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Botnet attacks have mainly targeted computers in the past, which is a fundamental cybersecurity problem. Due to the booming
of Internet of things (IoT) devices, an increasing number of botnet attacks are now targeting IoT devices. Researchers have
proposed several mechanisms to avoid botnet attacks, such as identifcation by communication patterns or network topology
and defence by DNS blacklisting. A popular direction for botnet detection currently relies on the specifc topological
characteristics of botnets and uses machine learning models. However, it relies on network experts’ domain knowledge for
feature engineering. Recently, neural networks have shown the capability of representation learning.Tis paper proposes a new
approach to extracting graph features via graph neural networks. To capture the particular topology of the botnet, we transform
the network trafc into graphs and train a graph neural network to extract features. In our evaluations, we use graph embedding
features to train six machine learning models and compare them with the performance of traditional graph features in
identifying botnet nodes. Te experimental results show that botnet trafc detection is still challenging even with neural
networks. We should consider the impact of data, features, and algorithms for an accurate and robust solution.

1. Introduction

Botnets are networks consisting of multiple compromised
devices connected to the Internet [1]. Tese compromised
devices can be used to perform malicious activities such as
distributed denial-of-service attacks, data theft, and spam-
ming [2, 3]. For botnet, it is not necessary to have a powerful
host to accomplish complex tasks. To achieve the attack task,
it needs to infect as many devices as possible. So many
botnets are now targeting their infections on IoT devices. A
number of IoT botnets have now emerged, such as
BASHLITE [4], Carna [5], and Mirai [6]. One of them,
Mirai, temporarily crippled Krebs with a denial-of-service
attack in September 2016 [7]. Moreover, its attack volume
exceeded 600Gbps, one of the largest attacks on record. For
IoT devices, their connection to the Internet makes it easier
for botnets to spread. Furthermore, many IoT devices use
initial passwords, making it easier for botnets to infect these
devices. How to detect these botnet-infected IoT devices is
the current key research problem.

From the perspective of structures, botnets can be
classifed as centralized command and control (C&C)
structures or decentralised peer-to-peer (P2P) structures [8].
Te bot header can direct the bot nodes efciently for
malicious activities through a hierarchical structure in
centralized forms. Te apparent hierarchical nature of this
structure makes it easily detectable. To make botnets harder
to detect, attackers are now building botnets using P2P
structures. Tere are no hosts in the P2P structure for
assigning tasks. Te owner of the botnet can join any part of
the botnet. Furthermore, any part of the botnet can control
the entire botnet for attacks. Tis makes the detection of
botnets more difcult than in the centralized model [9]. Te
focus of this paper is on detecting such P2P structured
botnets.

In order to distinguish botnet trafc from background
trafc, previous works mainly detect botnets from the fol-
lowing three categories: Te frst is botnet node detection by
trafc patterns. Tis type of approach trains machine
learning algorithms to fnd botnet trafc in the background

Hindawi
Security and Communication Networks
Volume 2023, Article ID 9796912, 10 pages
https://doi.org/10.1155/2023/9796912

mailto:yingzhang27@ynnu.edu.cn
mailto:junzhang@ynnu.edu.cn
https://orcid.org/0000-0002-7394-7022
https://orcid.org/0000-0003-4390-9479
https://orcid.org/0000-0002-5270-1824
https://orcid.org/0000-0003-4724-9885
https://orcid.org/0000-0003-1355-3870
https://orcid.org/0000-0002-5310-0270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9796912


trafc by using trafc information, including communica-
tion time, port number, packet size, communication pro-
tocol, etc. as features. Te second approach is to identify bot
nodes by using prior knowledge, such as domain names and
DNS blacklists. Te attacker may evade both methods of
detection by modifying the trafc packets. On the other
hand, these two detection methods may also cause the
leakage of user privacy. Te last method is to distinguish
botnet trafc from normal trafc by identifying the network
topology. In previous studies, researchers have found that
botnets often have particular topologies, such as mixing rates
[10] and features of connection graph components [11, 12].
Centralized botnets manage individual nodes for attacks
through a hierarchical structure. For botnets with a P2P
structure, a high rate of mixing can often be found, as they
need to pass information quickly to organise their attacks.
On the other hand, to protect users from privacy breaches,
more andmore algorithms are now avoiding this problem by
using federated learning. Te details of each of these ap-
proaches will be discussed in the “Related Work.”

Machine learning has shown its success in various
cybersecurity applications, such as malware detection
[13, 14], cyber threats/incidents detection [15–18], and
software vulnerability detection [19–21]. Researchers have
also applied machine learning in the detection of botnet
trafc. However, most existing detectionmodels require a lot
of detailed trafc information for analysis. Tese content-
based features have many limitations in practical use. Te
trafc details may be encrypted or may even have been
intentionally modifed by the attacker. Now some models
solve this problem by identifying the trafc topology [10].
However, these models are labour-intensive in defning
topological features and perform multiple prefltering steps.
In practice, the models also need to be tuned to data
characteristics. Tis project achieves graph feature extrac-
tion by using graph neural network model to identify the
network topology. Te advantage of using a GNN model is
that the relationships between nodes in the network can be
efectively identifed. Nodes at each layer in the model pass
information to their neighbours to exchange information
and update their state. As the number of layers in the model
increases, the nodes will contain information about their
neighbours at more hops, thus enabling the identifcation of
the network topology. In this project, we frst trained a GNN
(graph neural network) model for generating graph em-
bedding data and then tested the performance of six machine
learning models when using this data for detection.

To summarise, the contributions we made in this paper
are as follows:

(i) We provide detailed analysis of the algorithms
previously used to detect botnet nodes and their
suitable environments. Te advantages and disad-
vantages of the diferent algorithms are
summarised.

(ii) A GNNmodel has been tailored to transform trafc
data into graph embedding data. Te model efec-
tively captures the relationships between nodes and

provides a basis for identifying the topology of the
network structure.

(iii) We test and analyze the performance of six machine
learning algorithms for detecting botnet nodes
when using graph embedding data.

Te remainder of the paper is structured as follows: in
Section 2, we review the reason why IoT devices are vul-
nerable to botnet infection and state-of-the-art techniques
that are used for detecting bot nodes. In Section 3, we
present in detail how the data was generated and the GNN
model we used to extract the graph embedding features. In
Section 4, we describe the datasets and model evaluation
criteria that were used for evaluating model performance,
along with the evaluation results. We discuss the limitations
of our work and point out some future directions in Section
5. Section 6 concludes our work.

2. Related Work

In this section we will frst describe the new trend that IoT
devices are compromised to become botnets. We will then
review the three categories of algorithms currently in use to
detect botnets. Each of these methods has its own applicable
scenarios and drawbacks, and we will elaborate them in this
section to provide researchers with a reference for their
choice of algorithm. On the other hand in order to be able to
detect anomalous nodes, machine learning algorithms will
inevitably use the user’s private data for prediction. To
address this problem, it has recently been proposed to avoid
privacy breaches by using federated learning [22]. We will
discuss this point in this section as well.

2.1. Botnet Attack from IoT Devices. DDoS attacks by
infecting IoT devices have now become very common
[6, 23].Te reasons are twofold. First, most of the IoTdevices
in widespread use today do not have powerful computing
capabilities, so most IoTdevices need to be connected to the
Internet or other IoTdevices to achieve more functionalities
[24]. Tis structure makes IoT devices vulnerable to in-
trusion. Second, most IoT devices use insecure default
passwords or simple passwords. For most consumers, they
will probably only use a simple password or even just a
default password when they purchase an IoTdevice [25]. For
botnets aiming to infect IoT devices, it is possible to infect a
large number of devices by simply brute-force logging in
with randomly selected usernames and passwords from a list
of preconfgured credentials [6, 26]. In cases where the
password is changed to a simple password, it can also be
easily guessed. Te model designed by Wang et al. fts
popular ciphers well and obtains a coefcient of determi-
nation greater than 0.97 [27]. In another paper, Wang et al.
show that an attacker can achieve a success rate of up to 73%
in 100 guesses against a regular user if he has some infor-
mation about the user of the device being attacked [28].
Tere is a trend that the widespread use of IoTdevices causes
an increasing number of DDoS attacks to be launched from
infected IoT devices.
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2.2. Detection by Trafc Pattern. Identifying botnets by
analyzing trafc patterns is an efective method. Commu-
nication between botnets is often characterized by command
and control channels and often uses specifc protocols for
communication. Botnet trafc can be efectively identifed by
analyzing the communication patterns between networks.
BotSnifer is a typical approach to identifying bot nodes by
analyzing trafc patterns [29]. Te model consists of the
monitoring engine and the correlation engine. Te moni-
toring engine inspects network trafc and passes suspected
trafc records to the relevant engine for analysis. Te model
identifes botnets in background trafc by assuming that
most nodes in the botnet network should react similarly.
Tese botnets should have a similar structure and content of
messages or a similar distribution of IP addresses and port
ranges for scanning activity. Te model clusters trafc
messages by analyzing the similarity between messages.
Tus, the set of botnet nodes is aggregated into a cluster. In
2016, Bartos et al. proposed a method to detect malicious
trafc based on information from network packets as well
[30].Tis method uses the statistical features computed from
network trafc as a training set and identifes malicious
behaviour in network trafc by training a classifer. Te
method has a high precision (reaching 90%) and successfully
identifes malware and variant samples not defned in the
previous training.

Tese methods of botnet identifcation by using detailed
information about network trafc packets generally have a
high degree of precision and accuracy. However, a 2014
paper by Rndic and Laskov suggests that attackers can evade
detection bymanipulating information about network trafc
packets [31]. In their experiments, the attackers were able to
successfully avoid detection through automated inference
algorithms and approximation algorithms without any de-
tailed information about the detection system. Te accuracy
of the classifcation detector drops dramatically (from al-
most 100% to 28–33%) for these malicious behaviours that
avoid detection by manipulating network trafc packets.
Another study has also shown that attackers can also evade
trafc monitoring by deliberately manipulating their com-
munication patterns or encrypted channels [29]. And all
these methods need to collect the privacy data of nodes into a
central server for processing, which may cause the risk of
user privacy leakage.

2.3. Detection by DNS Blacklist. Some botnet identifcation
methods need to be supported by prior knowledge. Tese
methods identify botnets by analyzing trafc data access
information to defne whether this access is associated
with a botnet by comparing the domain name that appears
against a blacklist of network domains obtained through
prior knowledge. Tese methods avoid malicious be-
haviour by disabling botnet nodes from communicating
with hosts [32]. Tis type of defence is passive and can
efectively prevent botnets from launching malicious at-
tacks. However, the blacklist used by the model is gen-
erally public, and there is a possibility that the information
is not updated on time.

2.4. Detection by Graph Feature. As graph neural network
technology evolves, there are more and more methods to
identify botnets by their particular network topology. For
botnets with a P2P structure there is generally a high rate of
mixing. Tis is due to the fact that, in order to organise
malicious attacks, botnets need to be more efcient than
normal networks in terms of disseminating information. In
the case of centralized botnets, a hierarchical structure is
evident in the topology diagram. Based on this feature,
previous research has proposed that P2P botnets can be
detected based on their fast mixing rate [10]. Some studies
have also shown that botnet detection can also be achieved
by analyzing the number and size of connection graph
components [11]. However, distinguishing the topology of a
botnet from that of a normal network from the vast volume
of network trafc is very difcult. Using this detection
method frst requires manual work to label topological
features and narrows the range by performing several
prefltering steps. Te method also requires parameters to be
adjusted according to the data. Zhou et al. published a
method to identify topologies from massive network trafc
using GNNs in 2020 [33]. Tis method achieved good
prediction results without prior knowledge and manual
processing. However, when the training dataset was small,
the model was unable to output good prediction results.

2.5. Federated Learning. Traditional machine learning al-
gorithms require a central server for centralized data col-
lection and processing. Each edge node needs to upload its
data to the central server, which poses a risk to protecting the
data privacy of edge nodes. On the other hand, due to
various privacy laws and regulations, companies do not
directly access users’ private data. Tis creates difculties in
how to detect anomalous nodes in the network legally. To
address this problem, Konečný et al. proposed a federated
learning approach that trains machine learning models
without compromising privacy [34]. Tis method is a dis-
tributed machine learning method, where nodes at the edge
do not need to upload training data to contribute to the
global model training. At the same time, the privacy leakage
problem is faced by traditional distributed deep learning
algorithms. A collaborative distributed deep learning par-
adigm was proposed by Liu et al. to address this problem
[35]. Te method is similar to the federated learning ap-
proach proposed by Google, where nodes at the edge also do
not need to upload data to a central server to train deep
learning models. For federated learning, the technical bot-
tleneck is how to reduce its communication overhead for use
in a wide range of devices. Previous algorithms generally
reduce the communication overhead of federated learning
by designing efcient stochastic gradient descent algorithms
[36] and compression models [37].

3. Data Processing and Graph
Feature Engineering

3.1.DataProcessing. We used the botnet dataset collected by
Zhou et al. in 2020 [33] (the dataset can be downloaded at
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https://zenodo.org/record/). Te background trafc for this
dataset is all trafc information collected by CAIDA’s
monitors in 2018. After aggregating the trafc maps, the
subnet trafc was selected for the experiment. Te selection
of subnet level trafc matches the network trafc topology
map pattern available for the enterprise or research orga-
nisation. A subset of nodes from the subnet trafc is then
randomly selected as botnet nodes. Botnet generation is
achieved by embedding the botnet with the P2P structure
captured by Garćıa et al. into these nodes [38]. Te fact that
decentralised botnets are not as well defned as centralized
botnets with a hierarchical structure makes them more
challenging to identify. Terefore, this project focuses on
detecting decentralised P2P botnets. We use anomalous
trafc detection as a binary classifcation problem to classify
the nodes in a graph. Te trafc graph uses IPs as nodes and
trafc between IPs as edges. Figure 1 illustrates how we
perform the data processing and feature extraction process.

Te dataset we used in this experiment has 100 graphs,
each containing an average of 140 000 nodes and 700 000
edges. Each of these graphs contains 3000 botnet nodes. Te
100 graphs used in this experiment were randomly divided
into a training set and a test set in a ratio of 9 :1. In order to
protect user privacy, specifc IP information is hidden in this
project to achieve data masking.

In this experiment, we process the dataset in two ways.
One is to generate graph embedding data by the GNN al-
gorithm introduced in the previous section. Te other is to
select traditional graph features for training. In the dataset
using graph features, each node contains the following
features: its own degree, the maximum, minimum, and
average values of the degrees of its neighbours.

3.2. Graph Feature Engineering. In order to compare our
proposed method of extracting graph features with state-of-
the-arts, we have designed two sets of experiments in the
evaluation.Te frst set is our proposed method.Temethod
converts raw network trafc data into graph embedding data
by using a trained GNN model. Te second set uses tra-
ditional graph features as training data. Figure 2 shows the
fowchart of the extracted graph feature project.

When training the GNN model, the last layer of the
model is the linear layer, which outputs the prediction re-
sults for each node. When taking the graph embedding data,
we remove the last layer and take the output of its previous
layer as the graph embedding features for each node.

In this work, in order to automatically identify the to-
pological features of a botnet under massive background
Internet communication graphs, a neural graph networks
(GNN) model was designed to accomplish this task [33, 39].
GNN is a neural network model that uses multiple con-
volutional layers to represent data using vectors. Capturing
nodes in this way will contain important information about
the node. GNN is ideally suited for identifying the network
topology. In each layer of the GNN model, each node up-
dates its state and passes information to its neighbouring
nodes. Tus, after multiple layers of messaging, the model
will automatically identify the topological relationships of
the nodes in the graph.

Te GNN model, which we used in this experiment,
contains 12 layers. As the number of model layers increases,
the nodes will contain more information about neigh-
bouring nodes within hops, leading to better topology
identifcation. Between layers, Zhou et al. used ReLu as the
nonlinear activation function [33]. After each layer, we
added the bias vector. Te model uses the Adam optimiser
[40], which uses cross-entropy to calculate the loss, with the
learning rate set to 0.005 and the weight decay of the
optimiser set to 5e− 4.Temodel implementations are based
on Pytorch [41] and Pytorch Geometric [42]. Te model
structure is shown in Figure 3.

For input data, we used G � V, A{ } to defne each graph.
We defne the set of nodes v1, .....vn􏼈 􏼉 consisting of n unique
nodes as V. And A is an adjacency matrix to show whether
there exists a connection between vi and vj. When there is a
connection between nodes vi and vj, we set aij � 1. Te
diagonal node degrees Diag(d1, .....dn) is denoted by D, and
the degrees are calculated by the formula di � 􏽐

n
j�1 aij.

Te node feature matrix of the data after layer l is
X(l)ϵRn∗h. Te vector x

(l)
i in each row is the feature vector of

node vi. h is the size of the node feature vector.
We use the learnable matrix W(l) to update the node

vector of each layer:

Get the
Background Traffic

Embed the
Botnet Node

Feature
extraction

Graph
embedding

data

Traditional
graph 

features

ML
algorithm

ML
algorithm

Figure 1: Flowchart for deep graph embedding feature botnet node detection experiments.
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x
(l)
i � x

(l−1)
i W

(l)
. (1)

In order to obtain information about neighbouring
nodes, the representation of each node is the average of its
direct neighbours.

x
(l)
i � 􏽘

n

j�1

aij
����
didj

􏽱 x
(l)
j . (2)

In this experiment, we used a GNN model with many
layers and normalisation at each layer to avoid numerical
instability. It has been proved that GNN’s model perfor-
mance can be signifcantly improved by using normalisation
[39]. Te data processing for each layer can be expressed
with the following expressions:

X
(l)

� σ AX
(l− 1)

W
(l)

􏼐 􏼑,

A � D
− 1/2

AD
− 1/2

.
(3)

σ represents the nonlinear activation function ReLU. In
our previous description, each node’s data is updated
according to the data of its neighbouring nodes. So after the
L-level transformation, each node’s data contains infor-
mation about its adjacent nodes within its L-hop. Tis helps
us to identify its topology. Tis is why the multilayer GNN
model was chosen for the data transformation. When
training the GNN model, we added a linear layer to output
the predictions for each node.

X
(l)

� X
(l− 1)

U
(l)σ AX

(l)
W

(l)
􏼐 􏼑􏼐 􏼑. (4)

Raw data
(already embed
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generate graph
(Each node
represents a

unique IP node.) Use a trained
GNN model to
extract graph
embedding

feature

Extract traditional
graph feature

Traditional graph
feature

Extract feature
from the last
hidden layer

Graph embedding
feature

Figure 2: Flowchart for extracting graph features.
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Figure 3: A 12-layer GNNmodel with all nodes of each graph as input layers. After 12 layers of GNN training, each node will be represented
by 32 vectors.
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Te learnable transformation matrix at layer l is denoted
by U(l). Te node data after the L layer will be input into the
linear layer, and the softmax algorithm is used for the fnal
classifcation. By adjusting A, it is possible to control how
neighbouring node features are normalised prior to aggre-
gation, resulting in diferent variants of the GNN model. In
A � D− 1/2AD− 1/2, A is calculated from the degree of the
source node and the degree of the target node. Te graph
attention network is also a GNN model variant that cal-
culates A using a learnable nonlinear function based on node
features, with each edge being independently normalised.

In this project, we modifed the calculation of A

according to the method proposed by Zhou et al. [33] to
identify the topology more efciently. Botnets with a P2P
structure have a high rate of rapid mixing. In order to better
identify the fast mixing rate [10] of the botnet, a random
walk was used for normalisation. In our model, A is cal-
culated as A � D− 1. Unlike the previous equation, the cal-
culation of A is only related to the degree of the source node
and does not take into account the degree of the target node,
thus achieving a random walk.

Tis experiment evaluates the botnet detection perfor-
mance on six machine learning algorithms: logic regression,
random forest, decision tree, Naive Bayes, k-nearest
neighbour, and random forest. Tese six machine learning
algorithms are chosen because they converge faster during
training and are more suitable for anomaly detection for a
large number of nodes in order to compare the diference
between our graph embedding based features and the tra-
ditional graph features. Six machine learning algorithms
with the same parameters are used in the experiments to
training on each of the two datasets.

4. Experimental Evaluation

4.1. Evaluation Metrics. Te dataset we used in this project
was very unbalanced, with only 2% of the nodes being botnet
nodes. It is not reasonable to evaluate model performance by
accuracy in this case. Tis project focuses on whether the
detection model can efectively fnd botnet nodes. In this
experiment, we import some information retrieval metrics
to evaluate the performance. 1) Positive and negative:
Suppose there is a node N. Te classifer’s output is whether
N belongs to a botnet or not. Researchers commonly use the
true positives (TP), false positives (FP), and false negatives
(FN) to evaluate the classifer. Tese metrics are defned
below:

(a) True positive: Te botnet node is correctly classifed
as botnet class.

(b) False positive: Te normal node is incorrectly clas-
sifed as botnet class.

(c) True negative:Te normal node is correctly classifed
as normal class.

(d) False negative: the botnet node is incorrectly clas-
sifed as normal class.

Te relationship between these criteria and the classi-
fcation results is shown in Table 1.

In order to test the recognition performance, we in-
troduced true positive rate (TPR) and false positive rate
(FPR) as evaluation metrics in this experiment.

TRP represents the ratio of the number of nodes cor-
rectly classifed as botnet nodes to the number of all botnet
nodes and is calculated as follows:

TPR �
TP

TP + FN
. (5)

FPR is defned as the ratio of the number of nodes in-
correctly classifed as botnet nodes to the number of all
normal nodes.

FPR �
FP

FP + TN
. (6)

In order to provide a more comprehensive analysis of the
performance of each algorithm, we have introduced the
metrics, precision, recall, and F-measure.

(a) Precision represents the ratio of the number of nodes
correctly classifed as botnet nodes to the number of
all nodes predicted to be botnet nodes.

Precision �
TP

FP + TP
. (7)

(b) Recall is also known as detection ratio. It is obtained
by calculating the ratio of the total number of nodes
correctly classifed as botnet nodes to the total
number of botnet nodes.

Recall �
TP

FN + TP
. (8)

(c) Te F-measure is a comprehensive evaluation of the
algorithm’s precision and recall criteria. Te values
of both detection rate and precision afect the cal-
culation of the F-measure, making it easy for us to
make comparisons. It is calculated by the following
formula:

F − measure �
2∗Precision∗Recall
Precision + Recall

. (9)

4.2. Comparisons among Diferent ML Algorithms. In this
section, we evaluate the performance of each algorithm
when using graph embedding data for training. In this set of
experiments, each algorithm uses 90 graphs from the dataset
for training and 10 graphs for validation of the detection.
Te dataset used in these experiments was extremely un-
balanced. In order to obtain more reasonable detection
results, we adjust the weights of the bot nodes and normal
nodes by setting the parameter “class_weight” to be bal-
anced, and we sampled the botnet node data.

Table 1: Evaluation metrics.

Predicted negative Predicted positive
True negative TN FP
True positive FN TP
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Table 2 shows the results when the graph embedding
data is used for training. From Table 2, we can see that the
three algorithms logical regression, Naive Bayes, and KNN
are not very efective in detecting botnets. Te botnet de-
tection rate of most algorithms is less than 50%. Tree-based
algorithms such as XGBoost and decision tree are suscep-
tible to bot nodes and achieve a bot node detection rate of
over 98%. In terms of comprehensive performance evalu-
ation, random forest has a relatively low false positive rate, a
high precision rate, and the second highest F-measure value
while retaining a high bot node detection rate. Tis suggests
that tree-structure-based machine learning algorithms are
superior to other algorithms in identifying topologies. On
the other hand, tree-structure-based algorithms can fnd the
vast majority of bot nodes, but their precision and F-
measure values are generally low.

We use the graph embedding data to train the algorithm
in this part of the experiment. We used 32 features to
represent each node. However, these features are not in-
dependent of each other. Tirty-two features work together
to generate a vector of nodes. For logistic regression, support
vector machines, and naive Bayesian algorithms, these al-
gorithms do not capture the relationship between the fea-
tures. Tis makes these algorithms perform poorly when
trained with graph-embedded data. For algorithms based on
tree structures such as XGBoost, the prediction process
requires multiple features to work together to make a
prediction. Tis makes tree-structure-based machine
learning algorithms more advantageous when using graph-
embedded data for prediction. Also, we can fnd that the
KNN algorithm has better performance in botnet node
detection. Tis is since the KNN algorithm also works with
multiple features to predict the results.

4.3. Comparisons with Traditional Graph Feature Set. Tis
section uses the same dataset for training, but the extracted
features are traditional graph features. Te features include
the degree of the node and the maximum, minimum, and
mean of its neighbourhood degrees. We have selected the
same raw data for training as in the previous section to
facilitate our comparison of the performance changes of the
algorithm. Table 3 shows the performance of the diferent
algorithms when using traditional features.

From Table 3, we can see that all six machine learning
algorithms show a sharp drop in performance when trained
with traditional features compared to using graph-embed-
ded features. Both the random forest algorithm and the naive
Bayesian algorithm have a detection rate of less than 5%.Te
XGBoost algorithm, which has a high botnet node detection
rate, decision tree, and logistic regression algorithms all have
a false positive rate of over 90%. Such performance is un-
acceptable for botnet node detection. Figure 4 shows a
comparison of the results of the diferent algorithms after
training with diferent features.

Tese results show that it is not enough to use only two
hops of the neighbour node for identifying botnet nodes. An
algorithm using only this information cannot identify the
topological features of the network. To recognise topological

features, we need to obtain the hidden representations of the
nodes for more sophisticated learning. Te advantage of
using GNNs is that the features of each node are generated
by the joint infuence of the features of its surrounding
nodes. And with the multilayer GNN model, the features of
each node will be related to the features of the nodes within
its multihop. Te GNN can efectively help us obtain the
topology’s implicit features, which allows training with
graph-embedded features to outperform the performance by
using only traditional features.

4.4. Impact of Imbalanced Data. Tis section evaluates the
impact of the bot to nonbot node ratio on the machine
learning algorithms described above. In previous experi-
ments, the datasets we used for training and testing were
extremely unbalanced. In this section, the training dataset
retains all the botnet nodes and the same number of normal
nodes when training the classifer. Te training set contains
270 000 botnet nodes and 270 000 normal nodes. Te same
test dataset used in Section 4.2 was used when testing the
classifer’s performance.

From Table 4, we can fnd that, except for the logical
regression algorithm, all the algorithms achieved a recall rate
of over 90%. Compared with Table 2, the detection rates of
random forest, KNN, and naive Bayesian algorithms are
considerably higher. In particular, the naive Bayesian al-
gorithm was enhanced from the original 0.6% to 99%.
However, the high detection rate of the naive Bayesian al-
gorithm comes at the cost of the false positive rate. It has a
false positive rate of 99%. At the same time, we can observe
that the random forest and KNN algorithms, which have a
signifcant increase in detection rate, have a greater re-
duction in precision and an increased false positive rate. Te
false positive rate for both has increased from less than 1%
originally to around 12%.Te precision of the random forest

Table 2: Evaluation result.

Algorithm
Metric

Recall FPR Precision F-measure
XGBoost 98.5 37.6 5.4 10.2
Decision tree 99.1 38.5 5.3 10.1
Random forest 73.8 0.6 72.0 72.9
Logistic regression 44.5 27.3 3.4 6.3
KNN 64.0 0.1 96.1 76.8
Naive Bayes 0.6 0.7 2.2 0.9

Table 3: Tradition feature result.

Algorithm
Metric

Recall FPR Precision F-measure
XGBoost 99.1 98.9 2.2 4.3
Decision tree 94.6 94.7 2.2 4.3
Random forest 1.9 1.9 2.1 1.9
Logical regression 91.4 91.3 2.2 4.3
KNN 0 0 4.5 0
Naive Bayes 0 0 0 0
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algorithm was reduced from 72% to 15.1%. Furthermore, the
precision of the KNN algorithm was reduced from 96.1% to
14.4%. Tere was no signifcant change in performance for
both the XGBoost algorithm and the decision tree algorithm,
with the four criteria performing in line with Table 2. Te
combined performance of the six machine learning algo-
rithms does not improve signifcantly when trained with a
balanced dataset.

5. Discussion

In this work, we focus on how to detect malicious behaviour,
but both prevention and detection are equally crucial for
stopping malicious behaviour. Much work is currently being
done to enable nodes to perform specifed actions to prove to
other nodes that they are legitimate. For the current growing
number of IoT devices, the limited resources on them make
them vulnerable to some specifc cyberattacks. Authenti-
cation and Key Agreement (AKA) needs to be established to

protect communication between IoT devices and remote
servers. Te main issue being researched is how to balance
security and usability in designing AKA protocols. Te AKA
protocol designed by Qiu et al. is based on chaotic map and
uses the “Fuzzy-Versifers” and “Honey” techniques [43].
Te approach proposes a secure three-factor AKA protocol
for lightweight mobile devices based on an extended chaotic
graph. However, whether the approach can be deployed on
IoTdevices with more resources than mobile devices has not
been validated. On the other hand, Wang et al. argue that
cloud centres are necessary under the current conditions of
limited node computing resources [44]. With the cloud
centre, it can help make intelligent decisions and ease the
pressure on nodes for computing and storage.Tis approach
efectively reduces the computational pressure on the sensor
nodes, making their computational cost only equivalent to
that of the symmetric encryption algorithm. For our future
research, we also plan to combine both detection and
prevention of malicious behaviour in order to prevent it
more efciently.

6. Conclusion

In this paper, we propose a way for extracting botnet graph
embedding features and comprehensively analyze the per-
formance of diferent machine learning algorithms. To
perform this evaluation, we embedded network trafc
generated by 300,000 bot nodes captured from the actual
network into background trafc containing 14,000,000
nodes to create a network graph. In this paper, the GNN
model is applied to capture the topology of a botnet with a
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Figure 4: Comparison of the results of training with diferent features.

Table 4: Traditional features (balanced dataset) results.

Algorithm
Metric

Recall FPR Precision F-measure
XGBoost 98.3 35.0 5.8 11.0
Decision tree 99.3 38.9 5.3 10.1
Random forest 92.5 11.5 15.1 26.0
Logical regression 25.9 13.8 4 6.9
KNN 93.2 12.2 14.4 25.0
Naive Bayes 99.0 99.0 2.2 4.2
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P2P structure. In order to investigate the botnet detection
capabilities of diferent classifers, experiments were con-
ducted using diferent sampling methods and feature ex-
traction methods. A few insights were generated from our
evaluations. First, the tree-structure-based machine learning
algorithms outperform other algorithms. Second, machine
learning algorithms cannot correctly distinguish a botnet
from a normal network if the node data contains fewer hops
of information about its neighbours. Tird, the detection
rate of botnet nodes can be improved by adjusting the data
balance, but it will increase the false positive rate of the
algorithm. We hope these insights can help researchers or
cybersecurity professionals better detect botnet trafc.
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[34] J. Konečnỳ, H. B. McMahan, and X. Felix, P. Richtarik,
A. T. Suresh, and D. Bacon, “Federated learning: strategies for
improving communication efciency,” 2016, https://arxi-
v.org/abs/1610.05492.

[35] Y. Liu, J. J. Q. Yu, J. Kang, and S. Zhang, “Privacy-preserving
trafc fow prediction: a federated learning approach,” IEEE
Internet of Tings Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[36] N. Agarwal, A. T. Suresh, F. Yu, S. Kumar, and H. Brendan
Mcmahan, “cpsgd: communication-efcient and diferen-
tially-private distributed sgd,” 2018, https://arxiv.org/abs/
1805.10559.

[37] Yi Liu, S. Garg, J. Zhang, J. XiongKangHossain, and
M. S. Hossain, “Deep anomaly detection for time-series data
in industrial iot: a communication-efcient on-device fed-
erated learning approach,” IEEE Internet of Tings Journal,
vol. 8, no. 8, pp. 6348–6358, 2021.
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