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Objective. Wireless sensor networks, crucial for various applications, face growing security challenges due to the escalating
complexity and diversity of attack behaviours. Tis paper presents an advanced intrusion detection algorithm, leveraging
feature-weighted Naive Bayes (NB), to enhance network attack detection accuracy.Methodology. Initially, a feature weighting
algorithm is introduced to assign context-based weights to diferent feature terms. Subsequently, the NB algorithm is
enhanced by incorporating Jensen–Shannon (JS) divergence, feature weighting, and inverse category frequency (ICF).
Eventually, the improved NB algorithm is integrated into the intrusion detection model, and network event classifcation
results are derived through a series of data processing steps applied to corresponding network trafc data. Results. Te
efectiveness of the proposed intrusion detection algorithm is evaluated through a comprehensive comparative analysis using
the NSL-KDD dataset. Results demonstrate a signifcant enhancement in the detection accuracy of various attack types,
including normal, denial of service (DoS), probe, remote-to-local (R2L), and user-to-root (U2R). Moreover, the proposed
algorithm exhibits a lower false alarm rate compared to other algorithms. Conclusion. Tis paper introduces a wireless
network intrusion algorithm that not only ensures improved detection accuracy and rate but also reduces the incidence of
false detections. Addressing the evolving threat landscape faced by wireless sensor networks, this contribution represents
a valuable advancement in intrusion detection technology.

1. Introduction

In recent years, there has been a rapid development in com-
puter communication and networking technologies, particu-
larly with the emergence of the Internet of Tings (IoT). Tese
advancements have introduced new and efective ways to fa-
cilitate interaction between human society and the physical
world. Tis has led to the integration of human society, the
physical world, and the computingworld [1, 2].Wireless sensor
networks (WSNs), as a technology derived from microelec-
tronics, play an irreplaceable role in important felds such as
healthcare, trafc control, and natural disasters [3–5]. Fur-
thermore, they have profound impacts on daily life, such as
smart homes and modern agriculture [6, 7].

WSN is a distributed wireless network composed of a large
number of low-power sensor nodes deployed in the sensing
area, communicating through wireless links [8]. Tese sensor

nodes are miniaturized computing units with limited storage
capacity, computational capabilities, and battery power [9, 10].
However, due to the openness of wireless networks and the
inherent limitations of sensor nodes, WSNs face various se-
curity threats and network attacks.

To counter network attacks, existing network intrusion
solutions have introduced key management and authenti-
cation mechanisms as the frst line of defence to efectively
withstand attacks from outside the WSN. However, by
capturing nodes, attackers can gain access to confdential
information inside the nodes and launch internal attacks,
rendering the frst line of defence inefective against internal
attacks in WSNs. Terefore, intrusion detection technology
serves as a crucial second line of defence, capable of fun-
damentally detecting security threats and minimizing the
losses caused by attacks [11]. However, due to the limitations
of WSNs, traditional intrusion detection techniques cannot
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be directly applied to WSN environments. As a result, the
research on novel intrusion detection techniques suitable for
WSNs has attracted widespread attention from experts and
scholars both domestically and internationally.

In order to improve the classifcation accuracy and al-
gorithmic efciency of network intrusion detection algo-
rithms, this paper proposes a new intrusion detection method
for wireless networks, that is, an improved NB algorithm
utilizing JS dispersion and inverse category frequency (ICF),
i.e., JINB intrusion detection algorithm. Te algorithm re-
duces the limitations of the conditional independence as-
sumption of NB by introducing a weighting factor for each
feature term through JS scattering and ICF, resulting in the
improved detection rate and detection accuracy. Te main
innovations of this paper are as follows:

(1) Te use of JS divergence tomeasure the weights of each
feature term, highlighting the diferences between
diferent feature terms. By utilizing JS divergence, we
are able to better assess the contributions of feature
terms to intrusion detection, thereby improving clas-
sifcation accuracy.

(2) Te introduction of ICF to enhance the calculation of
feature weights, further reducing the infuence of
conditional independence. Traditional intrusion
detection algorithms are typically based on the as-
sumption of Naive Bayes, where features are con-
sidered mutually independent. However, in practical
scenarios, there may be certain correlations among
features that can impact the accuracy of classifca-
tion. Incorporating ICF allows for more accurate
calculation of feature weights, reducing the impact of
conditional independence on classifcation results
and enhancing detection accuracy.

Tis paper is divided into fve main sections as follows:
the introduction, the literature review, the methodology, the
analysis and discussion of results, and the conclusion.

Te motivation behind this study is to enhance the se-
curity of wireless sensor networks by developing an intrusion
detection algorithm that improves detection accuracy and
reduces false alarms. Tis research aims to contribute to the
evolving feld of intrusion detection in WSNs.

In addition to introducing innovative technologies such as
JS divergence and ICF, this study also incorporates a feature
weighting algorithm. Tis contribution enhances the algo-
rithm’s sensitivity to diferent features, aiding in better dis-
crimination and utilization of various features, thereby
improving the accuracy of intrusion detection. Furthermore,
this study combines the improved Naive Bayes (NB) algo-
rithm with an intrusion detection model and applies it to the
corresponding network trafc data processing. Tis leads to
an overall performance enhancement, resulting in higher
detection accuracy when facing various attack types.

2. Literature Review

In the existing literature, various intrusion detection models
and algorithms have been proposed for diferent network
environments and challenges. Zhao et al. proposed an intrusion

detection model based on a deep artifcial neural network with
backpropagation (DAN-BP) [12]. It is tailored for handling
massive, complex, and multidimensional network data. Te
primary aim is to address the need for efective intrusion
detection in such environments. Similarly, Maheswari and
Arunesh present a new hybrid multilevel intrusion detection
model that focuses on improving the detection rate of specifc
attack behaviours, including probe, U2R, and R2L [13]. Te
model combines the K-nearest neighbor (KNN) outlier de-
tection algorithm with network trafc similarity to achieve
accurate detection without interference from anomalous
behaviours.

In the context of resource-constrained intrusion de-
tection systems (IDS) in wireless sensor networks (WSNs),
Huang and Zhu proposed a dynamic multistage intrusion
detection model with a game-theoretic approach [14]. Tis
model predicts the most vulnerable nodes to intrusion and
incorporates Bayesian rule analysis to identify malicious
nodes. Another improvement in intrusion detection is
presented by Wang et al. [15], where an algorithm based on
integration learning is introduced. Tis algorithm addresses
the limitations of integrated learning intrusion detection
methods, such as loss of edge information and time-
consuming model fusion. By transforming the original
problem into multiple binary classifcation problems and
incorporating probabilistic prediction results, the algorithm
achieves better performance.

While deep neural networks and integrated learning
methods [16, 17] may not be suitable for certain network
structures and computational limitations [18], alternative
approaches have been explored. For example, Jaber and
Rehman proposed a cloud computing-based intrusion fea-
ture extraction method for ship communication networks
[19]. Tis method utilizes signal processing techniques and
a feature detection framework to extract relevant features. A
network intrusion detection method based on an improved
random forest classifer is introduced by Zhang et al. [20].
Te method utilizes Gaussian mixture models and random
forest classifers to extract intrusion features.

Ling et al. used a rough set theory to enhance intrusion
detectionmodels based on artifcial immunity [21].Tismethod
combines anomaly detection and misuse detection, achieving
vaccine injection without terminating the intrusion detection
behavior. In addition, Ling et al. introduced a K-means algo-
rithm to address the clustering issue and local optima problems
[22]. Although these methods demonstrate improvement in
detection performance, challenges related to outliers and un-
balanced clustering remain.

To tackle the issue of low efciency caused by a large
amount of data, Wang et al. combined adaptive afnity
propagation (AP) clustering with intrusion detection [23].
Tis adaptive AP clustering algorithm reduces the number of
samples to be clustered, resulting in decreased clustering
time and continuous model adjustment. Duan and Xiao
proposed an improved fuzzy C-means clustering algorithm,
which uses the Mercer kernel and Lagrange multiplier
method for enhanced optimization and convergence speed
[24]. However, the impact of unbalanced clustering and
noise points on clustering results is not addressed.
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Moreover, recent research has explored innovative ap-
proaches for intrusion detection. For instance, a vehicular-
edge computing fogging scheme is proposed by Mourad
et al. [25], which ofoads intrusion detection tasks to fed-
erated vehicles, considering their high mobility and resource
availability. Rahman proposes a privacy-preserving joint
learning scheme for IoT intrusion detection [26], where
devices train their own models to maintain privacy and
security-aware data. Deep learning models with recurrent
neural network (RNN) with long short-term memory
(LSTM) and gated recurrent unit (GRU) frameworks were
developed by Gautam et al. [27]. Tis model can overcome
the problem of longer dependencies in RNN models.
However, the efectiveness of these models in classifying
certain types of attacks remains a challenge.

Te Naive Bayesian classifer (NBC) [28] has gained
popularity in intrusion detection due to its simplicity and
efectiveness. Various enhancements for the NB algorithm
have been proposed. For instance, Alsaadi et al. efectively
applied the NB model in IDS and established a framework
for the primary intrusion detection process [29]. Alsharif
adopted a PCA-based NB algorithm that reduces data re-
dundancy and improves detection efciency [30]. Zhang
et al. constructed a network intrusion detection model based
on the NB algorithm and the quantum particle swarm
optimization (QPSO) algorithm [31], which performs fea-
ture selection and parallelized NB classifcation. However,
the detection rate of low-frequency and small-sample type
data still needs improvement in this method. Panigrahi et al.
proposed an extension of the NB algorithm that combines
feature simplifcation and decision tree techniques to im-
prove classifcation efciency and accuracy [32]. Nevertheless,
this approach introduces interference in the classifcation of
anomalous events. A semisupervised NB algorithm is in-
troduced by Hara and Shiomoto [33], which leverages parallel
computing to handle large amounts of network data. However,
this algorithm exhibits shortcomings in detecting anomalous
data in small-sized and medium-sized local area networks.
Addressing the need for efcient intrusion detection, Li et al.
presented the locally weighted Naive Bayesian (LWNB) al-
gorithm [34]. Tis algorithm gradually reduces the feature
space and divides it into subspaces for classifcation using a NB
classifer. While this design improves classifcation speed and
correctness, it requires complex preprocessing and increases
time and space complexity. Jiang et al. proposed a novel weight
calculation method based on the original NB approach [35].
Tis method estimates feature values derived from network
data and signifcantly eliminates interference data, leading to
improved classifer accuracy and recall rate. However, the
algorithm still faces challenges related to feature attribute value
extraction and the stability of classifer performance.

In summary, the literature review highlights various
approaches to intrusion detection, including DAN-BP-based
models, hybrid multilevel models, dynamic multistage
models, integration learning algorithms, cloud computing-
based methods, improved random forest classifers, rough
set-based models, and extensions of the NB algorithm.
While these methods demonstrate advancements in in-
trusion detection, challenges such as outliers, unbalanced

clustering, computational limitations, and classifcation of
specifc attack types still persist. Future research should
focus on addressing these challenges to further enhance
intrusion detection techniques.

3. Methodology

A feature weighting algorithm is employed to enhance the
classifcation accuracy by assigning weights to diferent feature
terms based on their relevance to the situation. Tis approach
calculates each feature’s weight by deriving a weighting factor
through JS divergence and ICF.

Te JINB algorithm is used to obtain the classifcation
results of network events by performing a series of processes
on the corresponding network trafc data (Figure 1).

3.1. NB Classifer. Given a training sample set P � I1, I2,

· · · , It}, where element Ix � g1, g2, · · · , gw | gx ∈ Gx  rep-
resents each data record and gx denotes the x-th feature. Gx

denotes the x-th attribute variable of the sample set. Con-
sider a test sample set C � c1, c2 · · · , cz | z⩽ t , and the
mapping function f: Ix⟶ cx indicates that any data record
is classifed as a category label cx in C. Suppose N � J1, J2,

· · · , Jr} is a test sample set, then we calculate the probability
that instance Jx belongs to category cy(∀y � 1, 2, · · · , z) and
obtain the calculation result set U � u1, u2, · · · , uz . Ten,
the maximum element un in set U is further obtained, and
the test instance is fnally classifed as cn.

(1) We calculate the occurrence of category c in the
sample set U as follows:

U(c) �
1
t



t

x�1
a c, cx( ,

a c, cx(  �

1, c � cx,

0, c≠ cx,

⎧⎪⎨

⎪⎩

(1)

where cx is the category to which the sample Ix

belongs to and a(c, cx) is the symbolic function for
determining c and cx.

(2) We compute feature gy for sample category c in the
set P. If attribute Gy is discrete, then we have

U gy | c  �


t
x�1a c, cx( a gxy, gy 


t
x�1a c, cx( 

,

a gxy, gy  �

1, gxy � gy,

0, gxy ≠gy,

⎧⎪⎨

⎪⎩

(2)

where gxy is the y-th feature of the training sample
instance Ix. If the attribute gy is a continuous value,
then we have

U gy | c  �
1

���
2π

√
σc,y

exp −
gy − pc,y 

2

2σ2c,y

⎛⎝ ⎞⎠. (3)
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(3) Ten, we count the occurrence of feature gy in U as
follows:

U gy  � 
t

x�1
U gy cx

 U cx( . (4)

(4) We calculate the probability that J′ belongs to cat-
egory cx as

U cx J
′

  �
U cx( U J

′
cx

 

U J
′

 

�
U cx( 

U J
′

 

U g1 cx

 U g2 cx

  · · · U gw cx

 .

(5)

Among them, J′ is the sample to be measured and w

is the sample size.
(5) From equation (7), it is possible to calculate for sample

J′ within the range of ∀cx(1⩽ x⩽ z), which results in
a derived value. U � u1, u2, · · · , uz . Te z probability
values are normalized and sorted to obtain the simi-
larity of the sample J′. Te maximum posterior
probability WU is thus obtained as follows:

WU � argmax
1⩽x⩽z

U cx( 

w

y�1
U gy cx

 . (6)

(6) Te defnition of the NB classifer can be calculated
from the abovementioned results as

Classifier N � J1, J2, · · · , Jr (  � argmax
∀∈J,1⩽x⩽z

U cx( 

w

y�1
U gy cx

 . (7)

3.2. JSDivergence. Weight (x, y) is the weight of gy in cx; that
is, it measures the signifcance of the feature gy to category
cx in classifcation. Te NB equation is thus improved as
shown in the following equation:

WU � argmax
1⩽x⩽z

U cx( 

w

y�1
U gy cx

  ×weight(x, y). (8)

Te diference between the probability distribution of cx

and the probability distribution in the sample set with
feature gy can be considered. According to literature [36],
the KL (Kullback–Leibler) divergence is used to indicate the
importance of the features.

KL U cx gy

  U cx( 
����  � U cx gy

 log
U cx gy

 

U cx( 
. (9)

Te limitations are evident from the KL divergence
calculation in equation (9), which cannot be regarded as
a metric in the true sense. Second, the range of its results is
not bounded. In this paper, JS divergence [37] is introduced
to make up for defciencies. Since JS divergence possesses
symmetry, it serves as a true distance metric. Moreover, its
values range from 0 to 1, making it more precise and
convenient for similarity assessment. Terefore, employing
JS divergence to compare the diference in distance between
two probability scenarios assigns appropriate weights to

Training phase Application phase

Unknown network traffic dataKnown network traffic data

Category labels

Training sample set with labels Data preprocessing: discretization,
normalization

Data pre-processing: discretization,
normalization JINB classifier

Training
parameters

JINB algorithm training Event classification results: Normal,
DOS, Probe, R2L, U2R

Figure 1: Intrusion detection model based on the JINB algorithm.
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feature items, enabling a better evaluation of the contri-
bution of feature items to intrusion detection.

JS U cx gy

  U cx( 
����  �

1
2
KL U cx gy

 
U cx ∣ gy  + U cx( 

2

���������
⎡⎣ ⎤⎦ +

1
2
KL U cx( 

U cx ∣ gy  + U cx( 

2

���������
⎡⎣ ⎤⎦. (10)

WJS (x, y) is the JS weighting factor of gy in category cx.
Te calculation ofWJS (x, y) can be derived by subsuming

equation (9) into equation (10). From equation (11), it can be
observed that if the distribution of feature gy is more dispersed,
the JS weighting factor for cx becomes smaller.

WJS(x, y) �
1
2

U cx gy
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,
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(11)

3.3. Anticategory Frequency. Since feature terms represen-
tative of a particular category occur in a small number of
classes, it can be further improved by using ICF [38].

Te inverse category frequency and feature entropy are
introduced into the calculation of feature weights in sample
classifcation. Te category frequency (CF) is the number of
categories in which feature gy occurs.

Te calculation equation of anticategory frequency ICF
is similar to IDF, which can be represented as follows:

WICF gy  � lh
|C|

cf gy 
⎛⎝ ⎞⎠. (12)

Te introduction of ICF in feature weighting is based on
the assumption that the fewer the number of categories in
which a feature gy appears, the greater the amount of
category information it carries. Tis assumption is called the
ICF assumption, which focuses on low- and medium-
frequency features at the category level while suppressing
high-frequency features. However, ICF only considers the
distribution of features between categories and does not
consider the distribution of features within each category. If
a feature term exhibits a more balanced distribution within
a class, it signifes greater representativeness of that class.
Tis indicates a higher capability for class diferentiation,

warranting a larger weight assignment across all samples
belonging to that class. Conversely, if a feature term is
concentrated in only a few samples within a class, it does not
efectively capture the characteristics of the class. Feature
terms with low category diferentiation ability should be
assigned lower weights. Te analysis shows that the size of
the entropy value of the distribution of feature terms within
a class is consistent with the amount of categorical in-
formation that the feature term can provide.

Te term entropy of the feature gy in the class cx is
defned as follows:

TE gy, cx  � − 

cx| |

y�1

tf gy, dxy 

tf gy, cx 
lb
tf gy, dxy 

tf gy, cx 
,

TF gy, cx  � 

cx| |

y�1
tf gy, dxy ,

(13)

where TF(gy, cx) represents the total number of frequencies
of feature gy occurring in the samples of class cx.

TE (gy, cx) well refects the distribution of feature terms
within the class, and its value is proportional to the category
diferentiation ability of the feature. Based on the above-
mentioned analysis, this section introduces the XCF and te
factors into the feature weight calculation and proposes two
new feature weight calculation schemes, namely, TF.XCF.TE
and TF.RF.XCF.TE.

(a) Te equation for the TF.XCF.TE program is as
follows:

TF.XCF.TE gy, dy, cx  � tf gy, dy  × lb 1 +
|C|

cf gy 
⎛⎝ ⎞⎠

× te gy, cx .

(14)

In contrast to TF.XDF, TF.XCF.TE is a hybrid
feature weighting model. XCF factors are calculated
at the category level, and TE factors measure the
distribution of features within classes.

(b) Te TF.RF.XCF.TE program is calculated as follows:

TF.RF.XCF.TE gy, dy, cx  � tf gy, dy  × lb 2 +
g

max(l, c)
  × lb 1 +

|C|

cf gy 
⎛⎝ ⎞⎠ × te gy, cx , (15)
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where g is the number of samples in which feature gy

appears in the positive class. c is the number of samples
in which feature gy appears in the negative class. It can
be seen that the TF.RF.XCF.TE scheme contains four
factors. Te TF is the original feature frequency. Te
RF factor measures the distribution of feature gy

between positive and negative correlation categories.
TeXCF factormeasures the distribution of feature gy

between categories. Te TE factor is a measure of the
distribution of features within classes.

3.4. Algorithm Description. By combining the aforemen-
tioned weighting factors,WJS andWICF, the feature weights,
denoted as weight, can be calculated.

Weight(x, y) � WJS(x, y) × WICF gy . (16)

Te steps of the JINB algorithm are as follows.
Referring to the process outlined in Algorithm 1, we can

analyze the time and spatial complexity of the JINB algorithm
proposed in this paper. Te time complexity of the JINB al-
gorithm can be approximated asO (z+ z ∗ z+ z ∗ w+ z ∗ w),
which can be simplifed to O (z ∗ z+ z ∗ w). Regarding the
space complexity, it refers to the additional storage space re-
quired during the execution of the algorithm, primarily for
storing the training sample set U and variables used for cal-
culations. Assuming that the sizes of other variables are
negligible compared to z, the space complexity of the JINB
algorithm can be approximated as O (z).

4. Result Analysis and Discussion

4.1. ExperimentalDataset. TeNSL-KDD dataset is used for
the experiments in this paper. Te NSL-KDD dataset is
a modifed version of the KDD Cup 1999 dataset, which was
created for the purpose of evaluating intrusion detection
systems. It was developed to overcome some of the limi-
tations and issues found in the original KDD Cup 1999
dataset, which had problems related to redundancy and
repetitive data records. It provides a diverse set of network
trafc data with various types of attacks, making it a valuable
resource for researchers and practitioners in the feld of
cybersecurity. Te distribution of NSL-KDD across diferent
attack categories is illustrated in Table 1.

Te experimental setup involved a Windows 10 PC
equipped with an Intel Core i7-9750H CPU running at
2.60GHz and 8GB of RAM.Te algorithms proposed in this
paper were implemented using Python 3.7.3. Te simulation
experiments were conducted using the publicly available
NSL-KDD dataset, which served as the dataset for this study.
Te experimental parameters of the algorithm in this paper
are set as follows. Te number z of categories C is set to 5,
due to the 4 attack types (DoS, Probe, R2L, and U2R) and
normal state. Te number w of sample instances is shown in
Table 1, and the number of sample J is 132427.

Te steps for data preprocessing are as follows:

(1) Data collection: frst, the NSL-KDD dataset was
obtained for the experiments

(2) Data cleaning: the data were cleaned to check for
missing values, duplicate records, or inconsistencies

(3) Data exploration: exploratory data analysis (EDA)
techniques were employed to gain in-depth insights
into the dataset’s features and the distribution of
attacks across diferent categories.

(4) Data partitioning: the dataset was divided into
a training set and a testing set, with the partitioning
carried out using the KDD Train +_20Percent.TXT
and KDD Test +.TXT fles, respectively.

4.2. Experimental Evaluation Methods. Te intrusion de-
tection system evaluation index is calculated by the con-
fusion matrix, and its main evaluation index is divided into
accuracy rate (Acc), detection rate (DR), false alarm rate
(FAR), and missing alarm rate (MAR).

Acc is a measure of overall performance that takes into
account all samples correctly classifed, but it does not
provide detailed information about the accuracy of intrusion
detection. DR focuses on intrusion detection accuracy,
which measures the extent to which the classifer correctly
detects actual intrusions. FAR and MAR are associated with
false positives and false negatives and typically exhibit
a negative correlation. Reducing FAR may lead to an in-
crease in MAR, and vice versa, representing a trade-of.
When evaluating intrusion detection systems, it is common
to strike a balance between FAR and MAR to reduce false
positives while minimizing false negatives, thereby en-
hancing DR and accuracy.

Teir calculation equations are as follows:

Acc �
NU + NT

NU + FT + FU + NT
,

DR �
NU

NU + FT
,

FAR �
FU

NU + FU
,

MAR �
FT

NU + FT
,

(17)

where NU is the number of abnormal trafc data samples
classifed as abnormal. NT is the number of normal trafc
data samples classifed as normal. FU is the number of
normal trafc data samples classifed as abnormal. FT is
the number of abnormal trafc data samples classifed as
normal. Te confusion matrix is shown in Table 2.

Te main types of attacks in WSN networks are black
hole attacks, gray hole attacks, fooding attacks, replay
routing attacks, and wormhole attacks [39]. Te following
four types of attacks are included in the NSL-KDD dataset:
denial of service attacks (DoS) [40], snifng attacks (probe)
[41], unauthorized access from a remote machine to a local
machine (R2L) [42], and unauthorized access to local super-
user (root) privileges (U2R) [43].
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4.3. Experimental Results and Analysis

4.3.1. Algorithm Comparison Experiment. Te experiments
in this section are conducted using the LIB MATLAB
simulation platform. To validate the performance of the
JINB intrusion detection algorithm, a series of simulation
experiments are conducted. Tese experiments involve
a comparative analysis between the algorithm proposed in
this paper and other existing algorithms. Furthermore, the
proposed misuse detection module and anomaly detection
module are individually simulated to evaluate their efec-
tiveness in detecting specifc types of attacks. Te experi-
ments in this subsection test the NSL-KDD dataset using

OAA (one against all) [44], SVM (support vector machine),
IBT (improved binary tree), HNB (hidden Naive Bayesian)
[45], XLSTM [46], and the proposed algorithm. Each group
of experiments uses the ten-fold crossover method to fnd
the Acc, DR, FAR, and MAR of diferent attack types and
fnally takes the corresponding average value as the exper-
imental result. Te fnal experimental results are shown in
Table 3.

Te JINB algorithm is compared with other mainstream
algorithms (OAA, SVM, IBT, HNB, and XLSTM) in terms of
intrusion detection, and the results are measured using
accuracy, DR, FAR, and MAR (see Figure 2).

As seen in Figure 2(a), the detection accuracy of the JINB
algorithm has improvedmore signifcantly. From Figure 2(b),
we can see that in terms of the detection rate, the detection
rate of various intrusion types has been improved except for
DoS, which is slightly lower than that of the HNB method.
Figure 2(c) illustrates that the JINB algorithm has signifcantly
reduced the false alarm rate compared to each of the other
intrusion types, except for DoS and R2L. Figure 2(d) illus-
trates that the JINB algorithm has a signifcantly lower false
alarm rate for each intrusion type than the other compared
algorithms.

To assess the growth ratio, which refects the relationship
of detection rates between the JINB algorithm and various
algorithms for diferent types of network attacks, Table 4
demonstrates the proportional comparison of the JINB al-
gorithm with the OAA, SVM, IBT, HNB, and LSTM al-
gorithms. Here, the growth ratio is calculated by comparing
the detection rate of the JINB algorithm to that of various
reference algorithms in the context of diferent network

Input: training sample set U, sample instances to be classifed J � g1, g2, · · · , gw , and category label C � c1, c2, · · · , cz 

Output: sample J belongs to category cj

z� number of categories
Obtain the prior probability U (cx)
for each x in z
t� 0
s� 0
for each x in U
t� t+ 1
if (I ∈ cx) s� s+ 1

end for
U (cx)� s/t
U � u1, u2, · · · , uz 

for each x in z
U (J | cx)� 1
for each y in w

weight (x, y)�WJS (x, y) ∗ WICF (gy)
U (J | cx)�U (J | cx) ∗ U (gy | cx) ∗ weight (x, y)

end for
ux �U(cx) ∗ U (J | cx)

end for
cJ � (cx | ux� max u1, u2, · · · , uz )

end for
output (cJ)

ALGORITHM 1: Te JINB algorithm.

Table 1: Distribution of NSL-KDD training data.

Types of attacks
Data distribution

Number of samples Percentage (%)
Normal 69232 52.28
DoS 40816 30.82
Probe 12768 9.64
R2L 9545 7.21
U2R 66 0.05
Total 132,427 100

Table 2: Confusion matrix.

Predict
Actual

0 1
0 NT FT
1 FU NU
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Table 3: Comparison of detection performance (%) before and after algorithm improvement.

Algorithm Normal DoS Probe R2L U2R
JINB Acc 94.69 98.96 99.18 95.8 99.95
NB Acc 91.48 87.57 97.19 95.91 98.04
JINB DR 94.38 98.46 82.29 8.32 13.62
NB DR 87.38 84.99 65.73 1.83 1.17
JINB FAR 2.86 0.72 0.58 1.09 0.09
NB FAR 5.14 3.58 2.25 4.71 1.11
JINB MAR 1.37 0.86 0.95 5.17 11.63
NB MAR 4.06 1.35 2.51 8.23 14.39
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Figure 2: Comparison of the performance of each classifcation algorithm. (a) Comparison of accuracy. (b) Comparison of DR.
(c) Comparison of FAR. (d) Comparison of MAR.

Table 4: Detection rate growth ratio of this algorithm to other algorithms.

Comparison
Growth ratio

Normal DoS Probe R2L U2R
JINB vs. OAA 6.2 16.1 33.7 4.2 10.9
JINB vs. SVM 5.1 14.9 46.5 3.0 9.5
JINB vs. IBT 5.1 13.7 9.8 3.5 10.5
JINB vs. HNB 0.3 −0.1 3.6 1.9 8.2
JINB vs. LSTM 1.2 2.5 5.7 −0.2 4.3
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Figure 3: ROC diagram using fve methods under diferent types of attacks. (a) Normal detection. (b) DoS attack. (c) Probe attack. (d) R2L
attack. (e) U2R attack.

Security and Communication Networks 9



attack types. Te calculation involves determining the dif-
ference between the detection rate of the JINB algorithm and
the detection rate of each reference algorithm. Tis difer-
ence is then divided by the detection rate of the reference
algorithm, and the result is multiplied by 100 to obtain
a percentage representation.

By looking at Table 4, it is clear that

(1) In the detection of normal and R2L attacks, the
growth ratio is not much diferent.

(2) Te growth ratio reaches the maximum when
detecting probe attacks, reaching 46.5%. Tis shows
a very large growth ratio compared to the detection
of normal, DoS, R2L, and U2R, and the growth ratio
increases as the number of samples is smaller than
the sample set. However, it decreases in U2R, which
may be caused by the small percentage and in-
sufcient data samples.

Normal detection and DoS, probe, R2L, and U2R attack
types are compared under these fve algorithms, and the
ROC curve of experimental results is obtained, as shown in
Figures 3(a)–3(e).

Te variation of DR and FAR of the fve algorithms for
diferent kinds of attacks can be more intuitively seen by
observing Figure 3. Te detection efect of the proposed
algorithm is signifcantly higher than the other four com-
pared algorithms as shown by the ROC graph. Te detection
efect of the algorithm in this paper is more intuitively shown
as the data imbalance rate increases.

Finally, an observation of the detection times recorded
for the fve algorithms (as shown in Table 5) reveals that the
proposed algorithm has signifcantly reduced the time
complexity. In particular, the reduction in time is larger
when testing, and the exact calculation yields a 52% re-
duction in testing time relative to OAA. Compared to
XLSTM, the training time and detection time of the algo-
rithm in this paper are reduced by 48.9% and 55.5%,
respectively.

Te time complexity includes the training time for the
classifer corresponding to the algorithm and the detection
time for the algorithm to perform the attack detection, and
the time complexity is expressed as shown in the following
equation:

Time complexity � training time + testing time. (18)

Based on the abovementioned simulation environment,
intrusion detection is simulated using NS2. NS2 records the
actions of each packet at every link and node during the
simulation using a specifc format trace fle. It is instrumental
in simulating probabilistic broadcast schemes for conven-
tional ad hoc networks, intelligent routing protocols for
wireless sensor networks, and routing protocols for fying ad
hoc networks (FANETs).

As the quantity of malicious nodes in the network grows,
the network topology becomes more intricate and the network
is subjected to more DoS attacks, causing the detection rates of
various algorithms to decline.Te proposed algorithm resolves
diversity and outlier sensitivity issues. Tis enhances its

generalization capacity, making it outperform other compar-
ative algorithms in this paper. Even when there are more
malicious nodes, the algorithm in this paper has a good per-
formance (as shown in Figure 4).

4.3.2. Network Energy Efciency Analysis. As shown in
Figures 5 and 6, the average remaining energy of the network
nodes and the number of surviving nodes change over time
for OAA, SVM, IBT, HNB, XLSTM, and the proposed al-
gorithm. Te network survival time is the longest for OAA
defence because there is no additional energy consumption.
HNB defence requires two modules to be turned on at the
same time, which leads to a sharp increase in the energy
consumption of the cluster head nodes and reduces the
survival time of the network. In contrast, JINB defence only
turns on one detection module at a time. SVM defence, IBT
defence, and XLSTM defence activate a similar number of
intrusion and misuse detection modules during network
attacks and defence. Tis leads to comparable energy con-
sumption and similar average energy and survival number
curves of network nodes.

Experiments have proven that the JINB defence strategy
efectively extends the survival time of the network and
balances the accuracy and energy efciency of the intrusion
detection system.

Te proposed intrusion detection algorithm based on
feature-weighted NB improves the detection accuracy of

Table 5: Time complexity of the fve algorithms.

Algorithms Training time (s) Testing time (s)
OAA 14939 2161
SVM 11217 1686
IBT 10588 1395
HNB 10376 1274
XLSTM 18762 2327
JINB 9586 1038
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Figure 4: Relationship between number of malicious nodes and
detection rate.
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network attacks in wireless sensor networks. By integrating
a feature weighting algorithm, Jensen–Shannon divergence,
and inverse category frequency, the algorithm enhances the
performance of the Naive Bayes classifer.Tis allows for real-
time processing of network events using the corresponding
network trafc data, resulting in a signifcant improvement in
the detection accuracy for various attack types. Terefore, the
proposed model provides practicality for real-time network
intrusion detection. Furthermore, the proposed intrusion
detection algorithm based on feature-weighted NB ofers
cost-efectiveness in network security. By improving the
detection accuracy and reducing false detections, the

algorithm enhances the efectiveness of network attack de-
tection. Tis leads to cost savings by minimizing expenses
related to false alarms and mitigating potential losses from
undetected attacks. In addition, the algorithm utilizes existing
network trafc data and incorporates weighting factors
without imposing signifcant resource requirements. Tis
makes it cost-efective to implement and integrate into
existing systems. Te algorithm’s real-time event processing
capability further contributes to its cost-efectiveness by en-
abling prompt responses to detected attacks. Overall, the
proposed model provides a cost-efective solution for en-
hancing the security of wireless sensor networks.

5. Conclusion

Te security of wireless sensor networks is facing various
challenges. To improve the detection accuracy of network
attacks, an improved intrusion detection algorithm based on
feature-weighted NB is proposed in this paper. A feature
weighting algorithm is proposed by assigning corresponding
weights to diferent feature terms according to the situation.
Te Jensen–Shannon (JS) divergence is combined with fea-
ture weighting and inverse category frequency (ICF) to im-
prove the Naive Bayes algorithm. In the experimental session,
the algorithm of this paper is compared and analyzed with
other algorithms on the NSL-KDD dataset. Te results show
that the wireless network intrusion algorithm proposed in this
paper can ensure improved detection accuracy and detection
rate, while reducing the false detection rate.

Te limitations of this study are related to the algorithm’s
performance in the data preprocessing stage. Specifcally, (1)
the discretization and normalization abilities of the algorithm
require improvement. To enhance the algorithm’s stability
and adaptability, future work should focus on analyzing and
implementing more efective data preprocessing methods. (2)
Te study acknowledges the need to develop a threat model
for evaluating the algorithms’ performance in reducing sys-
tem threat metrics. Tis development will comprehensively
assess the algorithms’ efectiveness in real-world threat sce-
narios. In the future, we will comprehensively discuss real-
time computing efciency checks and possibilities, including
an exploration of the applicability in broader network en-
vironments and large-scale deployments.
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