CIFAR10 dataset, and epoch T � 46 and turn-
period Tte � 25 in the training of the VGGFACE2 subset

Ba
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BA

(a) (b)

Figure 3: Poisoning samples generated by diferent backdoor attacks: BadNets, Blend Attack, and SSBA. (a) CIFAR 10. (b) VGG face2.

Table 3: Details of datasets and model architectures.

Task Dataset # of
labels Input size # of

training images Model architecture

Object classifcation CIFAR10 10 32× 32× 3 50000 PreActResNet
Face recognition VGGFace2 200 64× 64× 3 80000 ResNet

Table 4: Attack success rate (ASR) and clean accuracy (CA) of various backdoor attacks on classifcation tasks.

Task
Backdoored model (ASR %/CA %)

Clean model (CA %)
BadNets Blend Attack SSBA

CIFAR10 99.64/93.02 100/93.67 99.91/93.08 92.40
VGGFace2 99.40/87.80 99.98/87.84 99.67/88.59 91.31
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Figure 4: Detection success rate related to various trigger shapes, positions, and representative strings: (a) Efect of trigger shape on
detection success rate, (b) efect of trigger location on detection success rate, and (c) efect of diferent string on detection success rate.
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dataset in the defensing protocol ABL. In both datasets, our
protocol is set to ρ � 0.04. None Attack in Table 6 means that
the training data are completely clean.

In the CIFAR10 dataset, ABL can achieve better results in
the classifcation accuracy of clean samples compared to our
protocol, but our protocol can achieve the best decrease in the
reduction of the attack success rate. In the subset of
VGGFACE2 dataset, FP can reduce the attack success rate of
the three attackmethods to less than 15%, but at the same time,
the classifcation accuracy of the clean samples also decreases to
less than 75%. ABL reduces the attack success rate of the three
attack methods to 0, but the performance of the clean samples
of the model is poor; thus, we can assume that ABL has no
defensive efect. Our protocol has better performance in both
attack success rate and classifcation accuracy on the clean
samples. In Table 6, it can be seen that Blend Attack, both ABL
and our protocol, decreases in attack success rate and

classifcation accuracy compared to other attack methods,
which is because the dataset images are blurred, and the trigger
pattern mixed with poisoned images produces the efect of
natural artifacts, which makes it difcult to detect poisoned
images.Maintaining the classifcation accuracy of themodel on
clean samples is as important as reducing the success rate of the
attack. Table 6 shows that our protocol is better to maintain the
classifcation accuracy of the model on clean samples while
reducing the success rate of the attack compared with FP
and ABL.

6. Conclusion

In this work, we propose a backdoor detecting and removing
protocol for deep neural networks based on image steg-
analysis. Our protocol detects the poisoned training samples
using a deep steganalyzer constructed by WISERNet and
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Figure 5: Te efect performance on diferent detection rate ρ.

Table 5: Detection success rate against three typical attacks.

Datasets
Backdoored model (DSR %)

BadNets Blend Attack SSBA
CIFAR10 99.85 100.00 94.92
VGGFace2 99.78 100.00 99.68

Table 6: Efectiveness performance comparison of defensing protocols under diferent backdoor attacks.

Dataset Attack type
FP [15] ABL [19] Ours

ASR % CA % ASR % CA % ASR % CA %

CIFAR10

None Attack 0.00 91.88 0.00 92.75 0.00  3.7 
BadNets 99.81 90.37 0.42  3.14 0.21 90.54

Blend Attack 100.00  3.43 0.48 76.56 0.15 60.43
SSBA 99.90 93.09 0.50  3.17 0.43 90.81

VGGFACE2 subset

None Attack 0.00 72.62 0.00 82.96 0.00 86.73
BadNets 11.79 77.26 0.00 14.90 0.32 83.36

Blend Attack 14.89 71.46 0.00 9.72 0.46 78.67
SSBA 11.47 72.23 0.00 7.97 0.17 84.27

For diferent attacks, bold values represents the best defense efect among the three defense schemes.
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retrains the model for backdoor unlearning by the detected
poisoned samples. Compared with the SOTA backdoor
defensing protocols, our protocol achieves to reduce the
backdoor attack success rate while maintaining a high
classifcation accuracy on the clean samples. In the future
work, we will further study the backdoor detection and
unlearning methods to obtain higher clean sample classi-
fcation accuracy and lower backdoor attack success rate for
diferent attack methods and design universal and efcient
backdoor defensing protocols.
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