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Frequency-hiding order-preserving encryption (FH-OPE) has emerged as an important tool in data security, particularly in cloud
computing, because of its unique ability to preserve the order of plaintexts in their corresponding ciphertexts and enable efcient
range queries on encrypted data. Despite its strong security model, indistinguishability under frequency analyzing ordered chosen
plaintext attack (IND-FA-OCPA), our research identifes a vulnerability in its design, particularly the impact of range queries. In
our research, we quantify the frequency of data exposure resulting from these range queries and present potential inference attacks
on the FH-OPE scheme. Our fndings are substantiated through experiments on real-world datasets, with the goal of measuring
the frequency of data exposure resulting from range queries on FH-OPE encrypted databases. Tese results quantify the level of
risk in practical applications of FH-OPE and reveal the potential for additional inference attacks and the urgency of addressing
these threats. Consequently, our research highlights the need for a more comprehensive security model that considers the
potential risks associated with range queries and underscores the importance of developing new range-query methods that
prevent exposing these vulnerabilities.

1. Introduction

Te signifcant rise in cloud computing used for data storage
and processing necessitates new encryption methodologies
to ensure data security. One such method is frequency-
hiding order-preserving encryption (FH-OPE), which
maintains the order of plaintexts in the ciphertexts, thereby
allowing efcient range queries and sorting operations on
the encrypted data. A signifcant aspect of FH-OPE is fre-
quency hiding, a mechanism that conceals the frequency of
individual values in the encrypted data, thereby mitigating
some vulnerabilities of standard OPE. Such frequency hiding
is important in a scenario where data usage patterns should
remain confdential, like in medical database or fnancial
records where repeated values could hint at certain medical
conditions or repeated transactions, respectively.

While the security model for FH-OPE, known as in-
distinguishability under frequency analyzing ordered chosen
plaintext attack (IND-FA-OCPA), is recognized as robust and

well-structured, our work suggests that it might be incomplete.
More specifcally, themodel was designed without considering
that range queries could weaken FH-OPE’s ability to hide
plaintext distributions. We demonstrate in this paper that the
security of FH-OPE can be afected not only by attackers
directly performing these queries but also simply by observing
their results, leading to potential frequency exposure.

We then transition our focus to quantifying frequency
exposure, determining the number of range queries needed
to reveal the frequency of all plaintexts in FH-OPE and the
expected number of distinct ciphertexts exposed after exe-
cuting a specifc number of range queries. Our approach
employs mathematical problems such as the coupon col-
lector’s problem and probabilistic analyses to illustrate these
concepts efectively. We extend our research to other po-
tential threats posed by more complex queries, such as join
queries, as well as inference attacks conducted via associa-
tion rule mining. Our fndings demonstrate that these
methods can use and potentially exacerbate the identifed
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weaknesses in the FH-OPE scheme. To support our theo-
retical analysis, we experiment with real-world datasets. Te
focus of these experiments was to measure the frequency of
data exposure when executing range queries on an FH-OPE
encrypted database. Te results obtained quantifed the risk
associated with practical implementations of FH-OPE and
reveal the possibility for further inference attacks.

Consequently, our study underlines the need for a more
comprehensive FH-OPE security model. Tis model must
consider the risks associated with range queries and their
potential to expose vulnerabilities. Our research presents the
importance of developing new methods for conducting
range queries on encrypted data that are devoid of the
vulnerabilities currently identifed.

1.1. Related Work

1.1.1. OPE and FH-OPE. Over the years, numerous studies
have been conducted on OPE [1–15], and FH-OPE [16–20].
Te concept of OPE has garnered substantial attention due
to its utility in database systems [21–23]. In recent research,
a shift in focus has been noticeable, with most eforts
centered on hiding frequency information and achieving
ideal security for OPE and FH-OPE. Te initial exploration
of OPE was largely infuenced by the work of Boldyreva et al.
[2], which established the frst formal defnitions and se-
curity models for OPE and introduced the concept of in-
distinguishability under ordered chosen plaintext attack
(IND-OCPA). Tis model primarily aimed to preserve the
order of plaintext data, even in its encrypted form. As the
feld evolved, potential vulnerabilities, particularly con-
cerning frequency exposure in traditional OPE schemes,
became more apparent. Frequency-hiding order-preserving
encryption was proposed in response. Kerschbaum’s in-
fuential paper [16] marked a signifcant advance in this
direction. Kerschbaum introduced the IND-FA-OCPA se-
curity model specifcally designed for FH-OPE, aiming to
mitigate frequency-related vulnerabilities and enhance data
security. However, subsequent research by Mafei et al. [17]
highlighted certain inadequacies in Kerschbaum’s original
security model. Tey presented a comprehensive critique of
the model’s structure and identifed and executed an attack
on it, thereby exposing an issue in the original security proof.
Moreover, they proposed an impossibility result, demon-
strating that Kerschbaum’s security defnition could not be
achieved by any OPE scheme. Consequently, they in-
troduced a new security defnition that maintains the fun-
damental concept of frequency-hiding yet is practically
achievable.Tey also demonstrated that their refned version
of the security defnition, which more accurately captured
the concept of frequency-hiding, could indeed be realized.

1.1.2. Attacks on OPE and FH-OPE. Several papers [24–28]
have presented various attack models targeting both OPE
and FH-OPE. In general, deterministic OPE leaks both the
order and the frequency of plaintexts. Such leakages lead to
two primary types of attacks that are based on frequency:
sorting attacks and frequency-revealing attacks.

(1) Sorting Attack. Tis attack, presented in [24], targets
columns densely encrypted with OPE, such as those for age
and disease severity, where each distinct plaintext is
encrypted at least once. In such scenarios, there is a one-
to-one correspondence between the distinct OPE ciphertexts
and the distinct plaintexts. An adversary can exploit this to
reconstruct the plaintexts by mapping the ordered distinct
ciphertexts to their corresponding ordered distinct plain-
texts. Terefore, the success of this attack is up to the
adversary’s prior knowledge of the plaintext distribution.
Notably, the sorting attack only succeeds in columns with
high density, where every element of the plaintext space is
present; otherwise, it is likely to fail.

(2) Frequency-Revealing Attacks. Tis attack, presented in
[24, 26], is specifcally efective against datasets with a low-
density plaintext space. In [24], their approach to frequency
analysis is termed a cumulative attack. For columns
encrypted with OPE, the adversary can infer the frequency of
each ciphertext by constructing a histogram that refects the
pattern of the encrypted data. Te adversary then exploits
frequency and order leakages to correlate ciphertexts with
plaintexts, aiming to closely match their distributions. Te
success of this cumulative attack hinges on the adversary
having prior knowledge of the plaintext distribution with
public auxiliary information. In addition, in [28], they in-
troduced three novel ciphertext-only attacks for FH-OPE
schemes [11, 16, 20]. For conducting frequency analysis, they
assume that the adversary exploits leakages from the dis-
tribution of ciphertexts and the orders in which they are
inserted. Specially, they presented that they recovered about
96% of plaintext frequencies for Kerschbaum’s FH-OPE
scheme in a nonuniform ciphertext distribution environ-
ment. In addition, they conducted a plaintext frequency
attack on [11, 20] under the assumption that the attacker is
aware of the ciphertext input order.

As shown in Table 1, the attacks initially presented by
[24] considered only deterministic ciphertexts, focusing on
the vulnerabilities inherent to OPE schemes. While efective,
these attacks are limited to scenarios where plaintext dis-
tribution is known, which is a signifcant constraint. On the
other hand, Cao et al. [28] expanded the scope by targeting
FH-OPE schemes. Despite their progress, their methods had
an applicability of “No,” indicating that they were only
applicable to specifc schemes. Table 1 also shows that their
work focused on schemes satisfying the IND-FA-OCPA
security defnition presented by [16]. However, Mafei et al.
demonstrated its inadequacies, proving that the original
IND-FA-OCPA could not be achieved in any FH-OPE
scheme. In contrast, our attacks are conducted on the IND-
FA-OCPA∗ (throughout this paper, “IND-FA-OCPA∗” will
be denoted simply as “IND-FA-OCPA”), a revised security
model proposed by [17]. Despite these ongoing advance-
ments and varied attacks, no research has yet shown that an
adversary can conduct frequency exposure analysis without
the need for additional information or constraints. Tere-
fore, our attacks utilize only information that naturally
occurs in OPE-encrypted databases. Moreover, current re-
search noticeably lacks in exploring vulnerabilities in the
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FH-OPE security model. Our study aims to address this gap
by highlighting issues within the FH-OPE security model,
based on efectiveness of our attacks.

1.2. Our Contributions. Our research signifcantly enhances
the current understanding of security vulnerabilities in FH-
OPE, contributing to the existing feld in several ways:

(1) We revisited the IND-FA-OCPA security model and
identifed signifcant vulnerabilities associated with
range queries. Tis discovery questions the reliability
of IND-FA-OCPA in encrypted systems, indicating
a need to re-evaluate its design, especially in the
context of range queries.

(2) We quantifed the frequency of plaintext exposure
with respect to the number of range queries executed
on FH-OPE. Tis quantifcation ofers insight into
the risks associated with standard range queries.

(3) To validate our quantifcation formula, we con-
ducted experiments with range queries on two real-
world datasets, measuring the actual frequency of
plaintext exposure. Furthermore, our research in-
cluded the execution of an inference attack on the
FH-OPE scheme.

1.3. SettingandNotations. Te attacks we planned to execute
are all based on a common framework, which is detailed
below, accompanied by the necessary notation. Let n be the
number of plaintexts to be encrypted and N be the number
of distinct plaintexts. Let X � x1, x2, . . . , xn􏼈 􏼉 denote the
entire set of plaintexts, where |X| � n. Within this set, several
plaintexts may be repeated. We then defne another set X′ �

x1′, x2′, . . . , xN
′􏼈 􏼉 which includes only the distinct plaintexts

from set X, where |X′| � N.

1.3.1. Range Queries. Suppose we have a plaintext range
query R(xl, xu) which requests all records in the range
xl ≤ x< xu. In an FH-OPE encrypted database, the client

transforms this query into an encrypted range query
R′(E(xl), E(xu)) as follows:

(1) Te client encrypts the range endpoints xl and xu

with FH-OPE encryption function. Due to FH-
OPE’s frequency-hiding property, if xl and xu are
duplicates in X, for each, this could produce multiple
corresponding ciphertexts.

(2) Te client selects the smallest encrypted value from
the set of ciphertexts corresponding to xl and the
smallest encrypted value from the set of ciphertexts
corresponding to xu.

(3) Te client makes the encrypted range query
R′(Emin(xl), Emin(xu)), which requests all records in
the range Emin(xl)≤y<Emin(xu), where y is the
ciphertext in the encrypted database.

(4) Te client sends R′(Emin(xl), Emin(xu)) to the server.
(5) Te server executes R′(Emin(xl), Emin(xu)) on the

encrypted database and returns the result set of
R′(Emin(xl), Emin(xu)) to the client.

(6) Te client decrypts the result set to obtain the
plaintext values that satisfy the original plaintext
range query R(xl, xu).

We consider the application of FH-OPE to an
annual salary database. Given salary dataset X �

8000, 10000, 10000, 15000, 17000, 17000{ } with its corre-
sponding ciphertexts Y � 10, 20, 30, 40, 50, 60{ } stored on
the server, the server can execute queries generated by a client.
For instance, we suppose a client is interested in determining
the count of salaries falling within a specifc range greater than
or equal to 10000 but less than 17000.Te client would generate
a range query refecting this interest but in the form of ci-
phertexts, such as R′(20, 50), and send it to the server.
Consequently, the ciphertext set, which may be utilized for
a range search, has a size of N. Tis approach ensures that the
plaintext’s frequency remains concealed during the range query
because the query leverages the minimum ciphertext corre-
sponding to the lower range bound. Consequently, the server
cannot ascertain the frequency of a particular salary in the data.

Table 1: Comparison of the proposed method with other competing methods.

Method Target Attack Applicability Security
Assumptions

Density Auxiliary
information

[24] OPE Sorting Yes IND-OCPA High Distribution of plaintextsFrequency-revealing Low

[28] FH-OPE Frequency-revealing No IND-FA-OCPA — Distribution of nonuniform ciphertexts
Insertion order of ciphertexts

Ours FH-OPE Frequency-revealing Yes IND-FA-OCPA∗ — —
Applicability indicates whether the attack method can be applied across various encryption schemes. “Yes” signifes that the method is general and does not
require knowledge of the specifc encryption scheme, making it applicable to any OPE or FH-OPE system. “No” signifes that the method is scheme-specifc,
designed with full knowledge of a particular scheme’s details, and can only be applied to that specifc system. In the security, IND-FA-OCPA∗ denotes revised
IND-FA-OCPA, addressing its original limitations. A high density means that all data in the plaintext space are encrypted. Conversely, low density implies
that only a subset of the possible values in the plaintext space is encrypted. Auxiliary Information means the supplemental knowledge an adversary requires to
successfully execute an attack.
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1.3.2. Adversarial Model. We adopt an adversarial model
characterized by a persistent, passive adversary including the
server acting as an honest-but-curious adversary. Tis ad-
versary can continuously observe all interactions between
the client and the server. Notably, our adversary model,
unlike a snapshot adversary with only single instance access
to the server’s memory, continuously monitors the range
queries executed by the client, identifying patterns and
extracting meaningful information from these activities.

1.3.3. Mathematical Notation. In our notation, we will al-
ways use log to denote the natural rather than base 2 log-
arithm. Te n− th harmonic number will be represented as
Hn, such that Hn � 􏽐

n
k�11/k.

2. Preliminaries

In this section, we formally introduce the concept of OPE
and explain its core security notions, specifcally IND-OCPA
and IND-FA-OCPA. Tese foundational defnitions pave
the way for our following discussion on the possible threats
linked with OPE in the subsequent sections.

2.1. FormalNotionofOPE. A stateful OPE is a technique that
keeps a record of past operations, which is essential for
improving security. Te unique adaptive nature of a stateful
OPE provides the necessary layer of complexity for
achieving IND-OCPA security.

Defnition 1 (OPE). A stateful OPE scheme consists of the
following three algorithms (K, E, D):

(1) K(1λ)⟶ S: Te key generation algorithm takes as
input a security parameter λ and initializes a state S.

(2) E(x, S)⟶ (y, S′): Te encryption algorithm takes
as input a plaintext x and a state S. It outputs a ci-
phertext y and updates the state S to S′.

(3) D(y, S)⟶ x: Te decryption algorithm takes as
input a ciphertext y and a state S. It outputs
a plaintext x.

Defnition 2 (order-preserving). An OPE scheme is order-
preserving if it maintains the order of plaintexts in their
corresponding ciphertexts. Tis is for any two plaintexts x1
and x2 and their corresponding ciphertexts y1 and y2
produced by the OPE scheme, if y1 ≥y2, then x1 ≥x2.

2.2. SecurityDefnitions. IND-OCPA security means that no
efcient (bounded by polynomial time) adversary can dis-
tinguish between the ciphertexts of two sequences of
plaintext that are equally ordered. Tis concept is illustrated
through a simulation. Te simulation SIMλ

IND− OCPA between
adversary A and simulator S for security parameter λ
proceeds as follows:

(1) Te adversary A prepares two plaintext sequences
X0 � x1,0, . . . , xn,0􏽮 􏽯 and X1 � x1,1, . . . , x1,n􏽮 􏽯 where
xi,0 <xj,0⟺xi,1 <xj,1, 1≤ i, j≤ n, and sends them
to the simulator S.

(2) Te simulator S randomly chooses b⟵ 0, 1{ },
executes K(1λ), and runs (yi,b, Si)⟵ (Exi,b, Si− 1),
for all 1≤ i≤ n. Ten, the simulator S sends y1≤i≤n,b

to the adversary A.
(3) Te adversary A tries to infer which sequence has

been encrypted and outputs b′ as their guess for b.

Defnition 3 (IND-OCPA). An OPE scheme has
IND-OCPA security if the chance of a probabilistic poly-
nomial time (PPT) adversary A correctly guessing whether
a given ciphertext corresponds to a particular plaintext
sequence is negligibly better than random guessing. Oth-
erwise stated, the probability of b′ � b is 1/2 + negl(λ), where
negl(λ) is a negligible function in the security parameter λ.

Defnition 4 (randomized order). Let us consider a sequence
of not necessarily distinct plaintexts X � x1, . . . , xn􏼈 􏼉. We
defne a randomized order Γ � c1, c2, . . . , cn􏼈 􏼉, representing
one of the possible permutation of the set 1, 2, . . . , n{ } that
maintains the sequence of X. Tis means for every pair of
indices i and j where i≠ j, ci ≠ cj, and
∀i, j. xi >xj⟹ ci > cj􏼐 􏼑∧ ci > cj⟹xi ≥xj􏼐 􏼑. (1)

For instance, we consider a plaintext sequence
X � 2, 2, 1, 1{ }. It could be represented by the randomized
orders Γ1 � 4, 3, 2, 1{ }, Γ2 � 3, 4, 2, 1{ }, Γ3 � 4, 3, 1, 2{ }, or
Γ4 � 3, 4, 1, 2{ }. In this framework, the common randomized
order Γ for X0 and X1 denotes the elements shared between
the two randomized order sets of X0 and X1. So, for X0 �

3, 3, 3, 2{ } and X1 � 3, 2, 2, 1{ }, the common randomized
order Γ could be either 4, 3, 2, 1{ } or 4, 2, 3, 1{ }. We utilize
the notation Γ↓i to represent the order of the elements in the
sequence up to ci. For example, if we consider the sequence
Γ � 2, 4, 3, 1{ }, Γ↓3 would refer to the order of the frst three
elements of Γ, resulting in the sequence 1, 3, 2{ }.

To satisfy the IND-FA-OCPA security notion and
protect against frequency analysis attacks, Mafei et al.
proposed an enhanced encryption method known as aug-
mented order-preserving encryption. Terefore, we employ
the augmented OPE scheme proposed by [17].

Defnition 5 ((augmented) OPE). An augmented OPE
scheme consists of the following three algorithms (K, E, D):

(i) K(1λ)⟶ S: Te key generation algorithm takes as
input a security parameter λ and initializes a state S.

(ii) E(x, S, Γ)⟶ (y, S′): Te encryption algorithm
takes as input a plaintext x, a state S, and an order Γ.
It outputs a ciphertext y and updates the state S

to S′.

4 Security and Communication Networks



(iii) D(y, S)⟶ x: Te decryption algorithm takes as
input a ciphertext y and a state S. It outputs
a plaintext x.

In the context of FH-OPE, IND-FA-OCPA security
extends the IND-OCPA defnitions to withstand frequency
analysis attacks. Tis is defned using the simulation
SIMλ

IND− FA− OCPA, where an adversary A interacts with
a simulator S. Te simulation SIMλ

IND− FA− OCPA for security
parameter λ proceeds as follows:

(1) Te adversary A prepares two plaintext sequences
X0 � x1,0, . . . , xn,0􏽮 􏽯 and X1 � x1,1, . . . , x1,n􏽮 􏽯. Tese
sequences have at least one common randomized
order Γ. Tese are sent to the simulator S.

(2) Te simulator S randomly chooses b⟵ 0,1{ }

and one of Γ, executes K(1λ), and runs
(yi,b, Si)⟵E(xi,b, Si− 1, Γ↓i), for all 1≤ i≤ n, based
on the selected Γ.Ten, the simulatorS sends y1≤i≤n,b

to the adversary A.
(3) Te adversary A tries to infer which sequence has

been encrypted and outputs b′ as their guess of b.

Defnition 6 (IND-FA-OCPA). An (augmented) OPE
scheme has IND-FA-OCPA security if the chance of
a probabilistic polynomial time (PPT) adversaryA correctly
guessing whether a given ciphertext corresponds to a par-
ticular plaintext sequence is only negligibly better than
random guessing. Diferently expressed, the probability of
b′ � b is 1/2 + negl(λ), where negl(λ) is a negligible function
in the security parameter λ.

3. Exposing Vulnerability in the Security Model

In this section, we expose a potential vulnerability in the
IND-FA-OCPA security model. Tis vulnerability arises
when an adversaryAmerely observes the outcomes of range
queries. Although these results are typically accessible to any
system user and do not grant A any additional advantage,
this seemingly harmless activity could still potentially
weaken the security of IND-FA-OCPA.

Let X0 and X1 be two plaintext sequences. D0 and D1 are
defned as sequences that represent the frequency of each
unique plaintext inX0 andX1, respectively, when the unique
plaintexts are sorted in ascending order. More formally, if Ui

denotes the ith unique plaintext in ascending order in a se-
quence and fXj

(Ui) denotes the frequency of Ui in sequence

Xj, then Dj � fXj
(U1), fXj

(U2), . . . , fXj
(Un)􏼚 􏼛 for

j ∈ 0, 1{ }. We use nj to denote |Dj| and denote n∗ as the
greater value between n0 and n1. When D0 and D1 have
diferent frequencies at some index t, we defne fXj

(Ut) as
the frequency of Ut in Dj for t ∈ 1, 2, . . . , nj􏽮 􏽯.

Theorem 7. Given two plaintext sequencesX0 and X1, which
share a common randomized order Γ and have their fre-
quency distributions D0 and D1, respectively, an adversaryA
that can observe the outcomes of range queries can distinguish

which sequence has been selected by the simulator S with
a probability of at least pf � 1 − (1 − 1/n∗)2k after k queries
have been processed, where the frequency distributions
D0 ≠D1.

Proof. Consider an adversaryA that observes the outcomes
of the range queries made by some entity (not necessarily
A). For each range query R′(E(xl), E(xu)), where E(xl) and
E(xu) denote the lower and upper bounds of the encrypted
range, respectively, there is a chance that either E(xl) or
E(xu) matches an encrypted plaintext corresponding to
fXj

(Ut) in the frequency distribution Dj. If the ciphertext
corresponding to fXj

(Ut) is included in the lower and upper
bounds of the range query, then the number of ciphertexts
returned as a result of the range query is diferent for each of
the sequences X0 and X1. Te adversary A can distinguish
the sequence Xb selected by the simulator by observing this
diference in the number of returned ciphertexts. Te
probability pf of A being able to distinguish X0 from X1
after observing k queries can be computed as follows: Te
probability of a range query not including the ciphertext
corresponding to fXj

(Ut) in either of the two selected values
in a query is given by p � 1 − 1/n∗.Terefore, the probability
of the ciphertext not being included in any of the 2k se-
lections is p2k � p2k � (1 − 1/n∗)2k. Te probability pf of
the ciphertext being included in at least one of the 2k se-
lections is then given by pf � 1 − p2k � 1 − (1 − 1/n∗)2k.
Hence, with k queries (equivalent to 2k selections), A can
distinguish between the sequences with probability pf.

Teorem 7 is illustrated with a practical example. Sup-
pose we have two plaintext sequences: X0 � 1, 1, 2, 2{ } and
X1 � 1, 2, 2, 3{ }. Te frequency distributions of X0 and X1
are represented as D0 � 2, 2{ } and D1 � 1, 2, 1{ }, re-
spectively. Here, the frequencies of the distinct plaintext “1”
are diferent in X0 and X1, i.e., fX0

(1) � 2 and fX1
(1) � 1,

so we consider the index t � 1 where D0 and D1 difer.Tese
sequences share a common randomized order
Γ � 1, 2, 3, 4{ }. We assume that the simulator S selects the
sequence X0 for encryption, resulting in the ciphertext se-
quence Y � 10, 20, 30, 40{ }. When an entity issues a range
query that includes the ciphertext corresponding to plaintext
“1” as either the upper or lower bound, the adversaryA, who
can observe the results of such queries, will see two ci-
phertexts being returned. From this observation,A can infer
that plaintext “1” appears twice in the selected sequence. By
comparing this frequency with the frequency distributions
D0 and D1,A can correctly conclude that X0 is the sequence
encrypted by the simulator is X0. Tus, the adversary
successfully distinguishes the chosen plaintext
sequence. □

Remark 8. Tis theorem underscores a key limitation of the
IND-FA-OCPA security model. While it provides security
against adversaries attempting to derive information from
individual plaintext-ciphertext pairs, it does not fully
protect the frequency patterns of these pairs. Consequently,
it does not ensure frequency hiding. An adversary, just by
observing the outcomes of range queries, could potentially
infer the frequency of specifc plaintexts within a given
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range. Tis vulnerability highlights that the IND-
FA-OCPA security model may still be susceptible to fre-
quency analysis attacks.

4. Quantifying Frequency Exposure

We now shift focus to quantifying frequency exposure. Te
objective of this section is not merely to measure the degree
of frequency exposure of plaintexts in an FH-OPE scheme
through range queries but to highlight the urgent need for
further research into novel range-query methods that could
mitigate this exposure.

4.1. Demonstrating Frequency Exposure Using the Coupon
Collector’s Problem. Due to its complexity, quantifying the
level of frequency exposure in FH-OPE is a challenge.
However, we can leverage mathematical problems, such as
the coupon collector’s problem, to measure this exposure.
Tis problem, where the goal is to collect distinct coupons
through independent trials, parallels the process of con-
ducting range queries on an encrypted database. In both
scenarios, the aim is to acquire unique elements (or data)
from a larger set. A mathematical model, inspired by the
coupon collector’s problem that estimates the number of
range queries required to expose the frequency of all
plaintexts in an FH-OPE scheme, is demonstrated below.

Theorem  . To reveal the frequency of all plaintexts in our
scenario with FH-OPE, the required number of range queries,
denoted as Q, is given by the approximation:

Q ≈
N logN

2
. (2)

Proof. In the coupon collector’s problem, the expected
number of trials for collecting all N distinct coupons is given
by the formula:

E[N] � N × HN � N logN, (3)

where HN represents the N− th harmonic number, roughly
equal to logN.

Comparing our scenario with FH-OPE to the coupon
collector’s problem, we consider each distinct ciphertext in
E(X′) as a unique coupon and our range queries as trials to
collect these coupons. A range query, denoted as
R′(Emin(xl), Emax(xu)), parallels the action of selecting two
coupons simultaneously.

Terefore, the required number of range queries,
denoted as Q, is approximated by N logN/2. □

4.2. Probabilistic Analysis of Plaintext Frequency Exposure.
In the preceding subsection, we examined the frequency
exposure of plaintext through a method similar to the
coupon collector’s problem. Now, we shift our perspective to
a probabilistic analysis of the frequency exposure of
plaintext, focusing on the expected number of unique

plaintexts revealed after executing a specifc number of range
queries.

Theorem 10. Te expected number of distinct ciphertexts
selected after k queries (or 2k selections) is given by the
equation:

E[2k] � N × 1 − 1 −
1
N

􏼒 􏼓
2k

􏼠 􏼡. (4)

Proof. We begin by noting that the probability of not
selecting a particular ciphertext in a selection can be rep-
resented as

p � 1 −
1
N

􏼒 􏼓. (5)

Ten, the probability of not selecting a particular ci-
phertext in any of the 2k sections is

p2k � p
2k

� 1 −
1
N

􏼒 􏼓
2k

. (6)

Hence, the probability of selecting the ciphertext in at
least one of the 2k selections is

pf � 1 − p2k � 1 − 1 −
1
N

􏼒 􏼓
2k

. (7)

Substituting this into the equation for the expected
number of distinct ciphertexts selected after k queries (or 2k

selections), we get our result:

E[2k] � N × pf � N × 1 − 1 −
1
N

􏼒 􏼓
2k

􏼠 􏼡. (8)

Now, we consider an example where N � 100 and k � 10.
Te expected number of distinct ciphertexts selected after k �

10 range queries is E[20] � 100 × (1 − (1 − 1/100)20) ≈
18.13. Tese interpretations help us probabilistically quantify
the vulnerability of plaintext frequencies in FH-OPE after
executing a specifc number of range queries. □

5. Experiments

To demonstrate the potential vulnerability within the con-
text of FH-OPE in practical settings, we performed extensive
range queries on real-world datasets. Tese experiments
were conducted on a desktop computer with AMD Ryzen 7
PRO 4750G (3.60GHz, 16GB RAM) running Windows 11.
All of the experimental code was written in Python 3.9.7.

5.1. Datasets and Preprocessing. For our experiments, we
employed two real-world datasets: Dataset 1 and Dataset 2.
Dataset 1, sourced from Allegheny County Employee Sal-
aries (https://catalog.data.gov/dataset/allegheny-county-
employee-salaries), contains salary information that is fre-
quently encrypted in real-world scenarios to ensure privacy.
Tis dataset has 6280 entries with 1677 distinct values,
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i.e., N � 1677. On the other hand, Dataset 2 contains weight
information of Women’s National Basketball Association
(WNBA) (https://www.kaggle.com/datasets/jinxbe/wnba-
player-stats-2017) players. It consists of 143 data points
with 40 distinct values, i.e., N � 40. We encrypted both
datasets using the FH-OPE scheme [17] to preserve privacy,
enabling us to measure the frequency of diferent data points
without risking data leakage.

5.2. Experiment Setup. We designed our experiments to
evaluate the FH-OPE scheme under two diferent query
scenarios. Te frst scenario is characterized by a uniformly
random range query, where all data are equally likely to be
queried. In contrast, the second approach involves
a weighted range-query model that assumes a Gaussian
distribution, thereby giving preferential consideration to
areas likely to be queried more frequently by users.

5.3. Experiment Results

5.3.1. Uniform Random Range Query. In the uniform ran-
dom range-query scenario, we aimed to verify the theoretical
results obtained in previous sections, with a particular focus
on those associated with equation (2) and experimented on
Dataset 1. Figure 1 illustrates the plaintext frequency ex-
posure corresponding to a varying number of range queries.
Qn is defned as the number of range queries corresponding
to diferent proportions of equation (2). Here, Q1 corre-
sponds to 0.05 × (N logN/2), Q2 corresponds to
0.1 × (N logN/2), Q3 corresponds to 0.2 × (N · N logN/2),
Q4 corresponds to 0.5 × (N logN/2), and Q5 corresponds to
(N logN/2). As can be observed from Figure 1, with
a number of queries equivalent to equation (2), we efectively
reveal almost all plaintext frequencies. In addition, Figure 1
also shows the fact that executing fewer queries than the size
of equation (2) still leads to a considerable degree of
plaintext exposure.

5.3.2. Gaussian Range Query. To generate Gaussian range
queries, we utilized the properties of Dataset 2, which
naturally follows a Gaussian distribution. Te mean and
standard deviation of Dataset 2 are approximately 79.02 and
10.96, respectively. Utilizing these parameters, we generated
synthetic data through random sampling from a Gaussian
distribution. Tis procedure yielded a set of representative
data points that could be used to execute a range of queries
refecting the natural distribution of the dataset. By applying
equation (4) to the Gaussian range query, we calculated the
expected number of distinct ciphertexts selected as a result of
the chosen k.

From Figure 2, it is clear that even with a smaller number
of queries, a signifcant degree of plaintext exposure is
possible. Also, despite the diferences in query distribution
between uniform random range queries and Gaussian range
queries, the outcomes do not exhibit a signifcant disparity.
Our results underline the need for improved methods of
query processing in FH-OPE to minimize such data expo-
sure and enhance its overall security.

6. Further Exploitations: Inference Attacks
Using Join Queries and Association
Rule Mining

Te frequency-exposure vulnerability of FH-OPE and the
weakness of the IND-FA-OCPA security model have been
demonstrated through range queries. However, beyond
range queries, more complex types of queries, such as join
queries, may also potentially expose additional vulnerabil-
ities in FH-OPE. While individual columns encrypted using
FH-OPE might appear secure in isolation, joining multiple
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tables can expose new relationships between data items,
thereby allowing sensitive information to be deduced. To
illustrate, we consider a hypothetical scenario involving
a healthcare database encrypted with FH-OPE, consisting of
two main tables:

(1) Patients: this table includes felds like “PatientID,”
“Age Group,” and “Gender”

(2) Treatments: this table contains felds such as
“PatientID,” “Lengths of Stay,” and “Diagnosis
Code”

Te sensitive numerical felds “Lengths of Stay” and
“Diagnosis Code” are encrypted using the FH-OPE scheme.
We assume an adversary has knowledge about the frequency
distribution of patients’ lengths of stay from their initial
range queries and targets a specifc “age group,” for instance,
“30–49.”Te adversary could execute the following SQL join
query:

(1) SELECT Patients.Age_Group, Patients.Gender, Treat-
ments.Lengths_of_Stay, Treatments.Diagnosis_Code

(2) FROM Patients
(3) JOIN Treatments ON Patients.PatientID�

Treatments.PatientID
(4) WHERE Patients.Age_Group� “30− 49”

Te result of this join query allows the adversary to
generate frequency distributions of the encrypted “Lengths
of Stay” and “Diagnosis Code” for the targeted age group.
Identifying correlations between “Lengths of Stay” and
“Diagnosis Codes” may enable the adversary to infer that
certain diseases correspond to longer hospital stays for
patients within this age group. If the adversary has prior
knowledge or assumptions about disease prevalence and
average hospital stays, they could potentially deduce fur-
ther information from the encrypted diagnosis codes, re-
vealing a risk to privacy even within securely encrypted
felds.

Moreover, adversaries can use the ordered nature of
encrypted data in FH-OPE to perform advanced inference
attacks, such as association rule mining [29]. Tis machine
learning technique can reveal relations between diferent
felds in a database that are not directly linked but share
common attributes. For example, given the adversary’s
knowledge about the frequency distribution of patients’ ages
and lengths of stay, they could potentially discover rules like
“if a patient is in the “X” age group and stays for “Y” days,
they likely have a “Z” diagnosis.” Tese associations can be
found even when the diagnosis is encrypted using FH-OPE,
emphasizing the serious privacy implications. To provide
a deeper understanding of these potential threats, we present
further extensive experiments in which our goal was to
demonstrate that association rule mining attacks on real-
world datasets can reveal sensitive information within
a healthcare context, even when data are encrypted using the
FH-OPE scheme.

6.1. Experiments on Further Exploitations

6.1.1. Datasets and Preprocessing. We utilized a real-world
dataset originating from the New York State Department of
Health, specifcally, the “Hospital Inpatient Discharges
(SPARCS De-Identifed)” dataset available on the https://
health.data.ny.gov website. Tis dataset includes a wealth of
patient information, such as patient ID, age group, gender,
lengths of stay, and CCS diagnosis Code.Te data relating to
lengths of stay and CCS diagnosis code have been encrypted
using the FH-OPE scheme. Using join queries on this
dataset, we focused on a subset of patient data. Specifcally,
we obtained the patient IDs for those in the long-term
inpatients category, patients with lengths of stay exceed-
ing 120 days. We assumed that an adversary had executed
several range queries, thereby acquiring knowledge about
the frequency distribution of lengths of stay. Figure 3 in-
cludes histograms that depict the distribution of lengths of
stay and the CCS diagnosis code for patients within the 120+
days category.

Subsequently, we undertook a series of experiments on
these encrypted datasets, each characterized by a diferent
number of range queries executed on encrypted data.
Specifcally, we applied diferent volumes of range queries
(k � 400, k � 200, k � 100, and k � 50) to the CCS diagnosis
code, leading to distinct datasets with varying levels of ex-
posed ciphertexts being generated. Te primary purpose of
our experiment is to assess the impact of varying levels of
exposed ciphertexts on the quality of association rule
mining. Terefore, we employed association rule mining on
each of these datasets, as detailed in Table 2, and contrasted
the outcomes.

6.1.2. Association Rule Mining Results on Datasets. To ex-
plore the impact of varying levels of exposed ciphertexts
on the quality of association rule mining, we applied the
Apriori algorithm [29] in Python. We applied this algo-
rithm to each of the datasets (DS400, DS200, DS100, and
DS50) defned in Table 2. Indeed, DS400 can essentially be
considered the same as a plaintext dataset, as the fre-
quency of ciphertexts is 100% exposed. Table 3 displays
the rules yielded by applying the Apriori algorithm to the
Hospital Inpatient Discharges (SPARCS De-Identifed)
dataset. For these results, the minimum support was set to
0.01, and the minimum confdence threshold was set to
0.6. Tese rules provide a baseline with which we can
compare the association rule mining results for the
remaining datasets.

Figures 4(a)–4(d) show the outcomes of association rule
mining the datasets (DS400, DS200, DS100, and DS50) with the
Apriori algorithm, maintaining a minimum support of 0.01
and a minimum confdence threshold of 0.05. Each fgure
represents a scatterplot graph displaying the distribution of
the rule metrics: support, confdence, and lift. Te resultant
graphs for DS400, DS200, and DS100 depict strikingly similar
distributions, indicating that the rules generated for these
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datasets are nearly identical. Tis similarity suggests that
despite reducing the amount of exposed ciphertext (from
100% for DS400 to 92% for DS200 and further down to 72%
for DS100), the quality of association rule mining did not
signifcantly degrade. Te rules mined under these condi-
tions are, therefore, almost as insightful as those obtained
from plaintext data. In contrast, the results for DS50, where
the frequency exposure is less than 50%, are clearly difer-
entiated from the previous dataset. Despite the dissimilar
graph shape, strong rules that were found in the more ex-
posed datasets were also identifed to some extent in the DS50
dataset.

Trough our experimentation, we found that despite
a reduction in ciphertext exposure from 100% to 49%, an
adversary can still extract signifcant information from
encrypted data. Tis insight is critical, as it shows that
FH-OPE is vulnerable to inference attacks by enabling at-
tackers to discern patterns and gather meaningful in-
formation. Notably, the derived association rules remained
informative, regardless of the reduced data exposure. Fur-
thermore, our fndings defnitively proved that even a lim-
ited number of range queries can allow an adversary to
launch successful attacks, thus compromising the security of
FH-OPE encrypted data.

Table 2: Datasets representing diferent levels of distinct ciphertext exposure for varying numbers of range queries (k) on the CCS
diagnosis code.

Dataset name k E[2k] M[2k] Exposure (%)
DS400 400 155 156 100
DS200 200 144 143 92
DS100 100 113 113 72
DS50 50 74 73 49
Te total number of data points is 1894 (n � 1894), with 156 distinct values (N � 156). E[2k] represents the expected number of distinct ciphertexts after k

queries according to equation (4), M[2k] represents the measured number of distinct ciphertexts after k queries, and exposure (%) is the corresponding
percentage of M[2k] over the total distinct values N. All values in the above table are rounded to one decimal place.
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Figure 3: Distribution of length of stay and CCS diagnosis code for patients within the 120+ days category.

Table 3: Rules resulting from the Apriori algorithm applied to the Hospital Inpatient Discharges (SPARCS De-identifed) dataset.

No Antecedents Consequents Antecedent support Consequent support Support Confdence Lift Leverage Conviction
1 (653) (70 or Older) 0.025343 0.186906 0.016895 0.666667 3.566855 0.012159 2.439282
2 (109, M) (50 to 69) 0.013200 0.359556 0.010032 0.760000 2.113715 0.005286 2.668515
3 (109) (50 to 69) 0.021119 0.359556 0.012672 0.600000 1.668722 0.005078 1.601109
4 (233) (M) 0.022770 0.167932 0.012144 0.884615 1.561474 0.004367 3.756776
5 (5) (M) 0.026927 0.566526 0.019007 0.705882 1.245984 0.003752 1.473812
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Each column is explained as follows: “Antecedents” are the items that precede, and “Consequents” are the items that follow. “Antecedent Support” and
“Consequent Support” show the proportion of transactions in the data that contain the antecedent and consequent, respectively. “Support” indicates the
frequency of the antecedent and consequent appearing together, while “Confdence” shows the conditional probability of the consequent given the an-
tecedent. “Lift” measures how much more likely the antecedent and consequent are to occur together than if they were statistically independent, “Leverage”
computes the diference between the observed frequency of the antecedent and consequent appearing together and what would be expected if they were
independent, and “Conviction” indicates the dependency of the consequent on the antecedent.
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7. Conclusion

Tis study presented a comprehensive analysis of FH-OPE,
specifcally its vulnerability to frequency exposure through
range queries. Our fndings provide an overlooked aspect of
the IND-FA-OCPA security model: the absence of con-
sideration for vulnerabilities introduced by range queries.
We have quantifed frequency exposure using principles
from the coupon collector’s problem and probabilistic an-
alyses to determine the number of range queries necessary to
reveal the frequency of all plaintexts and estimate the ex-
pected number of unique ciphertexts revealed after exe-
cuting a given number of range queries. Furthermore, our
exploration goes beyond straightforward threats, consider-
ing more complex query types such as join queries and
advanced attacks through association rule mining. Experi-
mental analyses on real-world datasets have provided
concrete evidence of these vulnerabilities, highlighting the
risks associated with practical implementations of FH-OPE.
Our results quantify the level of exposure risk and present

the potential for inference attacks. Ultimately, our fndings
highlight that FH-OPE requires a more comprehensive
security model that adequately addresses the risks posed by
range queries. Further research is needed to develop new
range-query methods that resist the vulnerabilities identifed
in this study. In conclusion, we hope our research con-
tributes to a deeper understanding of the security challenges
associated with FH-OPE.

Data Availability

Te data that support the fndings of this study are openly
available in Allegheny County Employee Salaries at https://
catalog.data.gov/dataset/allegheny-county-employee-salaries
and Women’s National Basketball Association at https://
www.kaggle.com/datasets/jinxbe/wnba-player-stats-2017.
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Figure 4: Distribution of support, confdence, and lift for association rules derived from the DS400, DS200, DS100, and DS50 datasets using the
Apriori algorithm.Te color intensity of each point refects the level of antecedent support, indicating the frequency of the rule’s conditions
in the respective datasets. (a) DS400. (b) DS200. (c) DS100. (d) DS50.
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