
Research Article
Effective and Efficient Android Malware Detection and Category
Classification Using the Enhanced KronoDroid Dataset

Mudassar Waheed and Sana Qadir

School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST),
Islamabad, Pakistan

Correspondence should be addressed to Sana Qadir; sana.qadir@seecs.edu.pk

Received 19 December 2022; Revised 3 November 2023; Accepted 16 March 2024; Published 8 April 2024

Academic Editor: Luigi Catuogno

Copyright © 2024 Mudassar Waheed and Sana Qadir. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Android is the most widely used mobile operating system and responsible for handling a wide variety of data from simple
messages to sensitive banking details. Te explosive increase in malware targeting this platform has made it imperative to adopt
machine learning approaches for efective malware detection and classifcation. Since its release in 2008, the Android platform has
changed substantially and there has also been a signifcant increase in the number, complexity, and evolution of malware that
target this platform. Tis rapid evolution quickly renders existing malware datasets out of date and has a degrading impact on
machine learning-based detection models. Many studies have been carried out to explore the efectiveness of various machine
learning models for Android malware detection. Majority of these studies use datasets that have compiled using static or dynamic
analysis of malware but the use of hybrid analysis approaches has not been addressed completely. Likewise, the impact of malware
evolution has not been fully investigated. Although some of the models have achieved exceptional results, their performance
deteriorated for evolving malware and they were also not efective against antidynamic malware. In this paper, we address both
these limitations by creating an enhanced subset of the KronoDroid dataset and using it to develop a supervised machine learning
model capable of detecting evolving and antidynamic malware. Te original KronoDroid dataset contains malware samples from
2008 to 2020, making it efective for the detection of evolving malware and handling concept drift. Also, the dynamic features are
collected by executing the malware on a real device, making it efective for handling antidynamic malware. We create an enhanced
subset of this dataset by adding malware category labels with the help of multiple online repositories. Ten, we train multiple
supervised machine learningmodels and use the ExtraTree classifer to select the top 50 features. Our results show that the random
forest (RF) model has the highest accuracy of 98.03% for malware detection and 87.56% for malware category classifcation (for 15
malware categories).

1. Introduction

In most parts of the world, almost everyone uses a smart-
phone to access the Internet. Tese devices make it very
convenient to perform a variety of tasks including sensitive
banking transactions and exchanging private messages.Tey
also store personal data such as credit card numbers and
passwords.

Te compromise of a smartphone and the sensitive data
it handles can lead to very serious consequences for users
and organisations. In fact, according to the 2023 Global
Mobile Treat Report, there has been a dramatic increase in

the number of mobile users and devices being targeted by
phishing attacks and mobile malware [1]. Te main moti-
vation of this research is to help counter the threat of mobile
malware by developing an efective and efcient Android
malware detector.

Because the operating system of a smartphone is its main
component, it must be taken into consideration when de-
veloping an efective malware detection solution. According
to the latest statistics, Android dominates the global mobile
OS scene with 67.56% of the market share [2]. Te other
OSes have signifcantly lower share of the market (iOS has
31.6% and the remaining < 1% is composed of BlackBerry,

Hindawi
Security and Communication Networks
Volume 2024, Article ID 7382302, 13 pages
https://doi.org/10.1155/2024/7382302

https://orcid.org/0000-0002-6997-3500
https://orcid.org/0000-0002-3594-2925
mailto:sana.qadir@seecs.edu.pk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Windows, and Symbian). Te lower price and open source
nature of Android are the main reasons behind this sub-
stantial market share. However, the downside of this pop-
ularity is that there more than 400,000 new Android
malware variants being detected per month [3].

Malware usually enters a smartphone through the in-
stallation of an infected app. It can also enter from a third-
party Website or through a phishing attack. To minimise the
chances of an infection, repositories like Google Play Store
implement security checks (such as Google Play Protect)
during the publication stage of an app [4, 5]. However, some
sophisticated types of malware are able to bypass these
checks. Tere are also a few app repositories and third-party
Websites that do not include sufcient security checks
during the publication stage.

To evade security checks on an app repository, malware
authors use techniques like repackaging. During repack-
aging, an existing legitimate app is reverse engineered and
malicious code is inserted. Te modifed app is then
repackaged and uploaded onto the app repository. Malware
authors also use obfuscation, antidynamic techniques, up-
date attacks, mimicry, and refection attacks to evade de-
tection. During an update attack, malware is embedded into
a legitimate app when an update is pushed. In obfuscation,
sensitive methods or APIs are disguised in order to thwart
analysis of the malware. To frustrate dynamic analysis,
antidynamic techniques (that avoid executing malicious
actions in the presence of a virtual or emulated environ-
ment) are used.

Te explosive increase in malware targeting Android
devices has made it imperative for researchers to automate
the process of malware detection by using machine learning
(ML) models.Tese models are trained on datasets compiled
from output generated by the static or dynamic analysis of
malicious and benign apps.Temodels trained with datasets
compiled using only static analysis techniques are not ef-
fective against behaviour-modifyingmalware [6]. If dynamic
analysis techniques are used, they should be carried out on
a real device. Using an emulated environment instead of
a real environment would result in a dataset that is limited
because malware that use antidynamic techniques would not
execute their malicious intentions in an emulated
environment [7].

Another complication is the impact of changes in the
Android platform and apps on malware detection. Te
Android ecosystem has evolved to add new functionality,
maintain compatibility with new hardware and devices, and
to incorporate improved security features. Te negative
consequences of such rapid transformation are the emer-
gence of several forward and backward compatibility
problems.Te diferences in behaviour and characteristics of
Android apps across diferent versions and years have been
explored in [8]. Tese frequent changes have a signifcant
impact on malware detectors because of a phenomenon
known as concept drift [9]. Te impact, in terms of per-
formance, was investigated in detail in [10]. Te researchers
trained fve state-of-the-art ML-based Android malware
detectors and a dataset with samples for one year and tested
them on samples for the following year. Teir results show

that the performance of all detectors deteriorated signif-
cantly (30%–90% in some cases) within the span of that
single year.

Te performance of malware detection models is also
afected by the evolution of Android malware. A malware
detector can detect malware from diferent periods only if it
is trained on a dataset that contains samples that span across
as many years as possible. While some datasets have in-
creased their size (to a few hundred thousand samples), the
majority have failed to even include a time frame for their
malware samples. One unique dataset that includes a time
frame for 17,697 malware samples from 2010 to 2019 is
introduced in [11]. However, this dataset has two important
limitations. It only includes certain types of dynamic fea-
tures (run-time traces of system calls) and it has very few
samples for some years [11].

It is clear that an efective and efcient malware detector
requires the hybrid analysis of samples and the compilation
of a balanced dataset with samples from the largest possible
time span. Also, the dynamic features should be captured by
executing the sample on a real device instead of an emulator
or virtual environment. Te Android malware detector
developed in this research is trained on a very compre-
hensive dataset that meets all of the abovementioned re-
quirements. Specifcally, it is trained on a subset of the
KronoDroid [12] dataset for the malware detection and
category classifcation.

Te main contributions of this paper are:

(1) Te creation of an enhanced subset of the Krono-
Droid dataset. Tis dataset is improved by adding
a category label for each malware sample. Te
KronoDroid dataset was selected because

(i) It is recent (2021)
(ii) It contains malware samples spanning almost all

the years of the Android platform (2008–2020)
(iii) It has both static and dynamic features. Also, the

dynamic features were captured by running the
samples on a real device.

Tese characteristics make our model efective for
detection of evolving and antidynamic malware.

(2) An efective and efcient supervised ML model for
malware detection and category classifcation.
Initially, four supervised ML models were trained
using the enhanced subset of the KronoDroid dataset
mentioned in contribution 1. Te performance of
these models was evaluated and the model with the
best performance was selected. To minimize com-
putational cost, only traditional ML algorithms were
used and only the top 50 features were selected for
training.

Te rest of this paper is organised as follows. Section 2
discusses related work and Section 3 presents the research
methodology. In Section 4, the results are analysed and
discussed. A comparison of the developed malware detector
with existing malware detectors is also included in this
section. Section 5 provides the conclusion and future work.

2 Security and Communication Networks

2. Related Work

2.1. Approaches toMalwareDetection. Tere are three main
approaches for malware analysis. Te static approach
extracts features such as permissions, intent flters, strings,
services, activities, dalvik opcodes, and metadata from an
app without executing it. Te dynamic approach extracts
features from an app by running it in an emulated en-
vironment or on a real device. Examples of features
extracted during dynamic analysis include system calls,
binders calls, API calls, network usage, and memory usage.
Te hybrid approach combines the use of static and dy-
namic analysis.

After analysis, the collected features are compiled into
a dataset that is used to train and test aMLmodel.Te rest of
this section reviews existing research on ML-based malware
detection and category classifcation.

2.2. Review of Static Analysis Techniques for Malware
Detection. In [13], a model based on the Cat-Boost algo-
rithm was developed for malware detection and family
classifcation using static features (permissions and intents).
For benign apps, the Drebin dataset was used, but for
malicious apps, a new dataset was compiled. Te developed
model had an accuracy of 97.40% for malware detection and
97.38% for family classifcation. Te limitations of this
model include its failure to detect some advanced evolving
malware and its low detection rate for the Linux-Looter
ransomware family.

In [14], a malware detection and categorisation model
based on deep image learning was proposed. Tis model
used static features such as activities, services, broadcast
receivers/providers, intent actions, permissions, and met-
adata. For feature selection, the ExtraTree classifer was used.
Te main contribution of this work was the generation of
a large dataset (i.e., CCS-CICAndMal2020) with 200,000
malicious apps from 12 malware categories and 191 malware
families. Te reported results include a detection accuracy of
93%. However, like [13], this work also relied on static
features only.

In [15], pairs of permissions were extracted from the
manifest fle of malicious and benign apps and used to
construct a graph. Te graph was used to train a ML
model. Te reported detection accuracy was 95.44% but
any malware that did not utilise permissions was not
detected.

In [16], permissions and APIs (along with their re-
lationships) were extracted for around 30,000 benign apps
and 15,000 malicious apps. Te resulting dataset, though
comprehensive, was imbalanced and limited to malware
until 2015.

A probabilistic discriminative model was developed in
[17] to detect malicious samples based on decompiled source
code and permission data. Te dataset contained almost
11,000 samples (9% malicious and 91% benign), some of
which were very old. Te downside of this model was its
inability to detect malware that used byte code encryption or
obfuscation.

2.3. Review of Dynamic Analysis Techniques for Malware
Detection. In [7], a dynamic analysis technique called
Entropylyzer was developed. Tis work analysed the be-
haviour of malware samples by running them in an emu-
lator. Malware from 12 categories and 191 families was
analysed using six classes of features, and the extracted data
were used to compile the CCS-CICAndMal2020 dataset.
Shannon’s entropy was employed for feature ranking and
diferent ML models were trained. Te overall accuracy
reported for malware category classifcation and family
identifcation was high. However, it is important to note that
during dynamic analysis, some malware failed to run be-
cause it detected the presences of a virtual environment.Tis
limitation can only be overcome if dynamic analysis is
carried out on a real device.

Similarly, the authors in [18] also relied on an emulated
dynamic malware analysis platform and used multiple types
of features (e.g., system calls, binder calls, and composite
behaviours). Te proposed semisupervised deep neural
network approach for malware category classifcation also
achieved good results. Like [7], they state that some malware
samples did not execute after detecting the presence of an
emulated environment.

Droidbox [19], DroidMat [20], and AMAT [21] were
developed after conducting dynamic analysis in an emulator
or sandbox. Te feature types obtained included permis-
sions, intents, and API calls. Despite the excellent perfor-
mance of these models, these studies failed to analyse
malware with antiemulation mechanisms. In other words,
their dataset did not include all the features that represent
the true nature of the sample. It should be noted that the
ability to detect the use of an emulator is not limited to
malware. Other apps (e.g., Telephony Manager) are also able
to detect the presence of an emulator using Android API like
methodTelephonyManager.getDeviceId() [22].

2.4. Review of Hybrid Analysis Techniques for Malware
Detection. Te need to conduct dynamic analysis on a real
device is also highlighted in the few malware detection
studies that adopt hybrid analysis approach. In [23],
a malware classifcation technique based on pseudolabel
stacking auto encoders is proposed. Malware, from 5 cat-
egories, was executed in a virtual machine introspection
(VMI)-based system. Te proposed model detected and
classifed malware with an accuracy of 98.28%. Although this
study uses an emulated environment, it provides evidence
that the hybrid analysis approach provides higher accuracy
than only static analysis or only dynamic analysis. In
[24, 25], the use of hybrid analysis is further supported by its
use for efective identifcation of resource misuse and
malware detection.

2.5. Impact of Changes in Android Ecosystem on Malware
Detection. Te evolution of the Android platform and its
app structure has been explored in several studies along with
its impact on the detection of Android malware. Some of
these studies also investigate how the evolution of Android
malware afects the performance of malware detectors.

Security and Communication Networks 3

In [26], a toolkit was used to mine diferent app plat-
forms and user characteristics with the aim of studying the
health and sustainable security of diferent apps. Even
though this study provides signifcant insight into the
evolution of the Android platform, the approach used has its
limitations in terms of practicality and feasibility. It requires
continuous data mining, crawling, and autoupdating to
achieve durable results.

In [27], the static and dynamic characterization of
Android apps developed between the years 2010–2017 was
carried out. Te authors present important fndings along
with recommendations related to app structure, behaviour,
and evolution. However, because the researchers only an-
alyse benign apps, the recommendations cannot be gener-
alized to malicious apps because malicious apps are very
diferent from benign apps in terms of their metrics and
behaviour.

In [28], a self-evolving detection solution, called Droi-
devolver, was developed (using a dataset consisting of API
calls). Te dataset used consists of 34,722 malicious samples
from 2011 to 2016 and the fnal model achieved a F-measure
of 95.27%. Tis score decreased by 1.06% per year (on av-
erage) until it reached 89.97% in 2016. Because Droidevolver
is based on static analysis, it inherits the limitations of this
approach. Furthermore, the most recent samples in its
dataset are more than 6 years old.

In [29], the evolution of malware was explored using
static analysis of code fragments (via a technique known as
diferential analysis). Most importantly, this work revealed
alterations in several malware characteristics over time in
order to evade detection. Because this study is based solely
on static analysis, it inherits the limitations of this approach.
It highlights the importance of including dynamic analysis
and using carefully crafting feature engineering processes on
a balanced and recent dataset to efectively detect evolving
malware.

In [30], the dynamic evolutionary behaviour of benign
and malicious Android apps on code-level execution was
evaluated. Te dataset used consists of 15,451 benign
samples and 15,183 malware samples from 2010 to 2017.Te
main contribution of this research is the uncovering of
several important metrics that can help diferentiate between
benign and malicious apps. Tese metrics could be used to
develop a durable malware detection solution but its ef-
fectiveness depends on the stability of certain patterns in
diferent versions of evolving malware. Malware patterns
that are not represented by these metrics will not be detected
by such a malware detection solution. In addition, the so-
lution will be subject to the limitation of dynamic analysis
being conducted in an emulated environment.

To summarise, it is clear that hybrid analysis is the most
promising approach for ML-based malware detection and
category classifcation. It is also evident that dynamic
analysis should be conducted on a real device to capture
features frommalware capable of modify its behaviour in the
presence of an emulator. Furthermore, to be efective, a ML
model should be trained using a dataset that includes
malware that dates back to the start of the Android platform.
Tis is important for the detection of malware that evolves

over time (referred to as concept drift). Formally, concept
drift refers to the change in relationship between the input
variable(s) and the target variable over time.Tis change has
a negative impact on the accuracy of a trained model (as
highlighted by Droidevolver), and because malware evolves
very rapidly, it is important for a dataset to be extensive and
to include both old and new samples. It is for these reasons
that the malware detection and category classifcation so-
lution developed in this paper uses the recent, compre-
hensive, and hybrid analysis-based KronoDroid dataset.

3. Methodology

Te steps in the methodology are presented in Figure 1.

3.1. Acquisition of Dataset. Android apps use a variety of
features or attributes for performing diferent actions. It is
crucial to select the right set of features and to this end
several Android datasets have been published.Tese datasets
difer in the number of samples, the type of attributes, and
the date of malware publication and collection. In this re-
search, we use a subset of the KronoDroid dataset published
in [31]. Tis dataset consists of 41,382 malicious apps and
36,755 benign apps. It also includes samples from the almost
entire history of Android, starting from 2008 and ending in
2020. Tis is the frst hybrid dataset to take the time variable
into account in such detail. A total of 200 static features and
289 dynamic features are extracted by running each app on
a real device. Tese features are mostly numeric (e.g.,
number of times a system call is invoked by an app or the
number of permissions requested by an app). Also, each
sample in the dataset is given two labels. Te frst label
identifes the sample as either benign or malware and is
relevant for malware detection.

Because there are only two possible classes, malware
detection is a binary classifcation task. Te second label
refers to the name of the malware family. Because there are
more than two possible malware families, detecting the
family is a multiclass classifcation task. Similarly, detecting
the category to which a malicious app belongs is also
a multiclass classifcation task. It should be noted that the
original KronoDroid dataset does not contain a label for the
category of malware.

3.2. Data Preprocessing. In the exploratory data analysis
(EDA) step, the data are examined to understand its
structure and important attributes. We used Python libraries
to determine the weight of diferent features and to check for
missing values, null values, and outliers. Te KronoDroid
dataset includes a few non-numerical features such as hash
values and date of publication.Tese non-numerical features
have informative value and do not have any impact on the
output. Tis was verifed through feature selection as
explained in the next section.

In the Data Cleaning and Data Integration stage, the
Pandas data frame was used to remove (e.g., non-numerical
features), merge, and fnally generate a clean version of the
dataset [32].

4 Security and Communication Networks

In the Data Labelling step, each malicious sample was
labelled with the name of its malware category. Te malware
category label was obtained from VirusTotal [33], F-Secure
[34], and FortiGuard [35] online repositories. Any dis-
crepancy (e.g., malware labelled as Riskware by one re-
pository and Adware by another repository) was resolved by
cross-checking the label given to the sample in other
datasets. If a sample is not found in any dataset, it was given
the label assigned to it by themost number of repositories. In
this way, up to 70% of the samples were labelled. Te
remaining 30% of the samples were not labelled and re-
moved from the dataset. Teir labelling is left for future
work.Te fnal modifed and improved version of the dataset
has been made publicly available on Github [36] for the
research community. Table 1 presents the number of mal-
ware samples in each of the 14 categories (+1 unknown/
blank category).

In the fnal Data Normalization/Scaling stage, the
MinMax scaling technique was applied [37]. Tis technique
is known to provide good results [38].

3.3. Feature Selection. Features selection techniques can be
divided into the following three main types: flter
methods, wrapper methods, and embedded methods.
Wrapper and embedded methods are computationally
expensive and not recommended for large dataset with
wide dimensions [39]. From the diferent flter methods
available, the ExtraTree classifer and the mutual in-
formation algorithm were selected because of their ef-
fectiveness and relevance for classifcation tasks [14, 40].

Extra Trees builds multiple decision trees in parallel,
where each tree is constructed using a random subset of
the features and data points. During the tree construction
process, it randomly selects feature splits, making it less
prone to overftting. By evaluating the importance of
features across multiple trees, Extra Trees implicitly ranks
the features based on their contribution to reducing
impurity (Gini impurity for classifcation) and making
accurate predictions. Mutual information is used to
quantify the relationship between individual features
(independent variables) and the target variable (de-
pendent variable). It helps assess the relevance of each
feature in predicting the target variable.

Data Acquisition
(Malware & Benign)

Data Preprocessing/Feature Engineering

Exploratory Data
Analysis (EDA)

Data Cleaning
Data Integration Data Labeling Data Scaling/

Normalization

Feature Selection

Model Training

Model Evaluation
& Tuning

Figure 1: Methodology used to develop the malware detection model.

Table 1: Number of samples in each malware category.

Malware category Number of samples
1 Adware 11185
2 Trojan 6690
3 Trojan-SMS 6475
4 Riskware 5340
5 Trojan-spy 4281
6 Ransomware 1964
7 Trojan-banker 1681
8 Backdoor 1095
9 Scareware 1036
10 PUA 657
11 File-infector 436
12 Spyware 260
13 Trojan-dropper 62
14 Trojan/Riskware 54
15 Blank-category 166

Security and Communication Networks 5

We tried many diferent features sets starting from top 5
features, top 10 features, and top 20 features but fnally, 12
diferent feature sets with the best classifcation results were
selected (see Table 2).

3.4. Model Training. We selected the following four super-
vised ML algorithms for this study: random forest (RF),
decision tree (DT), K-nearest neighbour (KNN), and support
vector machine (SVM).Te dataset was split into two parts as
follows: 70% for training and 30% for testing. Each algorithm
was trained on each of the 12 feature set shown in Table 2.

3.5. Model Evaluation and Tuning. In this step, the perfor-
mance of each model was evaluated using the metrics ac-
curacy, precision, F1-score, and recall. Te results are
discussed in the next section.

4. Results

4.1. Initial Results. For malware detection, the accuracy of
each model is shown in Table 3. Top50 MinMax ExtraTree
classifer has the highest accuracy (97.98%) using RF. For
malware category classifcation, the accuracy of each model is
shown in Table 4. Again, Top50 MinMax ExtraTree classifer
has the highest accuracy (87.24%) using RF. In both tables, the
values in bold are the highest values for each model. Tese
Top50 features include dynamic features (e.g., system calls)
and static features (e.g., permission and intents).

Te next highest accuracy for malware detection was
obtained using Top100 MinMax ExtraTree classifer feature
set and RF. For malware category classifcation, it was Top50
ExtraTree classifer and RF.

From Tables 3 and 4, we can also note that features sets
with top 30 have the lowest accuracy. Features sets with top
100 have higher accuracy than those with top 30 but lower
accuracy than feature sets with top 50.Tis is because the top
30 feature sets are missing some important features that have
an impact on the output. Tese features are included in the
top 50 features set which is the reason for their higher
accuracy.

When top 100 feature sets are used (instead of the top 50
feature set), some features that have a low impact on the
output are included. Tese features add noise and com-
plexity to the classifer thereby reducing the accuracy. Te
heatmap in Figure 2 shows the importance of some top
features for malware detection.

4.2. Model Tuning. Te results of the RF model can be
improved using hyperparameter tuning. Hyperparameters
are classifer-specifc parameters that control the learning
rate during training and are set before a model is trained.
Initially, default parameters were used. Ten, hyper-
parameter tuning was carried out using GridSearchCV [41].
Tis is a Python library which facilitates the process of
selecting the best parameters for a ML algorithm. Tere are
also other techniques like random search but GridSearchCV

Table 2: 12 generated feature sets.

Number of features Feature selection algorithm
1 Top30 ExtraTree classifer
2 Top30 MinMax Normalization and ExtraTree classifer
3 Top50 ExtraTree classifer
4 Top50 MinMax Normalization and ExtraTree classifer
5 Top100 ExtraTree classifer
6 Top100 MinMax Normalization and ExtraTree classifer
7 Top30 Mutual information
8 Top30 MinMax Normalization and mutual information
9 Top50 Mutual information
10 Top50 MinMax Normalization and mutual information
11 Top100 Mutual information
12 Top100 MinMax Normalization and mutual information

Table 3: Accuracy of malware detection.

Features RF (%) DT (%) KNN (%) SVM (%)
Top30 ExtraTree classifer 95.99 96.82 91.53 84.28
Top30 mutual information 96.57 94.88 90.47 82.03
Top30 MinMax ExtraTree classifer 96.33 95.58 95.62 95.25
Top30 MinMax mutual information 96.63 94.94 95.28 91.06
Top50 ExtraTree classifer 97.72 95.88 86.66 68.66
Top50 mutual information 96.85 95.14 88.97 73.08
Top50 MinMax ExtraTree classifer 97.98 96.44 96.78 95.26
Top50 MinMax mutual information 96.84 95.21 95.66 92.03
Top100 ExtraTree classifer 97.72 95.58 89.90 69.17
Top100 mutual information 97.51 81.78 89.66 74.14
Top100 MinMax ExtraTree classifer 97.73 96.10 96.85 95.47
Top100 MinMax mutual information 97.55 82.55 96.77 95.54
Bold values are highest values/results of each classifer.

6 Security and Communication Networks

implements the best technique for obtaining optimal
hyperparameter values. Te best hyperparameters selected
by GridSearchCV for the four models are as follows:

(1) RF: (bootstrap �True, max_depth � 300, max_
features � “log2”)

(2) DT: (criterion� “gini,” max_depth� 19)

(3) KNN: (n_neighbors� 1)
(4) SVM: (C� 20, kernel� “rbf”)

Te results for malware detection and category classi-
fcation after hyperparameter tuning are summarised in
Table 5. It can be clearly seen that RF still provides the best
performance for both tasks. Its values are highlighted in bold

Table 4: Accuracy of malware category classifcation.

Features RF (%) DT (%) KNN (%) SVM (%)
Top30 ExtraTree classifer 85.13 82.55 77.47 43.53
Top30 mutual information 83.89 77.87 71.92 40.93
Top30 MinMax ExtraTree classifer 85.67 83.48 82.95 79.35
Top30 MinMax mutual information 84.01 77.78 79.75 60.53
Top50 ExtraTree classifer 87.06 81.78 68.28 39.91
Top50 mutual information 85.71 79.64 72.62 41.19
Top50 MinMax ExtraTree classifer 87.24 82.47 84.29 81.10
Top50 MinMax mutual information 85.70 80.35 81.69 61.48
Top100 ExtraTree classifer 86.99 81.78 72.36 41.18
Top100 mutual information 86.54 81.49 72.40 40.71
Top100 MinMax ExtraTree classifer 86.79 82.55 84.72 80.78
Top100 MinMax mutual information 86.81 82.35 83.70 77.30
Bold values are highest values/results of each classifer.

399-

420-

298-

406-

251-

449-

457-

408-

401-

365-

435-

444-

292-

26-

296-

23-

456-

455-

461-

213-

M

399 420 298 406 251 449 457 408 401 365 435 444 292 26 296 23 456 455 461 213 M

Figure 2: Heatmap of top 20 features.

Security and Communication Networks 7

text. Specifcally, the accuracy of malware detection has
increased to 98.03% and the accuracy of malware category
classifcation has increased to 87.56%. Te confusion matrix
for RF is presented in Figure 3. Te false positive rate and
false negative rate are less than 0.1%.

4.3. Validation. Te abovementioned models are validated
using k-fold cross validation (k � 5) for malware detection
and malware category classifcation. Tis validation process
splits the dataset into 5 folds. In each iteration, k − 1 folds of
the dataset are used for training and 1 fold is used for testing.
Tis technique of training the model on diferent chunks of
dataset and testing it on remaining chunk is carried out to
validate the accurate performance of the model by avoiding
model overftting and underftting. Te results are sum-
marised in Table 6 and clearly demonstrate the validity of the
models.

5. Discussion

Multiple ML and DL solutions have been proposed and they
are briefy discussed here for the purpose of comparison.Te
comparison is also summarised in Table 7 and the values in
bold emphasizes aspects of this research that are important
in comparison toexisting research.

Te selection of a high-quality dataset is essential for the
efectiveness of any proposed solution, especially for han-
dling concept drift. Sustainable performance (across years)
of fve diferent ML-based malware detectors was evaluated
in [47]. Te results show a drastic decrease in the perfor-
mance by all malware detectors including DroidSeive [45].
DroidSeive had good detection and family classifcation
results (99.82% and 99.26%, respectively) but after its 7-year
evaluation period, it had the lowest sustainable performance
(with an accuracy of 34.59%).

Te popularity of emulators for dynamic analysis is also
a notable trend and more than half of the studies shown in
Table 7 use an emulator. In [46], a dynamic malware
classifcation technique called Droidcats is developed. Te
dynamic features were captured using an emulator. As
pointed out by several studies, antidynamic malware can
detect an emulated environment and chose not to execute
malicious behaviours or intents. Terefore, any dataset
compiled using an emulator will not have a comprehensive
profle of such sophisticated malware. Despite this

limitation, their technique achieved good results with an
accuracy of 97.4% for malware detection and 97.8% for
malware categorization. Another limitation of this research
is that the malware samples used are more than 5 years old
(samples date from 2009 to 2017).

DL-Droid [44] is one of the few models trained using
data extracted from dynamic analysis carried out on a real
device. Te dataset used in this research consists of 30,000
samples and the developed DL model reported an accuracy
of 98.5% for malware detection.

Interestingly, their list of top 20 hybrid features contains
features that also are part of our top 50 feature set, e.g.,
RECEIVE_SMS, RECEIVE_BOOT_COMPLETED,
SEND_SMS, and READ_PHONE_STATE. Tis shows that
hybrid features are ideal for malware detection and despite
malware evolution they persist.

One limitation of this research is that it does not take
into account the timeframe of malware samples and is,
therefore, not efective for detection of malware that evolves
its behaviour with time.

Feature selection also plays a key role in training ma-
chine learning classifers. In [48], the developed malware
detectionmodel achieved an accuracy of 96.3%when trained
using only 27 features (permissions) selected by a regression-

Table 5: Results after hyperparameter tuning.

Task Metric RF (%) DT (%) KNN (%) SVM (%)

Malware detection

Accuracy 98.03 96.60 97.16 96.39
Precision 98.51 97.12 97.24 97.65
Recall 97.73 96.45 97.44 95.54

F1-score 98.12 96.78 97.34 96.58

Malware category classifcation

Accuracy 87.56 83.09 84.92 84.78
Precision 90.14 74.14 77.27 78.40
Recall 74.20 70.87 73.67 71.34

F1-score 81.39 72.47 75.20 74.70
Bold values are highest results/values of Random Forest classifer/detector.

10,831 183

Tr
ue

 L
ab

el

281 12,147

Predicted Label

TPR: [0.983, 0.9773]
TNR: [0.977, 0.983]
FPR: [0.0226, 0.017]
FNR: [0.017, 0.226]

0| 1|

0-

1-

Figure 3: Confusion matrix of RF binary detection fnal results.

Table 6: Results for 5-fold cross validation.

RF (%) DT (%) KNN (%) SVM (%)
Malware detection 97.97 96.60 97.05 96.42
Malware category
classifcation 87.20 82.99 84.78 84.25

8 Security and Communication Networks

Ta
bl

e
7:

Re
la
te
d
w
or
k
on

m
al
w
ar
e
de
te
ct
io
n
an
d
ca
te
go
ry

cl
as
sif

ca
tio

n
us
in
g
di
fe
re
nt

da
ta
se
ts
.

So
ur
ce

A
pp

ro
ac
h
an
d
ye
ar

N
am

e/
Ye

ar
of

da
ta
se
t

Ti
m
e

fr
am

e
Fe
at
ur
es

an
d
ap
pr
oa
ch

D
yn

am
ic

M
al
w
ar
e

de
te
ct
io
n

C
at
eg
or
y
cl
as
sif

ca
tio

n

[4
2]

Se
m
isu

pe
rv
ise

d
le
ar
ni
ng

(2
01
8)

20
16

N
/A

H
yb
ri
d
fe
at
ur
e
se
le
ct
io
n:

ag
gr
eg
at
e

in
fo
rm

at
io
n

Em
ul
at
or

A
cc
ur
ac
y:

91
.2
3%

N
/A

(d
yn

am
ic

ac
cu
ra
cy
:

80
.3
%
)

[3
8]

D
ee
p
ar
tif

ci
al

N
eu
ra
ln

et
w
or
k

(2
02
1)

C
IC

A
N
D
M
A
L2

01
9

N
/A

H
yb
ri
d
fe
at
ur
e
se
le
ct
io
n:

N
/A

Re
al

de
vi
ce

St
at
ic

ac
cu
ra
cy
:

93
.4
0%

4
ca
te
go
ri
es

(s
ta
tic

ac
cu
ra
cy
:

92
.5
%
)
(d
yn

am
ic

ac
cu
ra
cy
:

80
.3
%
)

[4
3]

M
ac
hi
ne

le
ar
ni
ng

(2
01
8)

U
pd

ro
id

20
14
–2

01
8

H
yb
ri
d
fe
at
ur
e
se
le
ct
io
n:

N
/A

Em
ul
at
or

D
et
ec
tio

n
as

ca
te
go
ri
za
tio

n
A
cc
ur
ac
y:

96
.3
7%

[4
4]

D
ee
p
le
ar
ni
ng

(2
02
0)

D
L-
dr
io
d
da
ta
se
t2

01
9

N
/A

H
yb
ri
d
Fe
at
ur
e
ra
nk

in
g:

In
fo
G
ai
n

Re
al

de
vi
ce

A
cc
ur
ac
y:

98
.5
%

N
/A

[1
8]

D
ee
p
ne
ur
al

ne
tw
or
k
w
ith

ps
eu
do

la
be
l(
20
20
)

C
IC

M
A
LD

ro
id
20
20

20
17
-2
01
8

D
yn

am
ic

fe
at
ur
e
se
le
ct
io
n:

N
/A

Em
ul
at
or

D
et
ec
tio

n
as

ca
te
go
ri
za
tio

n
4
ca
te
go
ri
es

(F
1-
sc
or
e:

97
.8
%
)

[7
]

M
ac
hi
ne

le
ar
ni
ng

(2
02
1)

C
C
S-
C
IC

A
nd

M
al
20
20

N
/A

D
yn

am
ic

fe
at
ur
e
se
le
ct
io
n:

N
/A

Em
ul
at
or

D
et
ec
tio

n
as

ca
te
go
ri
za
tio

n
12

ca
te
go
ri
es

(p
re
ci
sio

n:
98
.4
%
)

[4
5]

M
ac
hi
ne

le
ar
ni
ng

(2
01
7)

D
re
bi
n,
M
ca
fe
e
Pr
ag
ua
rd

N
/A

St
at
ic

fe
at
ur
e
se
le
ct
io
n:

m
ea
n

de
cr
ea
se

im
pu

ri
ty

(M
D
I)

N
/A

99
.8
2%

99
.2
6%

in
to

fa
m
ili
es

[4
6]

M
ac
hi
ne

le
ar
ni
ng

(2
01
8)

D
re
bi
n,

G
en
om

e
V
ir
us
Sh

ar
e

20
09
–2

01
7

D
yn

am
ic

fe
at
ur
e
se
le
ct
io
n:

N
/A

Em
ul
at
or

97
.4
%

97
.8
%

in
to

fa
m
ili
es

[4
7]

M
ac
hi
ne

le
ar
ni
ng

(2
02
0)

V
ir
us
Sh

ar
e
A
nd

ro
Zo

o
20
10
–2

01
7

D
yn

am
ic

fe
at
ur
e
im

po
rt
an
ce
:

To
p1

00
Em

ul
at
or

F1
:9

2.
88
%

(s
am

e
ye
ar
)

F1
:7
1.
81
%

(a
cr
os
s

ye
ar
)

N
/A

[4
8]

M
ac
hi
ne

le
ar
ni
ng

(2
02
1)

A
PK

Pu
re
,r
an
do

m
da
ta
se
t

N
/A

St
at
ic
,f
ea
tu
re

se
le
ct
io
n:

LR
ba
se
d

N
/A

A
cc
ur
ac
y:

96
.3
%

N
/A

[4
9]

M
ac
hi
ne

le
ar
ni
ng

(2
02
1)

A
PK

Pu
re
,V

ir
us
Sh

ar
e

N
/A

St
at
ic
,f
ea
tu
re
se
le
ct
io
n:
fl
te
r-
ba
se
d

N
/A

F-
m
ea
su
re
:9

5%
N
/A

[5
0]

M
ac
hi
ne

le
ar
ni
ng

(2
02
2)

M
en
de
le
y
re
po

sit
or
y

N
/A

D
yn

am
ic
,f
ea
tu
re
s
se
le
ct
io
n:

em
be
dd

ed
BF

E
Em

ul
at
or

F-
m
ea
su
re
:9

9%
N
/A

[5
1]

M
ac
hi
ne

le
ar
ni
ng

(2
02
2)

M
ul
tip

le
re
po

sit
or
ie
s

N
/A

D
yn

am
ic
,f
ea
tu
re

se
le
ct
io
n:

ro
ug
h

se
ta

na
ly
sis

(R
SA

)
an
d
pr
in
ci
pa
l

co
m
po

ne
nt

an
al
ys
is
(P
C
A
)

Em
ul
at
or

D
et
ec
tio

n
ra
te
:

98
.8
%

N
/A

[5
2]

M
ac
hi
ne

le
ar
ni
ng

(2
02
3)

A
nd

ro
Zo

o
an
d
D
re
bi
n

N
/A

St
at
ic
,f
ea
tu
re

se
le
ct
io
n:

w
ra
pp

er
ba
se
d
(D

D
Q
N
)

N
/A

D
et
ec
tio

n
ra
te
:

95
.6
%

N
/A

[2
3]

D
ee
p
ne
ur
al

ne
tw
or
k
w
ith

ps
eu
do

la
be
ls
ta
ck

au
to

en
co
de
r

(2
02
2)

C
IC

M
A
LD

ro
id
20
20

20
17
-2
01
8

H
yb
ri
d
fe
at
ur
e
se
le
ct
io
n:

N
/A

Em
ul
at
or

A
cc
ur
ac
y:

98
.2
8%

5
ca
te
go
ri
es

(p
re
ci
sio

n:
98
.4
%
)

[5
3]

En
se
m
bl
e
(r
an
do

m
fo
re
st
)

K
ro
no

D
ro
id

20
08
–2

02
0

H
yb
ri
d,

fe
at
ur
es

se
le
ct
io
n:

C
hi
-s
qu

ar
ed

Re
al

an
d

em
ul
at
ed

de
vi
ce

A
cc
ur
ac
y:

95
%

Pr
ec
isi
on

:9
5%

N
/A

O
ur

M
ac
hi
ne

le
ar
ni
ng

(r
an
do

m
fo
re
st
)

Su
bs
et

of
20
20

K
ro
no

D
ro
id

20
08

–2
02

0
H
yb
ri
d,

fl
te
r-
ba
se
d
fe
at
ur
es

se
le
ct
io
n

R
ea
ld

ev
ic
e

A
cc
ur
ac
y:

98
.0
3%

15
ca
te
go
ri
es

(a
cc
ur
ac
y:

87
.6
%
)

T
e
va
lu
es

in
bo

ld
em

ph
as
iz
es

as
pe
ct
s
of

th
is
re
se
ar
ch

th
at

ar
e
im

po
rt
an
t
in

co
m
pa
ri
so
n
to

ex
ist
in
g
re
se
ar
ch
.

Security and Communication Networks 9

based feature selection technique. Te Android malware
detection solution developed by [49] achieved a F-measure
of 95% using random forest classifer using only 20 features
(permissions). Tese features were selected using a flter-
based feature selection technique. In another study [50],
BFEDroid was proposed. Te researchers attained a F-
measure of 99% using a new embedded feature selection-
based detection technique called embedded BFEDroid and
LSSVM (with radial basis function kernel and principal
component analysis). Teir solution used a dataset compiled
from the Mendeley repository that consists of 5,000 subsets.
It utilizes dynamic features such as permissions and API
calls. In a similar study, FSDroid, a supervised machine
learning malware detection model was developed by
implementing LSSVM (least square support vector machine)
with RBF (radial basis kernel function) [51]. Te features
were extracted by performing dynamic analysis on an em-
ulator. Tis model achieved 98.8% detection rate using the
RSA (rough set analysis) features subset selection technique
and PCA (principal component analysis) for feature rank-
ing. Lastly, in [52], a supervised machine learning malware
detection model (called DroidRL) that uses a wrapper-based
feature selectionmethod was developed.Temodel achieved
95.6% accuracy for malware detection using the random
forest classifer and a reduced subset of only 24 features from
a dataset of 5,000 benign and 5,560 malware samples. None
of these fve studies use hybrid approach, which makes it
difcult to compare their detection rate with ours. Te only
new study to use hybrid approach is [53]. It uses random
forest (with chi-squared feature selection-based method) to
achieved the best detection rate of 95%. Overall, these studies
demonstrate the signifcant role of using suitable feature
selection techniques in malware detection models.

Te authors conclude that the following are essential
requirements for the development of an efective ML-based
malware detector [44]:

(i) A balanced dataset (with old and new samples),

(ii) Dynamic analysis on real devices, and

(iii) Carefully crafted features sets.

A similar conclusion is reached in [29]. To meet
abovementioned requirements, the model developed in this
paper uses the KronoDroid [31] dataset. Tis dataset is al-
most balanced (41,382 malware samples and 36,735 benign
samples) and contains both dynamic and static features. Te
dynamic features were extracted using dynamic analysis
conducted on both an emulated setup and a real device. Te
use of real devices means that antidynamic malware was
successfully analysed.Te dataset also includes samples from
2008 to 2020, making it efective against malware that
changes its behaviour over time (concept drift). Krono-
Droid’s hybrid features and the large time span of its samples
make it efective for the detection of evolving malware and
require minimal retraining. Furthermore, using only 50
hybrid features lowers the computational cost of retraining
the model.

To the best of our knowledge, no other malware de-
tection solution has combined and achieved the following:

(i) Te ability to detect malware that can changes its
behaviour when run in an emulated environment

(ii) Handling concept drift for the detection of malware
that evolves with time

(iii) Accuracy of 98.03% for malware detection and
87.56% for malware category classifcation.

6. Conclusion

In this research, a malware detection and category classi-
fcation model for advanced and evolving Android malware
is developed. Te model uses supervised ML and is trained
using an enhanced subset of the KronoDroid dataset. Te
KronoDroid dataset includes malware samples from the
entire history of Android and is ideal for a model that can
handle concept drift. It also contains features extracted from
both the static and dynamic analysis of malware. In addition,
dynamic analysis is conducted by running the malware on
a real device.Te trained model is, therefore, efective for the
detection of antidynamic malware capable of bypassing or
modifying its behaviour in an emulated environment.

One shortcoming of the KronoDroid dataset is that it
does not include labels for malware categories. We added
malware category labels to a subset of this dataset with the
help of multiple online antimalware repositories. Tis en-
hanced dataset was used to train random forest (RF), de-
cision tree (DT), K-nearest neighbour (KNN), and support
vector machine (SVM) classifers. Also, the ExtraTree
classifer and mutual information algorithms were used for
feature selection.Te performance of the trained models was
evaluated using metrics such as accuracy, precision, F1-
score, and recall.

Te results show that the highest accuracy was obtained
using RF (with Top50 MinMax features selected using the
ExtraTree classifer) for both malware detection (98.03%)
and malware category classifcation (87.56%). MinMax
scaling selects the features which have highest impact on
output. Initially, multiple models were trained using dif-
ferent subsets of top features such as top 30, top 50, and top
100. Because top 50 provided the best results, it was validated
using 5-fold cross validation. Te selection of optimal
number of top features not only enhanced the results but
also reduced the computational overhead. Compared to
existing solutions, this makes our proposed model more
suitable for adoption in a production environment.

To summarise, the main contributions of this paper are
as follows:

(i) A subset of the KronoDroid dataset enhanced by
adding malware category labels.

(ii) An efective supervised ML model (RF with Top50
MinMax ExtraTree classifer features) with 98.03%
accuracy for malware detection and 87.56% accu-
racy for malware category classifcation (for 15
categories).

(iii) A comparison with related work that shows the
closest work to our RF model [38] has 4.63% lower
accuracy for malware detection. For malware

10 Security and Communication Networks

category classifcation, it only includes four cate-
gories compared to our 15 categories. Teir model
achieves 4.94% higher accuracy for static detection
but 7.26% lower accuracy for dynamic detection.
Te comparison also shows that DL-based solu-
tions like [44] have almost the same accuracy but
our proposed solution has the following
advantages:

(1) It is efective for detecting antidynamic and
evolving malware because the dataset includes
hybrid features and malware samples from al-
most entire timeline of the Android platform
(2008–2020).

(2) It is efective for malware category classifcation
because it uses a more comprehensive and re-
liable dataset with 15 categories.

In future, our enhanced dataset could be improved by
adding more samples to ensure each malware category is
balanced (currently, the malware categories have unequal
number of samples as shown in Table 1). Tis should en-
hance the accuracy of the model for malware category
classifcation. Also, additional steps could be taken to val-
idate the malware category label. Around 30% of the mal-
ware samples were assigned diferent labels by diferent
repositories (e.g., Trojan by one antimalware repository and
Riskware by another other repository). We believe that the
accuracy of malware category classifcation could be im-
proved through this validation process.

Although our detection model does its best to minimize
retraining requirement and computational cost (by using
samples from the longest possible time span and including
hybrid features for the detection of evolving and emerging
malware), its efectiveness, to some extent, still depends on
the stability of patterns in future. Terefore, the timeframe
for retraining and the stability of the model with respect to
evolving patterns should also be investigated.

Data Availability

Temalware dataset (KronoDroid) used in this research work
is from previously reported research work, which have been
cited. Te modifed and improved version of data is publicly
available at Github semw/kronodroid_improved_hy-
brid_detection_v2 in the form of csv fles.

Disclosure

Te authors conducted this research while afliated with the
School of Electrical Engineering and Computer Science
(SEECS) at the National University of Sciences and Tech-
nology (NUST).Tis work was completed as part of Master’s
(MS) thesis at National University of Sciences and Tech-
nology (NUST) and is not part of any funded research
project.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] Zimperium, “2023 global mobile threat report-zimperium,”
2023, https://www.zimperium.com/global-mobile-threat-
report/.

[2] F. Laricchia, “Mobile OS marketshares 2009-2022,” 2022,
https://www.statista.com/statistics/272698/global-market-
share-held-by-mobile-operating-systems-since-2009/.

[3] Statista Research Department, “Development of Android
malware worldwide 2016-2020,” 2022, https://www.statista.
com/statistics/680705/global-android-malware-volume/.

[4] Google, “Google play protect,” 2022, https://support.google.
com/googleplay/answer/2812853.

[5] Source android, “Application security,” https://source.
android.com/docs/security/overview/app-security.

[6] E. Masabo, K. S. Kaawaase, J. Sansa-Otim, J. Ngubiri, and
D. Hanyurwimfura, “A state of the art survey on polymorphic
malware analysis and detection techniques,” ICTACT Journal
On Soft Computing, vol. 8, 2018.

[7] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and
F. Massicotte, “Entroplyzer: android malware classifcation
and characterization using entropy analysis of dynamic
characteristics,” in 2021 Reconciling Data Analytics, Auto-
mation, Privacy, and Security: A Big Data Challenge
(RDAAPS), pp. 1–12, IEEE, Hamilton, Canada, May 2021.

[8] S. Nielebock, P. Blockhaus, J. Krüger, and F. Ortmeier,
“Androidcompass: a dataset of android compatibility checks
in code repositories,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pp. 535–
539, IEEE, Madrid, Spain, May 2021.

[9] D. Hu, Z.Ma, X. Zhang, P. Li, D. Ye, and B. Ling, “Te concept
drift problem in android malware detection and its solution,”
Security and Communication Networks, vol. 2017, Article ID
4956386, 13 pages, 2017.

[10] X. Fu and H. Cai, “On the deterioration of learning-based
malware detectors for android,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pp. 272-273, IEEE, Montreal,
Canada, May 2019.

[11] W. Li, X. Fu, and H. Cai, “Androct: ten years of app call traces
in android,” in 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR), pp. 570–574, IEEE,
Madrid, Spain, May 2021.

[12] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “Krono-
Droid: time-based hybrid-featured dataset for efective an-
droid malware detection and characterization,” Computers
and Security, vol. 110, Article ID 102399, 2021.

[13] H. Bai, N. Xie, X. Di, and Q. Ye, “Famd: a fast multifeature
android malware detection framework, design, and imple-
mentation,” IEEE Access, vol. 8, pp. 194729–194740, 2020.

[14] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, and
F. Massicotte, “Didroid: android malware classifcation and
characterization using deep image learning,” in 2020 Te 10th
international conference on communication and network se-
curity, pp. 70–82, Tokyo, Japan, November 2020.

[15] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: android
malware detection using permission pairs,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1968–1982,
2020.

[16] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “Malpat: mining
patterns of malicious and benign android apps via
permission-related apis,” IEEE Transactions on Reliability,
vol. 67, no. 1, pp. 355–369, 2018.

Security and Communication Networks 11

https://www.zimperium.com/global-mobile-threat-report/
https://www.zimperium.com/global-mobile-threat-report/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://support.google.com/googleplay/answer/2812853
https://support.google.com/googleplay/answer/2812853
https://source.android.com/docs/security/overview/app-security
https://source.android.com/docs/security/overview/app-security

[17] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic dis-
criminative model for android malware detection with
decompiled source code,” IEEE Transactions on Dependable
and Secure Computing, vol. 12, no. 4, pp. 400–412, 2015.

[18] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and
A. A. Ghorbani, “Dynamic android malware category clas-
sifcation using semi-supervised deep learning,” in 2020 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/Cyber-
SciTech), pp. 515–522, IEEE, Calgary, Canada, August 2020.

[19] P. Lantz, “An android application sandbox for dynamic
analysis,”Master, Lectrical and Information Technology, Lund
university, Lund, Sweden, 2011.

[20] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,
“Droidmat: android malware detection through manifest and
api calls tracing,” in 2012 Seventh Asia joint conference on
information security, pp. 62–69, IEEE, Calgary, Canada,
August 2012.

[21] Dunkelheit, “AMAT-android malware analysis toolkit,” 2022,
http://dunkelheit.com.br/amat/index.html.

[22] F. Wei, Y. Li, S. Roy, X. Ou, andW. Zhou, “Deep ground truth
analysis of current android malware,” in International con-
ference on detection of intrusions and malware, and vulner-
ability assessment, pp. 252–276, Springer, Berlin, Germany,
July 2017.

[23] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Efective
and efcient hybrid android malware classifcation using
pseudo-label stacked auto-encoder,” Journal of Network and
Systems Management, vol. 30, no. 1, pp. 22–34, 2022.

[24] A. I. Ali-Gombe, B. Saltaformaggio, J. R. Ramanujam, D. Xu,
and G. G. Richard, “Toward a more dependable hybrid
analysis of android malware using aspect-oriented pro-
gramming,” Computers and Security, vol. 73, pp. 235–248,
2018.

[25] R. Surendran, T. Tomas, and S. Emmanuel, “A tan based
hybrid model for android malware detection,” Journal of
Information Security and Applications, vol. 54, Article ID
102483, 2020.

[26] H. Cai, “Embracing mobile app evolution via continuous
ecosystem mining and characterization,” in Proceedings of the
IEEE/ACM 7th International Conference on Mobile Software
Engineering and Systems, pp. 31–35, Seoul, Republic of Korea,
July 2020.

[27] H. Cai and B. Ryder, “A longitudinal study of application
structure and behaviors in android,” IEEE Transactions on
Software Engineering, vol. 47, no. 12, pp. 2934–2955, 2021.

[28] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: self-
evolving android malware detection system,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P),
pp. 47–62, IEEE, Stockholm, Sweden, June 2019.

[29] G. Suarez-Tangil and G. Stringhini, “Eight years of rider
measurement in the android malware ecosystem,” IEEE
Transactions on Dependable and Secure Computing, vol. 19,
no. 1, pp. 107–118, 2022.

[30] H. Cai, X. Fu, and A. Hamou-Lhadj, “A study of run-time
behavioral evolution of benign versus malicious apps in an-
droid,” Information and Software Technology, vol. 122, Article
ID 106291, 2020.

[31] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “Krono-
droid: time-based hybrid-featured dataset for efective an-
droid malware detection and characterization,” Computers &
Security, vol. 110, Article ID 102399, 2021.

[32] Pandas, “Pandas-Python data analysis library,” 2022, https://
pandas.pydata.org/.

[33] Virus Total, “Virus total,” 2022, https://www.virustotal.com/
gui/home/search.

[34] F-Secure, “Total protection for your life online,” https://www.
f-secure.com/en.

[35] Fortiguard Labs, “Fortiguard,” 2022, https://www.fortiguard.
com/search?q=TrojanSMS.Stealer.

[36] M. Waheed and S. Qadir, “Kronodroid improved dataset,”
2022, https://github.com/semw/kronodroid_improved_
hybrid_detection_v2.git.

[37] Scikit-Learn, “Sklearn.preprocessing.MinMaxScaler,” 2022,
https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html.

[38] S. I. Imtiaz, S. U. Rehman, A. R. Javed, Z. Jalil, X. Liu, and
W. S. Alnumay, “Deepamd: detection and identifcation of
android malware using high-efcient deep artifcial neural
network,” Future Generation Computer Systems, vol. 115,
pp. 844–856, 2021.

[39] S. Biswas, M. Bordoloi, and B. Purkayastha, “Review on
feature selection and classifcation using neuro-fuzzy ap-
proaches,” International Journal of Applied Evolutionary
Computation, vol. 7, no. 4, pp. 28–44, 2016.

[40] A. H. E. Fiky, A. E. Shenawy, and M. A. Madkour, “Android
malware category and family detection and identifcation
using machine learning,” 2021, https://arxiv.org/abs/2107.
01927.

[41] Scikit-Learn, “Sklearn GridSearchCV,” https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.Grid
SearchCV.html.

[42] A. Atzeni, F. Diaz, A. Marcelli, A. Sánchez, G. Squillero, and
A. Tonda, “Countering android malware: a scalable semi-
supervised approach for family-signature generation,” IEEE
Access, vol. 6, pp. 59540–59556, 2018.

[43] K. Aktas and S. Sen, “Updroid: updated android malware and
its familial classifcation,” in Nordic Conference on Secure IT
Systems, pp. 352–368, Springer, Berlin, Germany, August
2018.

[44] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: deep
learning based android malware detection using real de-
vices,” Computers and Security, vol. 89, Article ID 101663,
2020.

[45] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder,
G. Giacinto, and L. Cavallaro, “Droidsieve: fast and accurate
classifcation of obfuscated android malware,” in Proceedings
of the seventh ACM on conference on data and application
security and privacy, pp. 309–320, Scottsdale, AZ, USA,March
2017.

[46] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: efective
android malware detection and categorization via app-level
profling,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 6, pp. 1455–1470, 2019.

[47] H. Cai, “Assessing and improving malware detection sus-
tainability through app evolution studies,” ACM Transactions
on Software Engineering and Methodology, vol. 29, no. 2,
pp. 1–28, 2020.

12 Security and Communication Networks

http://dunkelheit.com.br/amat/index.html
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.virustotal.com/gui/home/search
https://www.virustotal.com/gui/home/search
https://www.f-secure.com/en
https://www.f-secure.com/en
https://www.fortiguard.com/search?q=TrojanSMS.Stealer
https://www.fortiguard.com/search?q=TrojanSMS.Stealer
https://github.com/semw/kronodroid_improved_hybrid_detection_v2.git
https://github.com/semw/kronodroid_improved_hybrid_detection_v2.git
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/2107.01927
https://arxiv.org/abs/2107.01927
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

[48] D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “A novel
permission-based android malware detection system using
feature selection based on linear regression,” Neural
Computing & Applications, vol. 35, no. 7, pp. 4903–4918,
2023.

[49] D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “A novel
android malware detection system: adaption of flter-based
feature selection methods,” Journal of Ambient Intelligence
and Humanized Computing, vol. 14, no. 2, pp. 1243–1257,
2023.

[50] C. Chimeleze, N. Jamil, R. Ismail et al., “Bfedroid: a feature
selection technique to detect malware in android apps using
machine learning,” Security and Communication Networks,
vol. 2022, Article ID 5339926, 24 pages, 2022.

[51] A. Mahindru and A. L. Sangal, “Fsdroid:-a feature selection
technique to detect malware from android using machine
learning techniques: fsdroid,” Multimedia Tools and Appli-
cations, vol. 80, no. 9, pp. 13271–13323, 2021.

[52] Y. Wu, M. Li, Q. Zeng et al., “Droidrl: feature selection for
android malware detection with reinforcement learning,”
Computers and Security, vol. 128, Article ID 103126, 2023.

[53] S. Aurangzeb and M. Aleem, “Evaluation and classifcation of
obfuscated android malware through deep learning using
ensemble voting mechanism,” Scientifc Reports, vol. 13,
pp. 3093–3111, 2023.

Security and Communication Networks 13

