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With the development of cloud services and the Internet of Tings, the integration of heterogeneous systems is becoming
increasingly complex. Identity management is important in the coordination of various systems, and public key infrastructure
(PKI) is widely known as an identity management methods. In PKI, a certifcate authority (CA) acts as a trust point to guarantee
the identity of entities such as users, devices, and services. However, traditional CAs that delegate the operations to a specifc
organization are not always suitable for heterogeneous services, and a new methodology is required to enable multiple
stakeholders to securely and cooperatively operate a CA. In this study, we introduce the concept of a consortium CA and propose
a distributed public key certifcate-issuing infrastructure that realizes a consortium CA. Te proposed infrastructure enables
multiple organizations to cooperatively operate a CA suitable for services involving multiple stakeholders. We identify four
requirements for the cooperative operation of a consortium CA and design the proposed infrastructure with distributed ledger
technology. Furthermore, we present the implementation of smart contracts with Hyperledger Fabric and prove that the proposed
infrastructure satisfes the four requirements. Finally, we confrm that certifcate issuance and verifcation are stable at ap-
proximately 4 and 3ms, respectively.

1. Introduction

Identity is critical to security mechanisms such as au-
thentication and access control. Weak identity man-
agement mechanisms allow for impersonation attacks.
Public key infrastructure (PKI) is widely known as
a mechanism for confrming the identity of entities and
linking the identity to a public key certifcate. In PKI,
a certifcate authority (CA) acts as a trust point to
guarantee the identity of entities, such as users, devices,
and services and allows only authenticated entities to
connect to the system. A CA issues a public key certifcate
that contains a public key and the identity of its owner.
By verifying the public key certifcate, the verifer can
believe that the CA guarantees that the owner possesses
the public key. A CA is responsible for the authenticity of

the content of a public key certifcate and is called a single
trust point.

CAs can be classifed into two types depending on op-
eration forms: public and private. Public CAs are operated as
services by socially trusted companies for Internet use. Te
main role of a public CA is to issue public key certifcates to
web servers. Public CAs and browser vendors release
baseline requirements that all public CAs must follow[1].
Unlike a public CA, which is strictly enforced, private CAs
are not required to be as strict as public CAs. A private CA
has the same function as a public CA in issuing public key
certifcates, but a private CA is operated only within a spe-
cifc domain by a private organization. Tus, a private CA
can be used in a form suitable for domain-specifc situations:
when issuing numerous public key certifcates at a high
frequency, when issuing public key certifcates dedicated to
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a specifc framework, or when policy prohibits the use of
a public CA.

With the development of cloud services and wireless
technology, various services and devices are being linked
together. Tis is known as the Internet of Tings, which
involve connecting numerous devices to the Internet, not
just people accessing the Internet with a browser. Tis trend
has led to the creation of heterogeneous systems such as
cross-domain services [2], cyber-physical systems [3], and
digital twins [4]. Such a system involving various stake-
holders requires fexible ID management according to in-
dividual situations, but it is difcult for public CAs and their
additional mechanism, Certifcate transparency (CT), to
manage IDs fexibly. In CT, issued certifcates are recorded
in CT logs and made public. According to [5], client cer-
tifcates published in CT logs can leak private enterprise
information, such as business relationships, user growth
measurements, and the existence of internal projects prior to
their public announcements. Te same is true for device
certifcates, which can reveal what kinds of devices and how
many devices company own. In addition, there are fnancial
cost issues with device certifcates, and there are cases where
public CAs are not suitable. Te fexibility of private CAs
may be suitable for this issue, but overcoming the stakes and
operating a CA securely is challenging. Figure 1 is an ex-
ample of a cross-domain service [2]. A consumer can use the
charging services while using the parking services; this is an
interdomain scenario. Moreover, mobility service domains,
for instance, may provide route optimization services by
integrating and combining diferent mobility services; this is
a single-domain scenario. In this scenario, if a particular
organization operates a private CA, the issuance of certif-
cates would be managed by that organization. In such an
operation, it is difcult to detect arbitrarily issued certif-
cates. If each organization operates its own private CA,
certifcate issuance is not dependent on any one

organization, but since each organization operates its own
CA, the attack points increase. In addition, sufcient security
measures must be taken by each organization to ensure that
security is breached from the weakest point, that is,
a methodology for securely operating a private CA under
multiple stakeholders is required. In this study, we propose
a distributed public key certifcate-issuing infrastructure that
allows multiple organizations to cooperatively operate CAs
suitable for consortium-type services. In consortium-type
services, because multiple organizations cooperate in pro-
viding services, the operation of the service should not be
infuenced by any particular organization. Terefore, to
strictly guarantee the identity of service use in consortium-
type services, the participating organizations in the con-
sortium must be able to operate CAs in a cooperative
manner. However, many security risks are associated with
CA operations. Te security risks increase if many organi-
zations are involved in the operation of a CA. In this study,
we focus on the risk of the unauthorized use of private keys.
If a CA’s private key is compromised by any organization in
the consortium, the organization can issue arbitrary public
key certifcates using the compromised private key.

For security use of the CA’s private key, we employ
distributed ledger technology (DLT), also known as
blockchain. Te proposed infrastructure is built on a DLT
system, and all organizations participate in the DLT system.
Use of the private key is restricted to smart contracts only in
the proposed infrastructure because the availability of the
private key in any context leads to arbitrary public key
certifcates. Smart contracts have business logic agreed upon
by all organizations. As long as a private key is used in
a smart contract, its use can be considered as authorized by
the participating organizations. However, smart contracts
do not protect the confdentiality of the data they use; the
private key could be compromised during the execution of
smart contracts. In the proposed infrastructure, we use
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Figure 1: Example of cross-domain services based on [2].
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Hyperledger Fabric Private Chaincode (FPC) [6] and protect
the confdentiality of the private key during the execution of
smart contracts.

Tis study contributes to the following:

(i) We introduce the concept of a consortium CA and
identify the requirements for operating the
consortium CA.

(ii) We design a distributed public key certifcate-
issuing infrastructure as a consortium CA
using DLT.

(iii) We implement a prototype system for the proposed
infrastructure with Hyperledger Fabric and evaluate
the execution time of smart contracts that perform
CA functions. Te prototype system maintains the
confdentiality of CA’s private key using private
chaincode, which is an extension of Hyperledger
Fabric.

Te remainder of this paper is organized as follows:
Section 2 describes PKI, Intel Software Guard Extensions
(Intel SGX), Hyperledger Fabric, and Hyperledger FPC,
which are the technologies used in this proposal. Section 3
describes the concepts of consortium CA and the design
policy of this proposal, and Section 4 discusses the data
structures and transactions designed to implement the
distributed public key certifcate-issuing infrastructure.
Section 5 describes the implemented smart contract. Section
6 provides a security analysis. Section 7 provides a qualitative
and quantitative evaluation. Section 8 compares the pro-
posed infrastructure with those in related studies, and
Section 9 concludes the paper.

2. Background

2.1. PKI. PKI is a framework that links a public key and its
owner’s identity and provides a mechanism for verifying that
the communicating party is actually the owner of the public
key based on public key cryptography. A CA, which is
a single trust point, is responsible for guaranteeing the
identity of the owner and issues a public key certifcate to the
owner after confrming their identity. Te CA signs the
public key certifcate with its own private key to guarantee its

contents. Te owner can prove its authenticity by presenting
the public key certifcate to other parties with whom it
communicates.

A typical example of a public key certifcate is X.509.Te
X.509 certifcate format is standardized by the International
Telecommunication Union (ITU). As shown in Table 1, an
X.509 public key certifcate consists of a presigned certifcate,
signature algorithm, and signature value. Te presigned
certifcate contains basic information such as a subject name,
a validity period, a public key, and extensions.

Public key certifcates must be classifed according to
their purpose, and a major classifcation is whether they are
public key certifcates for CAs. Public key certifcates for CAs
are used to guarantee the ownership of public keys and verify
other public key certifcates issued by the CA. Whether
a certifcate is a CA certifcate or not is expressed by
a dedicated fag in the extensions feld of the X.509
certifcate.

Figure 2 shows the fow of the application, issuance, and
verifcation processes. In PKI, a certifcate holder (CH)
presents a public key certifcate to a relying party (RP), and
the RP identifes the CH with the certifcate. Public key
certifcates are issued by authorities: a registration authority
(RA) and a certifcate authority (CA). In the application
process, the CH generates a key pair and signs a certifcate
signing request (CSR) with the private key (Step 1-1). Te
CSR contains all information necessary for the CA to issue
a certifcate, such as a common name, organization name,
and public key of the CH. Ten, the CSR is sent to the RA
(Steps 1-2). Te RA verifes and confrms the identity of the
CH (Steps 1–3). After confrming the identity, the appli-
cation process is completed. In the issuance process, the RA
sends the CSR to the CA and requests issuing a public key
certifcate (Steps 2-1). Upon receiving the request, the CA
frst creates a presigned certifcate based on the CSR. Ten,
the CA signs the presigned certifcate with the CA’s private
key to create a public key certifcate (Step 2-2) and issues this
public key certifcate to the CH (Steps 2-3). Te CA
maintains a repository that publishes the issued public key
certifcates and certifcate revocation lists (CRL) and updates
the repository as necessary. In the verifcation process, the
CH presents the public key certifcate issued by the CA to the
relying party to prove the identity of the CH (Steps 3–1).Te
relying party obtains the CRL and CA’s public key certifcate
(Steps 3-2) and verifes the certifcate presented by the CH
(Step 3-3). Te information retrieved from the repository
can be cached; thus, so the relying party does not need to
access the repository’s every verifcation process. If the
verifcation is successful, the relying party can trust the
identity of the CH.

Figure 3 shows the processes of signing and verifying
public key certifcates. Te signing process is performed by
encrypting the hashed presigned certifcate with the CA’s
private key, as shown on the left side of Figure 3, that is, the
signature value of the certifcate can only be created by the
CA. Te CA is required to sign the certifcate with the
agreement of its content, thereby guaranteeing the content
of the certifcates. Moreover, as shown on the right side of
Figure 3, the verifcation is performed by checking whether

Table 1: X.509 certifcate format.

Presigned
certifcate

Version
Serial number

Signature algorithm
Issuer name

Validity period Not before
Not after

Subject name
Subject public

key info
Public key algorithm
Subject public key

Issuer unique ID
Subject unique ID

Extensions
Signature algorithm
Signature value
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the hash value of the certifcate matches the decrypted
signature value with the CA’s public key. Te CA’s public
key certifcate is publicly available; anyone can verify the
certifcate issued by the CA. Trust in the contents of a public
key certifcate is based on the CA properly managing its
private key, that is, if a CA’s private key is used fraudulently,
the contents of a public key certifcate can be falsifed.

Certifcate transparency (CT) [7] and the four cornered
trust model [8, 9] are among the latest PKI technologies.

CT is an additional mechanism for increasing certifcate
transparency, in which the CA stores a record of every
certifcate it issues in third-party CT logs. By reviewing the
CT log, the certifcate holder can verify that no fraudulent
certifcates or certifcates from nonpolicy CAs have been
issued for his or her domain. Tis prevents the RP from
trusting a fraudulently issued certifcate. When a certifcate
is provided to the CT log, the CT logs return data called
a signed certifcate timestamp (SCT). Te certifcate owner

presents the SCT with the certifcate when it is presented.
Te RP can use the certifcate and SCT to verify that the
certifcate’s data are registered in the CT log.

Te four cornered trust model adds an entity called
a trust broker to the traditional PKI. Te trust broker ob-
jectively evaluates the trustworthiness of the CA and its
certifcates; the RP does not trust the CA directly but trusts
this trust broker. Te trust broker provides three types of
information to the RP:

(i) Quality of Certifcate (QoCER): a score from 0 to 1
indicating the level of trust that can be placed in the
certifcate

(ii) Confdence level (CL): a score from 0 to 1 indicating
the degree of confdence the trust broker has in the
QoCER recommendation sent to the RP

(iii) Usage information about the recommended or
allowed uses of the certifcate

Step1-1
Key Pair and CSR Creation

Step1-2
Sending CSR

Step1-3
Identity
Verification

Step2-1
Request Public Key Certificate

Step2-2
Creation of public key certificate

Step2-3
Issuance 

Step3-1
Presentation of Public Key Certificate

Step3-3
Verification

Step3-2
Reference of CRL
and public key
certificate

Publication of
public key certificates and CRL 

Trust

Trust in identity

RA CA Repository

Certificate Holder Relying Party

Figure 2: Flow of application, issuance, and verifcation processes of public key certifcates in PKI.
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Based on the information provided by the trust broker,
the RP will determine if the CA is trustworthy. In addition,
the trust broker is responsible for the information provided
to the RP andmust respect and protect the privacy of the RP.
Te trust broker must be independent of the CA. Possible
organizations that operate trust brokers include the
following:

(i) A commercial organization whose business is to
make recommendations regarding certifcates

(ii) Governments wishing to promote electronic com-
merce in their countries

(iii) An international organization such as the United
Nations to facilitate international trade

2.2. Intel Software Guard Extensions. Intel SGX [10, 11] is
a trusted execution environment (TEE) that provides a se-
cure execution environment in hardware. Intel SGX creates
a cryptographically protected area called an Enclave and
executes programs within the Enclave to protect data and
execute programs securely. A function called “sealing” en-
crypts sensitive data within the Enclave, allowing it to be
stored outside the Enclave in encrypted form. A function
called “unsealing” can then decrypt the encrypted data
within the Enclave. Terefore, sensitive data can be pro-
tected even outside the Enclave because it is encrypted rather
than simply plain text when outside the Enclave.

Tere is a study [12] that uses Intel SGX to generate keys
and certifcates. Tis study seeks to improve the security of
key generation and key distribution. Te keys are securely
generated and encrypted in the secure environment of Intel
SGX. Te encrypted key is then distributed as an optical
signal for secure key distribution.

2.3. Hyperledger Fabric. Hyperledger Fabric [13], which is
a DLTframework, is a Hyperledger project [14]. Hyperledger
Fabric consists of two types of nodes: peer and orderer. A
peer has a distributed ledger, communicates the execution of
smart contracts, and updates data in the ledger to the orderer
as transactions. Te orderer sequences the transactions it
receives from the peer and distributes the blocks generated
from the transactions to all peers. Te Fabric network
consists only of authenticated nodes, which join the Fabric
network using certifcates issued by a dedicated private
certifcation authority. Smart contract installation is based
on the permission of each node participating in the Fabric
network. Terefore, no particular administrator can arbi-
trarily decide which smart contracts to install, and only those
smart contracts that are agreed upon by all nodes are
installed.

Two types of commands are used to invoke smart
contracts: invoke, which generates a transaction, and query,
which does not generate a transaction.Te invoke command
can update data in the ledger by generating a transaction, but
time is required for all nodes to synchronize their ledgers.
Because the query command does not generate a transaction,
it can only perform read operations that do not require

updating the data in the ledger, thereby eliminating the need
for synchronization time.

When a client invokes a smart contract via invoke, the
following processes are performed. First, the client requests
the creation of a transaction from multiple peers. Upon
receiving the request, the peers execute the smart contract
and return the result as a transaction to the client. After
receiving transactions from all peers, the client sends the
transaction to the orderer, which orders the transactions,
generates the blocks, and sends the blocks to all peers. Peers
verify each transaction in the block, and if no problems are
identifed, the transaction is refected in the ledger.

In a DLT, each peer signs a transaction to prove that it
has executed it. Te key for signing is generated and
managed by each peer. In Hyperledger Fabric, each orga-
nization can have a CA, and when a node joins the DLT,
each CA generates a certifcate for that node. When a node
joins the DLT, each CA generates a certifcate for that node,
which is then used to verify the signatures in the blocks. If
the keys used for signatures are compromised, there is
a possibility of identity theft, so measures to prevent key
compromise are considered. Some of the proposed key
compromise countermeasures include the use of multi-
signature [15], the generation of secret keys from biometric
information [16], and the use of hardware security module
(HSM) [17].

2.4. PrivateChaincode. Hyperledger FPC [6] is a mechanism
to run Hyperledger Fabric on Intel SGX.Te FPC allows and
protects the execution of distributed ledgers and smart
contracts, which are key-value type databases. Te FPC is
designed based on [18].

In FPC, the content of a peer can be protected by Intel
SGX. Because the smart contract is executed within Enclave,
no one can know the details of the smart contract execution
and it can be executed securely. Data to be stored in the
ledger are encrypted within Enclave and stored in the ledger
in an encrypted state. When data are retrieved from the
ledger, the data are retrieved in its encrypted state and
decrypted in Enclave. At this time, the key for decryption
exists only in Enclave. In addition, communication between
nodes is protected by secure sockets layer (SSL) commu-
nication using a certifcate issued at the time of registration.

In a blockchain such as Fabric, a peer executes the smart
contract, and the peer can know the execution details of the
smart contract. Terefore, utilizing highly private data is
unsuitable in blockchains. However, the execution of smart
contracts using Intel SGX, such as FPC, can be useful when
leveraging highly private data.

A possible use case for FPC is to train a model for
detecting brain abnormalities as a convolutional neural
network (CNN) [19]. To obtain a highly accurate model, data
owned by a single entity are insufcient; more data are
required. Terefore, collecting data from many entities is
desirable, but regulations under the General Data Protection
Regulation (GDPR) and the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) make sharing CT
scans and MRI images of the brain difcult. In such cases,
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FPC can be used to protect privacy while sharing
information.

3. Concepts of Consortium CA and
Design Policy

In this section, we introduce the concept of a consortium CA
and defne the design policies of a distributed public key
certifcate-issuing infrastructure for a consortium CA.
Figure 4 shows the concepts of a consortium CA. Concept 1
is that the consortium CA should be operated by multiple
organizations. Organizations participating in the consor-
tium should have equal rights to use the consortium CA and
not be restricted in their use by any particular organization.
Concept 2 is that the transparency of certifcate issuance
should be guaranteed. To operate the consortium CA se-
curely, all organizations should enable early detection of
unauthorized certifcates. Concept 3 is that the transparency
of certifcate validation should be guaranteed. No organi-
zation within the consortium should interfere with the RP’s
certifcate validation.

A naive approach for cooperative operation among
multiple organizations is to share the private key of the CA
to an administrator of each organization, and issue public
key certifcates under the responsibility of each adminis-
trator. However, this approach is impractical because it
requires trusting each administrator, and a malicious ad-
ministrator can issue unauthorized public key certifcates in
secret using the private key illegally. For multiple organi-
zations to cooperate in operating a distributed public key
certifcate-issuing infrastructure, public key certifcates must
be issued only when necessary at the administrators’ dis-
cretion while preventing unauthorized issuance of certif-
cates by administrators. Terefore, we defne four
requirements for the proposed infrastructure.

(1) Req. 1: public key certifcates are issued without
depending on a specifc organization

(2) Req. 2: all public key certifcates issued must be
recorded

(3) Req. 3: the issuance of a public key certifcate cannot
be erased

(4) Req. 4: relying parties can confrm that a public key
certifcate has been issued

Req. 1 comes from Concept 1, Reqs. 2 and 3 come from
Concept 2, and Req. 4 comes from Concept 3. Req. 1 pre-
vents an administrator from arbitrarily issuing certifcates.
Tis requirement prohibits the delegation of the manage-
ment of CA’s private key to a specifc administrator. Req. 2
guarantees the transparency of certifcate issuance. Tis
requirement provides accountability around certifcate is-
suance and enables administrators to detect unauthorized
certifcates. Req. 3 also guarantees the transparency of
certifcate issuance. Tis requirement reinforces Req. 2 in
terms of the permanence of the record. Req. 4 guarantees the
transparency of certifcate verifcation. Tis requirement
allows RPs to check public key certifcates without inhibition
by any organizations.

We approach these requirements using smart contracts
and distributed ledgers with DLT, that is, our approach is to
design the logic of certifcate issuance with smart contracts
and the record of public key certifcates with distributed
ledgers. Because smart contracts allows transactions to be
executed without a third party because the processing logic is
predetermined, a public key certifcate can be issued based
on the logic agreed upon by all participants. Tis feature
satisfes Req. 1. Although the logic may be shared, public key
certifcates may be issued independently of smart contracts if
the private key can be used outside of smart contracts. In this
case, such certifcates are not recorded in distributed ledgers.

Consortium CA

Org1 Org3Org2 Org4 Org5

RP CH

Concept 2:
Transparency of certificate issuance

Concept. 1: Cooperative operation

Concept 3:
Transparency of certificate verification

Consortium

Repository Certificate

Record

Figure 4: Concepts of consortium CA. Tis fgure shows an example of a consortium consisting of fve organizations.
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Terefore, we limit the use of the private key within smart
contracts. In this study, we refer making a specifc private
key used to sign public key certifcates available only for
a specifc smart contract as “enclosing private keys.” We
approach Req. 2 with this idea. From Reqs. 1 and 2, dis-
tributed ledgers ensure that a record of issued public key
certifcates is maintained in a manner that cannot be
tampered. Consequently, this is expected to conform with
Req. 3.

Based on the design, public key certifcates can be
managed in distributed ledgers and placed under the control
of the smart contract. Te transparency of the issuance and
management of public key certifcates in the consortium CA
is guaranteed. From this approach, we determine how to
employ permissioned DLT as the proposed infrastructure.
Tere are two reasons for this determination. First, de-
signing an infrastructure that can be operated only among
the identifed organizations is possible. Because the CA
functions are implemented using smart contracts, limiting
entities that can use the functions is necessary. Permis-
sionless DLTallows an unspecifed number of entities to use
smart contract. Second, permissionless DLT does not pro-
vide transaction fnality. Te lack of fnality causes a po-
tential risk of revoking an issued public key certifcate. In
permissioned DLT, transactions can be fnalized by agree-
ment among the participants. For these reasons, realizing the
proposed infrastructure is desirable using
permissioned DLT.

Finally, from the decision to use permissioned DLT, Req.
4 is derived. Te decision to use permissioned DLT reduces
the transparency of certifcate verifcation. Because DLT
system participants can only execute smart contracts, ver-
ifcation transparency is also required against a relying party,
which is not a participant in the DLT system. Tis study

incorporates the idea that the RP directly verifes the cer-
tifcate verifcation results produced by the smart contract.
Tis idea allows RPs to verify certifcates without interfering
with the organizations.

In this study, we design a distributed public key
certifcate-issuing infrastructure that satisfes the four re-
quirements using Hyperledger Fabric, which is a permis-
sioned DLT framework. Furthermore, we enclose private
keys using FPC. Te CA’s private keys are securely used in
smart contracts’ Enclave.

4. Design of a Distributed Public Key
Certificate-Issuing Infrastructure

4.1. Overview. Figure 5 shows the structure of the proposed
infrastructure. Te functionality of a CA is implemented by
smart contracts on the FPC network and multiple organi-
zations corresponding to RAs manage peers, which form the
FPC network. Each RA can use CA functions by executing
smart contracts through peers. In the FPC network, the
ledgers held by each peer are synchronized, and the same
information is written in all ledgers. Each organization runs
a peer on an Intel SGX-enabled device. Tis ensures that the
processing content and input/output of the smart contracts
executed by peers, as well as the input/output to the ledgers,
are maintained secretly.

Te entities that comprise the distributed public key
certifcate-issuing infrastructure are as follows.

(1) Certifcate holder (CH): A certifcate holder is an
entity that requests a certifcate issuance to the
proposed infrastructure.

(2) Certifcate verifer (CV): A certifcate verifer is an
entity that verifes certifcates.

setConfig issueCert checkCert revokeCertgertCert

Smart contract
Distributed Public Key Certificate Issuing Infrastructure

encloseKeys

Peer Peer Peer
O

rd
er

er

Ledger Ledger LedgerSynchronization

Org1 Org2 OrgN

Execution

Management

RA RA RA

Result

Confirmation

Issuance

Request

SGX-protected
areas

CH CVCI
(IM) CI CI

Figure 5: Structure of distributed public key certifcate-issuing infrastructure.
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(3) Certifcate issuer (CI): A certifcate issuer is an entity
that invokes a smart contract to issue a certifcate.

(4) Infrastructure manager (IM): An infrastructure
manager is the entity that sets up the proposed in-
frastructure. It is responsible for setting up the FPC
network, deploying smart contracts, and creating
and enclosing key pairs used to create public key
certifcates. After setup, it acts as a certifcate issuer.

(5) Smart contract (SC): A smart contract is a program
that reads and writes data on a distributed ledger in
DLT. In the distributed public key certifcate-
issuing infrastructure, it realizes the function of
a CA.

(6) Data store (DS): A data store is a ledger for storing
data. In a distributed public key certifcate-issuing
infrastructure, the ledger is protected by Intel SGX
and stores the private keys used for issuance and
public key certifcates issued.

4.2. Data Structure. Te distributed ledger stores the CA’s
private key, public key certifcates issued by the distributed
public key certifcate-issuing infrastructure, and revoked
public key certifcate information.

Table 2 presents the structure of the data stored in the
distributed ledger.

Te distributed ledger holds two types of private keys
skCA and skAudit. Te former is a private key for signing
public key certifcates, and the latter is a private key for
guaranteeing verifcation results. In addition, a public key
certifcate corresponding to each private key is also stored.
Tese data are stored using pointers, which is the string
concatenated string “CA” and hash values of a public key
pkCA corresponding to skCA, as a key.

Because the hash value of pkCA is unique, a diferent key
is generated for each key encapsulation, allowing multiple
private keys to be stored. To identify which of the multiple
private keys will be used to sign public key certifcates, the
pointer of the valid private key is stored with string “val-
idKey” as a key.

Ten, the counter value of the serial number assigned to
the public key certifcate is stored with string “Serial-
Number” as a key, and the issued public key certifcate is
stored with its serial number as a key.

Revoked public key certifcates are stored with the serial
number, revocation date and time, and reason codes of the
revoked public key certifcate as the key “CRL.” Finally, the
issuer’s information and maximum validity period of the
public key certifcate are stored with string “Confg” as
the key.

4.3. Transaction. Te distributed public key certifcate-
issuing infrastructure has four transactions: setup, certif-
cate issuance, certifcate verifcation, and certifcate revo-
cation.Te variables of the proposed infrastructure are listed
in Table 3.

4.3.1. Setup. Figure 6 shows the sequence of the setup. Te
setup prepares for the issuance of public key certifcates in
the distributed public key certifcate-issuing infrastructure
after the FPC network is activated. First, the necessary in-
formation for certifcate issuance, such as issuer information
and maximum validity period, is set by executing setConfg
(Step 1). In setConfg, the issuer information and maximum
expiration date are stored (Steps 2-3).Ten, two key pairs are
generated. skCA is used for certifcate issuance, and skAudit is
used during the certifcate verifcation process (Step 4).
Ten, the generated key pair is enclosed in a distributed
ledger by executing encloseKeys (Steps 5–7). Finally, the IM
deletes the generated keys (Step 8).

4.3.2. Certifcate Issuance. Figure 7 shows the sequence of
certifcate issuance. In a certifcate issuance transaction,
a public key certifcate is issued to a CH. First, a CH creates
a CSR and sends it to a CI, which requests for certifcate
issuance (Steps 1-2). Ten, the CI executes issueCert to issue
the certifcate and returns it to the CH (Steps 3–6).

4.3.3. Certifcate Verifcation. Figure 8 shows the sequence
of certifcate verifcation. In a certifcate verifcation trans-
action, a CV checks the validity of the CH’s certifcate
certCH
′. First, the CV sends certCH

′ and a random number r1
to a CI to check whether the public key certifcate cert′CH to
be verifed is registered in the distributed public key
certifcate-issuing infrastructure (Step 1). Te CI executes
checkCert with certCH

′ and the random number r1 as

Table 2: Data stored in the distributed ledger.

Key Value

“CA.” + hash (pkCA)

CA private key skCA
Serial number of certCA

Private key skAudit
Serial number of certAudit

“validKey” “CA.” + hash (pkCA)
“SerialNumber” Serial number counter value
Serial number of a public key certifcate Public key certifcate

“CRL” List of a serial number of revoked public key certifcate, revocation date, and reason
code

“Confg” Issuer information
Maximum expiry date
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arguments and checks whether certCH
′ is a certifcate stored

in the ledger (Steps 2-3). If it can be confrmed, the SC signs
r1 with skAudit and returns certAudit and sigr1 (Steps 3-4), and
the CI sends them to the CV (Step 5). If not stored in the

ledger, certCH
′ is not a public key certifcate issued by the

distributed public key certifcate-issuing infrastructure, and
the CV is notifed of this. Finally, the CV performs the
verifcation (Step 6). In verifcation, after verifying certAudit

Table 3: List of variables used in this paper.

Variable name Description
sn Serial number that uniquely identifes a public key certifcate

iss Issuer name of the public key certifcate, which represents the distributed public key
certifcate-issuing infrastructure

sub Subject name of the public key certifcate

med Te maximum expiration date of public key certifcates that can be issued by the
distributed public key certifcate-issuing infrastructure

rd Te date when a public key certifcate issued by the distributed public key
certifcate-issuing infrastructure is revoked

rc Reason code that indicates the reason why a public key certifcate issued by the
distributed public key certifcate-issuing infrastructure has been revoked

ed Te expiration date of the public key certifcate
csr Tis is the certifcate signing request to issue the subject’s public key certifcate

CH CV DSSCIM

Step1 (iss, med)

Step4
Generate pkCA, skCA, pkAudit, skAudit

Step5 (pkCA, skCA, pkAudit, skAudit, ed)

Step8 Delete skCA, skAudit

Step7 OK

Step3 OK
Step2 setConfig

Step6 encloseKeys

Figure 6: Setup sequence.

CH CV DSSCCI

Step2 Send CSR

Step3 (CSR, ed)

Step5 Send certCH

Step1 Generate pkCH, skCH, CSR

Step6 Send certCH

Step4 issueCert

Figure 7: Certifcate issuance sequence.
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using certCA, sigr1 can be verifed using certAudit to confrm
that it has been processed by the SC execution. Ten, certCH

′
is verifed using certCA. It is noted that certCA is assumed to
be known in advance.

4.3.4. Certifcate Revocation. Figure 9 shows the sequence
of certifcate revocation. Te certifcate revocation
transaction revokes a public key certifcate. First, a CH
makes a revocation request and sends the serial number of
the public key certifcate to be revoked to a CI (Step 1). Te
CI executes getCert and retrieves the public key certifcate
with its serial number as a key (Steps 2–4). Ten, iden-
tifcation is required to confrm that the retrieved public
key certifcate belongs to the CH. To verify the identity,
the CI requests the CH to sign a random number r2. Te
CI sends a random number r2 to the CH, and the CH
generates a signature sigr2 for r2 using their private key
(Steps 5–8). Te CI verifes sigr2 with certCH (Step 9). If
sigr2 is verifed, the public key in certCH corresponds to
CH’s private key, which confrms that certCH belongs to
the CH. Ten, the public key certifcate is revoked by
executing revokeCert with the serial number of certCH,
revocation date and time, and reason code as arguments
(Steps 10–13).

5. Smart Contract Implementation

Six SCs are implemented, and the FPC’s SCs can be de-
veloped using C++. Te OpenSSL library is used to create
and sign public key certifcates. Table 4 provides the func-
tions used in the proposed infrastructure.

5.1. setConfg. Algorithm 1 provides the pseudocode of
setConfg. In setConfg, the putState function stores the
issuer information and the maximum validity period with
string “Confg” as a key.

5.2. encloseKeys. Algorithm 2 provides the pseudocode of
encloseKeys. encloseKeys takes key information and an
expiration date as arguments. First, in line 16, the serial
number and confguration information are obtained by the
getState function to obtain the information necessary to
generate a public key certifcate. Two public key certifcates
are generated: certCA with pkCA as the public key and cer-
tAudit with pkAudit as the public key. In line 3, a public key
certifcate is generated, and the issuer information, subject
information, serial number, and expiration date are set as the
certifcate information. Ten, the public key certifcate is
signed with skCA. Ten, in line 22, a hash value of pkCA is
calculated, and the key information is stored in a ledger with
string “CA.hash (pkCA)” as a key. String “CA.hash (pkCA)” is
also stored with string “validKey” as a key, and the serial
number is incremented.

5.3. issueCert. Algorithm 3 provides the pseudocode of
issueCert. issueCert takes the CSR and expiration date as
arguments. First, to obtain the information necessary to
generate a public key certifcate, the serial number, con-
fguration information, and string “CA.hash (pkCA)” are
obtained using the getState function, and key information is
obtained using string “CA.hash (pkCA)” as a key. Ten, from
line 5, a public key certifcate is generated. Te certifcate
version is set to “3” to use the extended part of the public key
certifcate. In addition to setting the issuer information,
subject information, serial number, and expiration date as
certifcate information, string “CA.hash (pkCA)” is inserted
into the Authority Key Identifer area of the extended part of
the public key certifcate. Tis allows for the identifcation of
which key signed the public key certifcate during verif-
cation. In line 16, the public key certifcate can then be
signed with skCA, and a public key certifcate can be gen-
erated. Finally, the generated public key certifcate is stored
in the ledger, and the serial number is incremented using the
putState function.

CH CV DSSCCI

Step1 Send cert'CH, random number r1

Step2 (cert'CH, r1)

Step4 Send certAudit, sigr1

Step5 Send certAudit, sigr1

Step6 Verify sigr1, cert’CH

Step3 checkCert

Figure 8: Certifcate verifcation sequence.
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5.4. checkCert. Algorithm 4provides the pseudocode of
checkCert. checkCert frst retrieves the serial number
from the public key certifcate certCH

′ using the getState
function. From the serial number, it retrieves the public
key certifcate cert stored in the ledger and compares
certCH
′ with the cert. Tis comparison determines

whether certCH
′ is a public key certifcate stored in the

ledger. In line 6, the getState function obtains the CRL
and checks the revocation status of certCH

′. Ten, the
certifcate is signed to guarantee that it has been pro-
cessed by SC execution. In line 15, to identify the key that
issued certCH

′, the extension from certCH
′ is extracted. Te

extension contains CA.hash (pkCA), which can be used as
a key to retrieve the key information. After extracting the
key information, sign r1 with skAudit and generate sigr1.
Ten, certAudit, which is necessary for verifying sigr1, is
extracted and output.

5.5. getCert. Algorithm 5 provides the pseudocode of get-
Cert. In getCert, the public key certifcate is retrieved from
the serial number using the getState function.

5.6. revokeCert. Algorithm 6 provides the pseudocode of
revokeCert. In revokeCert, the CRL stored in the ledger is
retrieved. Ten, sn, rd, and rc are added to the CRL, and the
updated CRL is stored with string “CRL” as a key.

6. Security Analysis

In Section 6.1, we evaluate whether the proposed in-
frastructure satisfes the four requirements indicated in the
design policy. In Section 6.2, we establish the threat model
and we perform the security analysis based on the threat
model in Section 6.3.

6.1. Evaluation of Meeting Requirements

6.1.1. Evaluation for Req. 1. Because a public key certifcate is
signed with a private key to guarantee the issuing entity,
a CA is required to strictly manage the private key. For
multiple organizations to cooperate in operating the pro-
posed infrastructure, CIs must be able to use the CA’s private
key, but simply sharing the private key increases the risk of
private key leaks and unauthorized use.

CH CV DSSCCI

Step2 (sn)

Step7 Generate r2 signature sigr2

Step4 certCH

Step5 Generate random number r2

Step8 Send sigr2

Step10 (sn, rd, rc)

Step13 OK
Step12 OK

Step3 getCert

Step11 revokeCert

Step9 Verify sigr2

Step6 Send r2

Step1 Revocation request (sn)

Figure 9: Certifcate revocation sequence.

Table 4: List of functions used in this paper.

Function name Description
putState (k, v) Store in the ledger as key: k, value: v

v← getState (k) Retrieve the value: v corresponding to key: k from the ledger
signCert (cert, sk) Sign cert using sk

Input:iss, med
Output:status

(1) putState (“Confg,” (iss, med))
(2) return “OK”

ALGORITHM 1: setConfg.
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In the proposed infrastructure, a series of certifcate
creation processes, including the signing process using the
private key, is implemented as an SC to avoid dependence on
a specifc CI, as shown in Algorithm 3. Since the private keys

and the SC execution are protected by Intel SGX, all the CIs
have fair access to the private keys and cannot interfere with
other CIs. In this manner, the proposed infrastructure
satisfes Req. 1.

Input: skCA, skAudit, pkCA, pkAudit, ed
Output: status

(1) function genCert (sk, pk, conf, cnt, ed)
(2) //Set issuer information, subject information, serial number and public key
(3) cert.iss⟵ conf.iss
(4) cert.sub⟵ conf.iss
(5) cert.sn⟵ cnt
(6) cert.pk⟵ pk
(7) if ed does not exceed med then
(8) cert.ed⟵ ed//Set expiration date
(9) else
(10) return Error
(11) end if
(12) signCert (cert,sk)//Sign a certifcate
(13) return cert
(14) end function
(15) cnt⟵ getState (“serialNumber”)
(16) conf⟵ getState (“Confg”)
(17) certCA⟵ genCert (skCA, pkCA, conf,cnt, ed)
(18) certAudit⟵ genCert (skCA, pkCA, conf,cnt+ 1, ed)
(19) putState (certCA.sn, certCA)
(20) putState (certAudit.sn, certAudit)
(21) hash⟵Hash (pkCA)
(22) putState (“CA.” + hash, skCA, skAudit, certCA.sn, certAudit.sn)
(23) putState (“validKey,” “CA.” + hash)
(24) putState (“serialNumber,” cnt+ 1)
(25) return “OK”

ALGORITHM 2: encloseKeys.

Input: csr, ed
Output: cert

(1) cnt← getState (“serialNumber”)
(2) conf← getState (“Confg”)
(3) validkey← getState (“validKey”)
(4) (skCA, skAudit, CA.sn, Audit.sn) ← getState (validkey)
(5) cert.version← 3
(6) cert.iss← conf.iss
(7) cert.sub← csr.sub
(8) cert.sn← cnt
(9) cert.pk← csr.pk
(10) cert.extension← validkey
(11) if ed does not exceed med then
(12) cert.ed← ed
(13) else
(14) return← Error
(15) end if
(16) signCert (cert, skCA)
(17) putState (cert.sn, cert)
(18) putState (“serialNumber”, cnt+ 1)
(19) return cert

ALGORITHM 3: issueCert.
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6.1.2. Evaluation for Req. 2. Each organization cooperates to
maintain the proposed infrastructure; ans simultaneously
plays a role in monitoring the other organizations to ensure
that no fraudulent public key certifcates are issued. Because
the public key certifcate creation process is defned by the
SC, a certain level of security is guaranteed, such as pro-
hibiting the use of weak cryptographic algorithms. However,
being able to evaluate items that cannot be evaluated uni-
formly, such as the eligibility of the subject of issuance and
validity of the expiration date, using public key certifcates
that have actually been issued is desirable.

In the proposed infrastructure, the SC must be per-
formed to issue a public key certifcate. Te certifcate is-
suance process is realized as a single transaction of issuance
and recording, with public key certifcates being stored in the

distributed ledger at the same time they are created. Tis
ensures that all public key certifcates issued are recorded in
the distributed ledgers. By managing the public key certif-
icates in the distributed ledgers, the public key certifcates
issued are shared by all organizations. Meanwhile, the
proposed infrastructure requires the infrastructure manager
to enclose the private keys in the distributed ledgers. Te IM
must confrm that the enclosed private keys have been se-
curely deleted, as shown in Figure 6. If the private keys are
not deleted, the IM can create public key certifcates in
secret. However, public key certifcates created without
executing an SC are not recorded in the distributed ledgers;
thus, only public key certifcates that have been legitimately
issued are recorded.Te certifcate verifcation sequence also
checks whether a public key certifcate is registered in the

Input: cert’CH, r1
Output: sig, certAudit

(1) //Retrieve a certifcate using cert’CH serial number
(2) cert← getState (cert’CH.sn)
(3) ifcert and cert’CH are not matched then
(4) return Error (“Cert is invalid”)
(5) end if
(6) crl← getState (“crl”)
(7) i← 0
(8) //Confrm revocation status
(9) whilecert.sn !� crl[i].sn do
(10) i← i+ 1
(11) end while
(12) ifcert is revoked then
(13) return Error (“Cert is revoked”)
(14) end if
(15) extension← cert’CH.extension
(16) (skCA, skAudit, CA.sn, Audit.sn) ← getState (extension)
(17) sig← sign(r1, skAudit)//Sign r1 using skAudit
(18) certAudit← getState (Audit.sn)
(19) returnsig, certAudit

ALGORITHM 4: checkCert.

Input: sn
Output: cert

(1) cert← getState (sn)
(2) return cert

ALGORITHM 5: getCert.

Input: sn, rd, rc
Output:status

(1) crl← getState (“crl”)//Retrieve crl
(2) crl← add (sn, rd, rc)//Add revocation information to crl
(3) putState (“CRL,” crl)
(4) return “OK”

ALGORITHM 6: revokeCert.
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distributed ledgers. Because public key certifcates created in
secret are not recorded in the distributed ledger, they can be
detected by the certifcate validation sequence. In this
manner, the proposed infrastructure satisfes Req. 2.

6.1.3. Evaluation for Req. 3. If the issuance of a public key
certifcate can be erased, inconvenient issuance facts can be
erased later. Because the issuance of a public key certifcate is
recorded as the storage of the public key certifcate in dis-
tributed ledgers, the erasure of the issuance of a public key
certifcate means the erasure of the public key certifcate
stored in the distributed ledgers.

In relation to Req. 2, even if the public key certifcates
issued are recorded in the distributed ledgers without
omission, fraudulent public key certifcates cannot be de-
tected if the records are being tampered with or deleted. Te
public key certifcates stored in a distributed ledger cannot
be deleted based on the distributed ledger’s tamper re-
sistance, which is generally provided by DLT. In addition,
the proposed infrastructure, no SC can delete public key
certifcates recorded in the distributed ledgers, and the
public key certifcates cannot be deleted by abusing legiti-
mate SCs. Even if SCs cannot delete public key certifcates,
issuance of public key certifcates cannot be confrmed if
they are no longer recognized by the proposed in-
frastructure. Terefore, public key certifcates issued are
stored with their hash value as a key to ensure that they are
stored uniquely without being overwritten. In this manner,
the proposed infrastructure satisfes Req. 3.

6.1.4. Evaluation for Req. 4. Te verifcation of public key
certifcates involves checking that the public key certifcate is
signed with skCA and that the public key certifcate is
recorded in the distributed ledgers. As shown in Figure 5, the
existence of this record is verifed by a CI who has the
authority to execute the SC.Tere is a risk concerning the CI
returning incorrect results because the CI can replace the
verifcation results.

Te proposed infrastructure uses skAudit to sign the
verifcation results in addition to skCA to sign public key
certifcates. Te SC that performs the verifcation process
signs the verifcation results with skAudit enclosed in the
distributed ledgers. Terefore, the verifcation results are
guaranteed to originate from the SC. Te CV can verify the
existence of public key certifcates without unauthorized
intervention by the CI. In this manner, the proposed in-
frastructure satisfes Req. 4.

6.2.TreatModels. Since the proposed infrastructure allows
CIs to issue certifcates, we conduct threat modeling by
assuming a CI to be a malicious entity. Te attacker’s goal is
to create a fraudulent certifcate that will pass authentication
checks. From the modeling assumption, the attacker has the
capability of a CI. Terefore, the attacker is able to propose
deploying smart contracts, agree upon processing of smart
contracts, and execute smart contracts. According to the
attacker’s capability, there can be two types of attacks:

deploying a smart contract with incorrect process injected
and intervening in the verifcation process. In the former
type, the attacker proposes a smart contract including the
function that is advantageous in attacking. In this paper, we
analyze the possibility of a smart contract that can issue a CA
certifcate. In the latter type, the attacker illegally intervenes
in the verifcation process to avoid detection of invalid
certifcates. If the attacker obtains skCA, the attacker can
generate invalid certifcates using it. In this type of attack, the
attacker needs to spoof that the invalid certifcates are
recorded on the distributed ledger.

6.3. Security Analysis Based onTreatModels. For the attack
of issuing a CA certifcate, if the attacker can generate a CA
certifcate by issueCert, the attacker uses a private key of
that CA certifcate and can issue certifcates with that CA
certifcate as their parent. In this case, the CA certifcate
issued by the attacker is an intermediate certifcate for the
root CA certifcate stored in the distributed ledger. Tis
attack is detectable from two points of view: installation of
smart contracts at each CI and verifcation of certifcates.
For the frst point, the attacker proposes a smart contract,
which includes the function issuing a CA certifcate to all
CIs, and all CIs have to install that smart contract. Since CA
certifcates are also a type of public key certifcate [20], they
can essentially be generated in the proposed infrastructure.
However, the diference can be determined by the usage of
certifcates expressed in the extension area of certifcates
(e.g., Basic Constraints and Key Usage). Each CI is required
to understand these diferences and decide whether or not
to install smart contracts. Although the specifc scheme is
the future work of this study, it is necessary to establish
a policy to determine whether or not to install smart
contracts and a system that allows all CIs to check the
policy mechanically. For the second point, although the
intermediate certifcate generated by the attacker is
recorded in the distributed ledger, subordinate certifcates
of that intermediate certifcate are not recorded in the
distributed ledger. Terefore, invalid certifcates can be
detected by checkCert.

For the attack of spoofng certifcate issuance records on
the distributed ledger, the attacker attempts to spoof that
certifcates are recorded in the distributed ledger on the
certifcate verifcation sequence. Since this attack falsifes
certifcates created without using issueCert as legitimate
certifcates, it is expected to be used in conjunction with the
attack of issuing an intermediate CA certifcate. In this
attack, the attacker attempts to manipulate the checkCert
results either by altering the checkCert results or by falsifying
the records of the distributed ledger. Te checkCert results
are guaranteed by Req. 4, as shown in Section 6.1.4. In
addition, it is not possible to spoof certifcate issuance re-
cords in the distributed ledger since the attacker cannot
inject invalid records into the distributed ledger by Req. 2
and Req. 3. If the attacker can obtain skAudit, the attacker can
generate the proof without checkCert. However, the
attackable period is very short since skAudit is deleted by the
IM at Step 8 in the setup sequence.
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7. Experimental Evaluation

7.1. Experiment’s Summary. We evaluated the basic per-
formance of the proposed infrastructure. Our evaluation
aims to analyze the proposed infrastructure from the fol-
lowing three perspectives:

(i) Te trend in the time required for the certifcate
issuance

(ii) Te trend in the time required for the certifcate
verifcation

(iii) Te trend in the time required for the certifcate
revocation

In the experiments, we executed the proposed SCs in the
order shown in Figure 10. After setting up the proposed
infrastructure with setConfg and encloseKeys, we re-
peatedly issued, verifed, and revoked certifcates 100 times
with issueCert, checkCert, getCert, and revokeCert. Within
each trial, we measured the execution time for each SC.

To conduct the experimental evaluation, we imple-
mented the system shown in Figure 11. Two peers and one
orderer were created as containers, and an FPC network was
constructed with them. Our proposed SCs were executed on
the FPC network, and its processing time was measured.Te
measurement was performed with SGX in simulation mode.

7.2. Evaluation Results. Te execution times are shown in
Table 5, and time to update the status of all ledgers is shown
in Table 6. IssueCert and revokeCert write data to the ledger.
Terefore, an operation to update the status of all ledgers is
necessary to synchronize the ledgers. Looking at the frst
execution time, setConfg, getCert, and revokeCert required
less than 1ms, whereas encloseKeys, issueCert, and
checkCert required several ms. setConfg and getCert have
short execution time due to their small amount of
processing.

First, we describe the evaluation results of the certifcate
issuance where issueCert is used. From Figure 12, issueCert
has the longest execution time, and it is within a range of
approximately 3.9 to 4.2ms. As shown in Algorithm 3, since
issueCert only uses the input data to create a certifcate, the
execution time is considered to be constant and consistent
with the evaluation results. From Table 6, the time to update
the status of all ledgers for issueCert is also in the range of
0.91 to 0.98ms. From the implementation of the algorithm
and the experimental results, we confrmed that the pro-
posed infrastructure tends to be able to issue certifcates
stably.

Ten, we describe the evaluation results of the certifcate
verifcation where checkCert is used. From Figure 12, the
execution time for checkCert is within a range of approx-
imately 2.9 to 3.4ms. As shown in Algorithm 4, since
checkCert performs a linear search of the CRL to check that
the certifcate has not been revoked, the execution time is
considered to increase linearly. However, our evaluation
results showed no clear increase in execution time for as few
as 100 CRLs. Once a revoked certifcate is listed on CRLs, it is
removed from the CRLs when the certifcate expires. In
other words, the number of CRLs does not continue to
increase monotonically, and there is basically an upper limit
to the number of CRLs. Te upper limit depends on the
application to which the consortium CA is applied, but we
confrmed that about 100 CRLs have no signifcant efect on
the performance change.

Finally, we describe the evaluation results of the
certifcate revocation where getCert and revokeCert are
used. From Figure 12, the execution time for getCert
shows little change, ranging from about 0.5 to 0.6 ms. As
shown in Table 2, certifcates are stored with its serial
numbers as keys, and certifcates can be retrieved from the
ledger by simply inputting the key as shown in Algo-
rithm 5. As a result, the processing cost of getCert is
constant and small. On the other hand, the execution time
for revokeCert increased from 0.7 to 2.2 ms. In revoke-
Cert, the inputting certifcate is added to the CRLs; hence,
it takes the execution time to read and write the CRLs. Te
number of CRLs increases monotonically in this experi-
ment. Tus, the size of data to be read and written has
increased, and the processing time seems to have in-
creased accordingly. However, the execution time is
smaller than that of checkCert, which will be executed
more frequently, and the number of CRLs is expected to
be capped, so performance is not expected to be signif-
cantly impacted. From Table 6, in addition, the time to
update the status of all ledgers for revokeCert is in the
range of 0.67 to 0.75ms. Compared to the time to update
the status of all ledgers for issueCert, the time for revo-
keCert is smaller. Tis suggests that the amount of data
written to the ledger is related to the time to update the
status of all ledgers. Terefore, the time for revokeCert did
not show an obvious increase in time, although the
amount of data to be written would increase as the
number of executions increased.

Repeat

checkCert revokeCertgetCert

setConfig encloseKeys issueCert

Figure 10: Execution environment.

setConfig issueCert checkCert revokeCertgetCert
Smart contract

encloseKeys

Docker Engine 20.10.12

Client Peer1 Peer2 Orderer
Container

Ubuntu 18.04.6 LTS (CPU intel® CoreTM i5-10210 @ 1.60 GHz)

Figure 11: Execution procedure.
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8. Related Work

Table 7 shows a comparison of the proposed infrastructure
and related studies combining CA-based PKI and block-
chain. We reviewed the basic characteristics of them and
analyzed them with regard to the fulfllment of the proposed
requirements. Te basic characteristics of Table 7 are listed
below.

(i) Permission type: this indicates whether the study
employs permissioned or permissionless
blockchain

(ii) Blockchain type: this indicates a type of blockchain
systems used in the study

(iii) Private key location: this indicates where the private
key used for the certifcate is stored

(iv) Certifcate generation: this indicates which entity
generates the certifcate

(v) Certifcate verifcation: this indicates whether the
certifcate verifcation process is performed locally
or using the SC

(vi) Certifcate revocation: this indicates how certifcate
revocation is performed

(vii) Registration confrmation: this indicates whether
a process is used to confrm that the certifcate is
recorded on the blockchain

Our objective is to propose a consortium CA that can be
cooperatively operated by multiple organizations. In con-
trast, most of the related studies proposing blockchain-based
PKI have the objective of resolving the single point of trust of
the CA and making the PKI more secure or improving the
system for that purpose. Although the diferences in the
purpose make a complete comparison difcult, we analyzed
whether the related studies meet the following four re-
quirements defned in this paper and compared the dif-
ferences among the related studies.

(i) Req. 1: this indicates whether “Public key certifcates
are issued without depending on a specifc orga-
nization.” is satisfed

(ii) Req. 2: this indicates whether “All public key cer-
tifcates issued must be recorded.” is satisfed

(iii) Req. 3: this indicates whether “Te issuance of
a public key certifcate cannot be erased.” is satisfed

(iv) Req. 4: this indicates whether “Relying parties can
confrm that a public key certifcate has been
issued.” is satisfed

Te results of the analysis show that the related studies
can be divided into fve categories from the perspective of the
requirements, as shown in Table 7.Te frst is a category that
satisfes none of the requirements. Tis category includes
those that apply blockchain technology for purposes other
than certifcate issuance (e.g., sharing revocation in-
formation or CA policies). Lei et al. [21] propose an efcient
certifcate revocation scheme in vehicle communication
systems (VCS). Ahmed and Aura [22] propose a SC-assisted
public key infrastructure (SCP) to manage certifcate trust
statuses. CAs and domain owners register and publish their
certifcate policies on the blockchain such that each par-
ticipant can verify the trust status of certifcates. IKP [23]
incentivizes CAs to act ethically and report fraud, thereby
discouraging abusive behavior. Elloh Adja et al. [24] propose

Table 5: Execution time.

SC
Execution time (ms)

1 time 20 times 40 times 60 times 80 times 100 times
setConfg 0.495± 0.003 — — — — —
encloseKeys 4.734± 0.017 — — — — —
issueCert 3.972± 0.044 3.876± 0.040 4.139± 0.491 3.885± 0.069 4.206± 0.783 3.900± 0.057
checkCert 2.946± 0.004 2.954± 0.014 3.098± 0.108 3.353± 0.273 3.219± 0.246 3.112± 0.002
getCert 0.582± 0.060 0.566± 0.000 0.563± 0.000 0.607± 0.005 0.641± 0.008 0.562± 0.000
revokeCert 0.708± 0.051 0.774± 0.135 1.236± 0.011 1.870± 0.273 1.967± 0.176 2.194± 0.025

Table 6: Time to update the status of all ledgers.

SC
Time to update the status of all ledgers (ms)

1 time 20 times 40 times 60 times 80 times 100 times
issueCert 0.972± 0.005 0.931± 0.002 0.953± 0.005 0.980± 0.016 0.920± 0.005 0.914± 0.012
revokeCert 0.683± 0.004 0.733± 0.003 0.702± 0.004 0.679± 0.002 0.714± 0.002 0.759± 0.014
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Figure 12: Change in execution time for issueCert, checkCert,
getCert, and revokeCert.
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a new certifcate revocation method and status verifcation
scheme. It stores certifcate revocation information in
a public blockchain and provides a mechanism like a CRL
distribution point.

Te second is a category that satisfes only Req. 3. Te
studies in this category tend to utilize the blockchain’s
tamper-resistance capabilities to ensure the accountability of
PKI for specifc peers authorized to participate in the
blockchain system. Certchain [25] involves an auditing
scheme using blockchain for secure SSL communications. It
records, publishes, and audits certifcate operations such as
certifcate registrations, renewals, and revocation on the
blockchain. BlockCAM [26] proposes a cross-domain au-
thentication model using blockchain. Te CA becomes
a node on the blockchain, and the CA registers its issued
certifcates on the blockchain. Boyen et al. [27] propose
DPKIT, which eliminates the CA as a single point of failure
and ensures transparency in certifcate issuance and revo-
cation. Although DPKIT employs permissionless block-
chain, auditing requires the cooperation of a dedicated node
called DPKIT peer.

Te third is a category that satisfes Reqs. 3 and 4. Te
studies in this category tend to utilize the blockchain
technology for ensuring the accountability of PKI for even
entities that do not participate in the blockchain system.
However, certifcates registered in the blockchain are still
under the control of a CA, and there is a possibility of
omission of certifcate registration or registration of
fraudulent certifcates. CBPKI [28] involves a blockchain-
based cloud-based PKI. It aims to leverage the security
measures of cloud platforms by ofoading certifcation
authority to the cloud. Wang et al. [29] propose a certifcate
and revocation transparency system to prevent imperson-
ation attacks using fraudulent certifcates. Hwang et al. [30]
solve the PKI problem using public blockchains that cannot
handle numerous certifcates using TP-Merkle trees. Kubilay
et al. [31] propose a new PKI model with blockchain-based
certifcate transparency, CertLedger. CertLedger manages
the states of all certifcates and their revocation status and
the set of the trusted CA certifcates in blockchain.

Te fourth is a category that satisfes Reqs. 3 and 4 and
partially satisfes Req. 2. Te studies in this category include
an additional mechanism to prevent the registration of
fraudulent certifcates for the third category. Terefore, Req.
2 is partially satisfed. Yakubov et al. [32] propose a block-
chain-based PKI management framework for managing
certifcates. Each CA has a dedicated SC, which allows it to
register and revoke certifcates. Rashid et al. [33] propose
a blockchain-based mechanism for the issuance and man-
agement of transparent and secure digital certifcates that
can prevent CA abuse. Te proposed system can solve at-
tacks like Sybil attack, Spoofng attack, and MITM attack.

Te ffth is a category that satisfes Reqs. 2, 3, and 4. Te
studies in this category have an additional mechanism to
enforce that all of the certifcates are recorded in blockchain
for the fourth category. Specifcally, the recording process is
integrated into the issuing process. Saleem et al. [34] propose
a decentralized PKI framework, ProofChain, to improve
security. Blockchain miners act as CAs and issue certifcates

by storing them in the blockchain after each CA signs them.
Dykcik et al. propose BlockPKI [35] to reduce the power of
individual CAs and to make their actions publicly visible and
accountable. A domain owner publishes a request on the
blockchain for the issuance of a certifcate along with the
expected set of CAs. Ten, each of the designated CAs
performs domain validation and publishes a certifcate with
multisignature on the blockchain. Li et al. [36] propose
a possible solution with new blockchain technology to solve
problems like single-point attacks and man-in-the-middle
attacks. Tere is no CA as a third party, and the verifer acts
as a CA. When a user registers credential information with
the blockchain, the verifer issues the user a certifcate for its
own server, which is stored in the blockchain. Te user can
then retrieve the certifcate from the blockchain.

In addition to CA-based PKI, a blockchain-basedWeb of
Trust PKI has also been proposed. WoT-based PKI guar-
antees an identity of a public key without relying on a single
point of trust such as a CA. BCTrust [37] proposes a secure
communication protocol in wireless sensor networks
(WSN). Web of Trust does not use certifcates, but au-
thenticates messages by recording them on a blockchain.
BlockPGP [38] proposes a blockchain-based framework that
manages pretty good privacy (PGP) certifcates and key-
server infrastructure with high trust. Certifcate holders can
register and revoke PGP certifcates on the blockchain and
sign the certifcates of others. Blockstack [39] is a block-
chain-based naming and storage system . It associates public
keys, data, and usernames in a similar manner as PGP using
blockchain. DPKI [40] proposes a PKI solution to address
attacks coming from a single point of failure in the Industrial
Internet of Tings (IIoT). DPKI uses a permissioned
blockchain, where the participants are all devices in the IIoT
network. SCPKI [41] is an alternative PKI system based on
a decentralized and transparent design using the Web-of-
Trust model and smart contracts on the Ethereum block-
chain. Each entity stores its identity in the blockchain, and its
authenticity is guaranteed by signatures of other entities.Te
blockchain stores identities and public keys, and each
participant signs these data. Fromknecht et al. propose
Certcoin [42], which ensures the association of public keys
and identities with a public ledger. Ten, Patsonakis et al.
[43] improve Certcoin in terms of data size and implement
their proposed system in [44]. Qin et al. propose Cecoin [45],
which resolves a single point of failure of PKI by recording
certifcates as currencies to the Bitcoin system. Cecoin has
the identity assignment to support delegation of certifcate
ownership.

Te proposed infrastructure is classifed into a new
category, which satisfes all of the requirements. One major
diference from existing research is the capability of storing
private keys in a distributed ledger by applying Intel SGX. In
most existing studies, a private key of a CA is stored in a CA’s
local storage. Tis capability allows the SC to use the private
key for generating and confrming certifcates.

According to our analysis, none of the existing studies
satisfy Req. 1. In the consortium CA, it is important to be
able to use a private key cooperatively among CAs par-
ticipating in the consortium and to prevent fraud by

18 Security and Communication Networks



a specifc CA. Te proposed infrastructure satisfes Req. 1 by
employing blockchain technology and Intel SGX. As a dif-
ferent approach from our proposal, there are some studies
that utilize multisignature (e.g., [34, 35]). However, we
conclude that they do not satisfy Req. 1 because a CA that
creates a multisignature may be able to deny a request based
on a CSR.

9. Conclusions

In this paper, we defne four requirements of a consortium
CA and propose a distributed public key certifcate-issuing
infrastructure that can be cooperatively operated by multiple
organizations. To achieve cooperative operation, the pro-
posed infrastructure encloses CA’s private keys in a dis-
tributed ledger and enforces the usage of them. We design
the proposed infrastructure to meet four requirements and
evaluate the fulfllment of those requirements.

In addition, we measured the basic performance of the
proposed infrastructure: issuing, verifying, and revoking
public key certifcates. Trough the experimental evaluation,
we confrm that the proposed infrastructure can work stably.
Te proposed infrastructure can issue public key certifcates
with a processing time of approximately 4ms and can check
that public key certifcates are issued by the proposed in-
frastructure with a processing time of approximately 3ms.
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