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The practical employment of network coding (NC) has shown major improvements when it comes to the transmission reliability
of sender data and bandwidth utilization. Moreover, network coding has been employed recently to secure the transmission of
data and prevent unauthorized recovery of sender packets. In this paper, we employ network coding (NC) in a practical way in
networks with constrained resources with the goal of improving the reliability and security of data transfer. More specifically, we
apply NC on the recent options of block-wise transfer (BWT) of the constrained application protocol (CoAP). The goal is to
enhance the reliability of CoAP when used to transfer larger data blocks using BWT. Also, we employ an innovative homomorphic

encryption approach to secure the BWT of CoAP.

1. Introduction

Constrained application protocol (CoAP) was designed for
IoT applications in which IoT devices communicate mes-
sages of small size [1]. In certain circumstances, there is
a need to communicate large resources. Block-wise transfer
(BWT) is an extension for CoAP that has been developed to
deal with such circumstances [2]. With BWT, the resource is
partitioned into smaller blocks. The blocks are sent to the
receiver, and the original resource is constructed once all the
blocks are delivered. In lossy environments where it is
possible for some blocks to be lost, the sender retransmits the
lost blocks which are going to cause an increased trans-
mission overhead and delays.

Network coding [3] has been employed to enhance the
reliability of data transmission in lossy environments. The
goal is to decrease the overall number of transmissions
needed to deliver sender data [4, 5]. NC is based on the idea
of sending linear combinations of the packets rather than
sending the packets in their original form. Each encoded
packet is generated using an encoding vector produced from

a finite field. The goal is to provide the receiver with the
sufficient number of encoded packets rather than providing
the receiver with specific packets. The encoded packets are
linearly independent and are decoded at the receiver to
recover the sender packets. In case of loss, the sender needs
to send extra encoded packets to ensure delivering the re-
quired number of encoded packets to the receiver to be able
to decode.

Applying NC in BWT of CoAP can improve the re-
liability of data transfer in the case of loss. BWT supports
several options for block transfer [6, 7]. Blockl and Block2
options support the reliable transfer of blocks in a syn-
chronous way. This means that the next block is sent once
the previous block is received and acknowledged. Blockl
option is used when sending the block from the client to the
server as part of a request. On the other hand, Block2 option
is used when sending a block from the server to the client as
part of a response.

Due to the synchronous transfer nature of Blockl and
Block2 options, they do not have the best performance in the
case of loss. Q-Blockl and Q-Block2 are new BWT options
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that have been developed recently [8]. Q-Blockl and Q-
Block2 options are similar to Blockl and Block2 options
with the difference of supporting the transfer of more blocks
without the need to wait for acknowledgments. This means
with Q-Blockl and Q-Block2 options, the transfer of blocks
is done faster especially in the case of block or
acknowledgment loss.

Applying NC with BWT is done by dividing the large
resource into smaller blocks and generating encoded blocks
to be forwarded. Encoding vectors are randomly generated
at the sender and used to generate these encoded blocks. The
encoding vector used to generate the encoded block is
transferred with the encoded block. The receiver collects
these encoded blocks and performs decoding once the
sufficient number of encoded blocks with linearly in-
dependent encoding vectors is received.

Another advantage of applying NC to BWT is the ability
of securing the blocks sent without the need to encrypt the
whole block. Minimizing the size of encrypted data is im-
portant in applications with constrained communicating
devices. Once encoded blocks are generated at the sender,
the sender can encrypt the encoding vectors used to generate
these blocks. The encoded blocks cannot be decoded without
having the decrypted encoding vectors. The receiver of the
encoded blocks can decrypt the encoding vectors and then
decode to recover sender’s blocks.

Homomorphic encryption (HE) is one of the options
that can be employed for encrypting the encoding vectors of
encoded blocks [9-11]. Homomorphic encryption allows
performing operations on encrypted data without affecting
the ability of the receiver to decrypt the data. This means
sender as well as intermediate nodes can perform NC op-
erations on encrypted data, without affecting the ability of
the receiver to decrypt the received encoded data.
Encrypting the encoding vectors rather than the whole block
limits the computational overhead of encryption. Decreasing
the encoding vector size means less data to be encrypted. As
we will see later, the size of the encoding vector depends on
the number of encoded blocks. The advantage of using
homomorphic encryption is that NC operations can be
performed on the encrypted data without affecting the
ability of the receiver to decode the sender data.

In this work, we apply NC on the recently developed
transfer options for BWT (Q-Blockl and Q-Block2) [8] to
achieve two goals. The first is to improve the ability of the
receiver to recover sender’s blocks in the case of loss. The
second is to secure the encoded blocks by encrypting the
encoding vectors used to generate the encoded blocks. To the
best of our knowledge, our work is the first attempt to apply
NC on the new transfer option of BWT (Q-Blockl and Q-
Block2). Our focus in this work is to show the benefits that
can be gained by applying NC on the new options of BWT.
Also, we extend the new options of BWT by proposing a set
of parameters that are needed to apply NC in a practical way.
These parameters are needed to enable the sender and re-
ceiver to communicate NC information necessary to per-
form encoding and decoding of resource blocks.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 provides an overview of NC
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and CoAP along with BWT. Section 4 discusses the appli-
cation of NC in BWT of CoAP with transfer scenarios.
Section 5 discusses the use of homomorphic encryption to
secure the blocks of BWT. Section 6 assesses the compu-
tational overhead incurred by NC. Section 7 assesses the
improvements achieved by NC on the reliability of data
transfer. Finally, the paper is concluded in Section 8.

2. Related Work

NC has been discussed thoroughly in the literature due to its
benefits in enhancing the reliability of packet delivery in
different network scenarios. Also, NC has been employed to
secure the transmission of data. NC can be employed in
scenarios where security of data transmission is needed
while the computational capabilities of senders are limited.
This can be seen in IoT applications where the devices
sending data have limited computational power and
memory.

NC has been employed in different types of networks
used for different applications in wireless sensor networks
(WSNss), mobile ad-hoc networks, vehicular area networks,
P2P networks, multimedia communication, and IoT
[12-16]. NC has been investigated as an alternative for-
warding approach. Unlike the traditional store and forward
approach, with NC, the sender sends linear encodings which
are generated using encoding vectors randomly generated
from a finite field. For example, to generate n encoded
packets, n linearly independent encoding vectors are needed.
The encoding vector used to generate a specific encoded
packet is sent as part of the packet since it is needed at the
receiver to decode and recover the original sender packets.

Several approaches were proposed to secure the data
while using NC [17-19]. With NG, since encoded packets are
sent, the confidentiality of the encoded packets is maintained
but not for too long. A node that receives the encoded
packets will not be able to decode as long as the number of
encoded packets received is less than the minimum number
of encoded packets needed to decode. As the node receives
more encoded packets, it will be able to decode once it
receives the sufficient number of encoded packets. To ensure
the confidentiality of the encoded packets, the sender can
encrypt the encoded packets. The receiver decrypts the re-
ceived encoded packets before decoding. This is suitable for
applications where NC is applied end to end where there are
no intermediate nodes between the sender and receiver or
the intermediate nodes are not participating in the encoding
of received packets.

To limit the computational overhead of encryption, the
sender can encrypt the encoding vector only rather than the
whole encoded packet. Encrypting the encoding vectors
prevents the unauthorized access to the data. It is only the
receiver who is capable of decrypting the encoding vectors
and hence decoding sender’s packets.

The limitation with this approach is that NC can be
applied only at the sender (not on intermediate nodes)
because encryption done on the encoding vectors is end to
end. This means that the sender who generates the encoded
packets will encrypt the encoding vectors and send the
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encoded packets to the receiver who is the only node able to
decrypt and then decode the received packets. This will affect
the performance of generating independent linear encoded
packets.

To overcome this limitation, the authors in [19] pro-
posed appending to the encoded packet a locked and an
unlocked vector. The locked encoding vector is used to
generate the encoded packet at the sender and then
encrypted (locked), and an unlocked vector is appended to
the packet to track NC encoding performed at intermediate
nodes. In this case, intermediate nodes can encode the re-
ceived packets and generate new linearly independent
encoded packets using locally generated encoding vectors
that also update the unlocked encoding vectors.

Once the sufficient number of encoded packets is re-
ceived at the receiver, Gaussian elimination is performed on
the unlocked encoding vectors, and the sender packets are
decoded. Once the sender packets are decoded, the receiver
will be able to decrypt the locked encoding vectors and
decode to recover the original sender packets. The limitation
of this approach is that it requires appending two encoding
vectors to each sent packet which incurs a transmission
overhead. Another limitation is the computational overhead
caused by the need to reverse all the updates performed by
intermediate nodes once the sufficient number of encoded
packets is received at the receiver to recover the sender
packets with the locked encoding vectors. This is necessary
for the receiver to be able to unlock (decrypt) the locked
encoding vectors and then decode.

Sending the sender packets with the unlocked encoding
vectors has a major impact on the performance of NC since
each of these packets is needed at the receiver. This means if
any of the sender packets with an unlocked encoding vector
is lost before being encoded by an intermediate node, the
receiver will not be able to receive the sufficient number of
packets to build a matrix of unlocked vectors that have
full rank.

To overcome these limitations, homomorphic encryp-
tion can be employed. With homomorphic encryption, there
is no need for the unlocked encoding vector. It is sufficient to
lock the encoding vectors used to generate the encoded
packets at the sender using homomorphic encryption. In-
termediate nodes are able to generate linear encoded packets
using locally generated encoding vectors to update the
locked encoding vectors. The advantage of homomorphic
encryption is that the operations performed on the
encrypted encoding vectors will not affect the ability of the
receiver to decrypt these vectors. An encoded packet with
a locked encoding vector is decrypted once it is received by
the receiver, and once the receiver receives and decrypts the
sufficient number of encoded packets, it can decode these
packets and recover sender’s packets.

An application that can benefit from NC is the block-
wise transfer (BWT) of CoAP. CoAP is an application layer
protocol that is used in IoT. BWT is part of CoAP that is used
to transfer larger resources between IoT devices. The larger
sender resource is divided into blocks to limit the size of the
data exchanged between constrained IoT devices. BWT
offers two synchronous options for data transfer (Blockl and

Block2) where each block sent is explicitly acknowledged
before sending the next block. In [6], the authors have
applied NC on Blockl1/Block2 options of BWT to decrease
the number of additional transmissions in the case of lost
acknowledgment. This is done by encoding the previously
sent unacknowledged packet with the next outgoing block
after timeout.

In [20], NC was applied on BWT to decrease losses by
sending linear combinations of the resource blocks. The
resource is divided into generations where each generation
has a specific number of blocks. The behavior of BWT was
slightly modified to allow sending a sequence of non-
confirmable responses after sending a piggybacked ac-
knowledgment for a confirmable request. The sender sends
encoded blocks of a generation until the receiver requests
blocks of the next generation.

Recently, two asynchronous options were provided
for BWT (Q-Blockl and Q-Block2). With these options,
more blocks can be sent without waiting for acknowl-
edgments which make it more suitable for the application
of NC. In our work, we take the advantage of the char-
acteristics of Q-Blockl and Q-Block2 options of BWT to
apply NC in a practical way. There are two goals for
applying NC. The first is to enhance the reliability of data
transfer by decreasing the number of transmissions
needed to deliver the resource. The other goal is to fa-
cilitate securing the sent blocks by encrypting the
encoding vector used to generate an encoded block rather
than encoding the whole block which limits encryption
computational overhead.

3. Network Coding and CoAP

3.1. Network Coding. The idea of network coding (NC) is to
send encoded packets that are linear combinations of the
plain sender packets. The sender generates encoded packets
using encoding vectors generated from a finite field GF (2")
[4]. The encoding vector used to generate the encoded packet
y; out of n sender packets (p,,...,p,) is

o = [ - ) (1)

The encoding operation at the sender to generate an
encoded packet (y;) is

yi = Z aij . p]. (2)
j=1

At least n encoded packets must be generated by the
sender. The sender can generate any number of encoded
packets. The more encoded packets sent the easier for the
receiver to receive n encoded packets necessary for decoding.
The encoring matrix used to generate n encoded packets is

O o %y
(3)

O " Ry

The n encoded packets at the sender are
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A forwarding node encodes received encoded packets to
generate at least one encoded packet for each received
encoded packet. The forwarding node generates an encoding
vector to be used to generate an encoded packet. For h
received packets at a forwarding node (y,,...,y;), the
encoding vector used to generate the encoded packet is

Bi =[Bin>- -+ Bin]- (5)

And the encoded packet generated at the forwarding
node is

h
Yi= D By vy (6)
=

The encoded packets generated at a forwarding node
have an updated encoding vector. The updated encoding
vector for the encoded packet y'is

o = [afy, ..., (7)

The receiver decodes the received encoded packets once
it receives n linearly independent encoded packets. The
matrix of the encoding vectors received with the # encoded
packets is

! !
Ay o Ay

A= . (8)

!
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Hence, decoding performed at the receiver is done by
finding the inverse of the encoding matrix A and then
performing the following:

b1 )1
fl=aAT | ©)
P In

The benefits of NC come from the fact that the receiver
needs any n independent encoded packets to be able to
decode and recover the original sender’s packets, unlike
conventional store and forward networks where each spe-
cific packet is needed at the receiver and in case of a packet
loss that packet must be retransmitted by the sender.

3.2. Constrained Application Protocol (CoAP). CoAP is an
application layer protocol that is used in IoT where devices
have constrained resources [1]. Devices with constrained
resources have limited processing capabilities and small
memory [21]. CoAP was developed to enable IoT devices to
communicate with low overhead. Hence, it was developed as
a lightweight version of HTTP. Unlike HTTP, CoAP sup-
ports the communication of IoT devices through the Internet
by adopting the unreliable user datagram protocol (UDP)
with low overhead at the transport layer. CoAP is based on
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REST where a resource is identified using a URI in a request
response interaction between the client and the server. The
URI of a resource can be used to access the resource using
the methods (POST, PUT, GET, and DELETE).

CoAP consists of two layers. The upper layer is the
request/response layer, and the lower layer is the messaging
layer. The request response layer is responsible for the re-
quest/response messages and communication methods. The
messaging layer supports four types of messages and im-
plements reliability on top of UDP by offering two types of
messages: confirmable messages (CON) and non-
confirmable messages (NON). A confirmable message re-
quires an acknowledgment (ACK) so that the next message
is sent after receiving and acknowledgment of the previous
one. In case the receiver is not able to respond to a con-
firmable message, a reset message (RESET) is sent that will
reset the communication. A nonconfirmable (NON) mes-
sage does not require any response from the receiver.

3.3. Block-Wise Transfer (BWT). CoAP was developed on
top of UDP to support the transfer of data by providing
simple means of reliable transfer flow and congestion
control through the messaging layer. If the size of the
payload is large to be sent in a single packet, BWT divides the
resource into smaller blocks to avoid IP fragmentation. The
advantage of BWT is to avoid sending data larger than what
can be accommodated in a single link layer packet of
a constrained network. By dividing the data into smaller
blocks, the overhead caused by the fragmentation done at the
adaptation layer or the IP layer is avoided. Also, this will
make tracing the exchange of the blocks simpler for
debugging purposes [2].

BWT supports several options: Blockl, Block2 [2], Q-
Blockl, and Q-Block2 [8]. Blockl is used for the transfer of
the resource from the client to the server that is associated
with a request. Block2 on the other hand is used for the
transfer of the resource from the server to the client that is
associated with a response. Block1/Block2 options support the
reliable transfer of the blocks by transferring blocks in
a synchronous way. A block is sent once the confirmation of
the successful delivery of the previous block is received.
Transmission scenarios for Block1/Block2 can be found in [2].

Transferring blocks synchronously with Blockl and
Block2 limit the transfer rate to the round trip time. This is
acceptable in scenarios where loss rates are very low. Quick-
Blockl (Q-Blockl) and Quick-Block2 (Q-Block2) are new
BWT options that have been proposed recently to support
the transfer of blocks faster than with Blockl and Block2
especially in the case of loss. This is achieved by having less
exchange of messages and faster recovery of lost blocks [8].

Similar to Blockl, Q-Blockl is used to transfer a resource
from the client to the server as part of a request. Also, similar
to Block2, Q-Block2 is used to transfer a resource from the
server to the client as part of a response. Q-Blockl and Q-
Block2 allow the transfer of more blocks without the need to
explicitly acknowledge each block. The sender can send
several blocks without waiting for acknowledgments. The
receiver can acknowledge several received blocks with



Security and Communication Networks

a single acknowledgment. Faster recovery supported by Q-
Blockl and Q-Block2 is achieved by allowing the request of
several lost blocks through a single message rather than
sending a message for each lost block.

Allowing the transfer of several blocks without waiting
for acknowledgments makes Q-Blockl and Q-Block2 more
suitable for applying NC.

4. Quick Block-Wise Transfer with NC

To enhance the reliability of BWT, the sender sends
encoded blocks of the resource. Blocks that belong to the
same resource are encoded together. The number of
encoded blocks that is sent by the sender is at least the
number of blocks in the resource. Extra encoded blocks can
be sent to overcome losses. The advantage of NC is that
a lost encoded block can be replaced by any other encoded
block. For the receiver to be able to decode and recover the
sender blocks, it needs a number of encoded blocks which is
equal to the number of blocks in the resource. Without NC,
the receiver needs to acknowledge received blocks so that
the sender resends the specific blocks that were lost. With
NC, the receiver needs to acknowledge the number of
encoded blocks received so that the sender sends extra
encoded blocks to deliver to the receiver the number of
encoded blocks it needs to decode.

The number of blocks in a resource depends on the block
size. The smaller the block, the larger number of blocks in
a resource. Larger number of blocks means more encoded
blocks to send. Also, the larger number of blocks in a re-
source, the bigger encoding vector used to generate the
encoded block. To limit the number of blocks in a resource,
blocks can be divided into generations where the generation
size is k. The generation size is a parameter that can be
negotiated between the client and the server. The larger the
generation size, the smaller number of generations of a re-
source, but the larger encoding vector is associated with an
encoded block. Later in the paper, we assess the effect of the
generation size on the performance.

Our focus in this paper is to apply NC on BWT options
(Q-Blockl and Q-Block2). At the sender, the resource is
divided into generations where the size of the generation is k
blocks. An encoding vector of k coefficients is randomly
generated from a finite field. k encoding vectors are needed
to generate k encoded blocks. In case of a block loss, the
sender generates a new encoded block using a new encoding
vector. We present scenarios for Q-Blockl and Q-Block2
resource transfer with NC. We show the behavior in the case
of no block loss also when there are losses. In the presented
scenarios, the block consists of two generations and the
generation size is three (k=3). The behavior is the same
when having different number of blocks and different
number of generations.

In the scenarios shown in Figures 1-4, the parameters
involved when applying NC on Q-Blockl and Q-Block2
options are GNum/BNum/GSize/BSize/M where

(1) GNum: generation number where the first genera-
tion number in a resource is zero

(2) BNum: encoded block number where the first
encoded block number in a generation is zero

(3) GSize: the number of blocks in the generation
(4) BSize: the size of the encoded block

(5) M: more bit (0 for the last block in the resource and 1
otherwise).

Figure 1 is for the scenario of Q-Blockl where the block
is sent from the client to the server as part of the request. In
this scenario, we assume no losses. The client sends three
encoded blocks for the first generation. Server responds with
2.31 continue where the client proceeds by forwarding the
three encoded blocks of the second generation. The resource
now is successfully delivered, and the server responds with
2.04 changed indicating the successful delivery of the
resource.

Figure 2 is for the scenario of Q-Blockl where there are
losses. The client sends the three encoded blocks of the first
generation where the last encoded block sent is lost. The
client waits for the server response which will not be re-
ceived, since the server is still waiting for the third encoded
block of the first generation. After the expiration of the client
time out interval, the client proceeds by sending encoded
blocks of the second generation. Once the server receives an
encoded block of the second generation, it detects the loss of
the first generation encoded block and notifies the client
with 4.08, a single missing block (C=1) of generation GI.
The client sends an encoded block of the first generation to
overcome the loss and resumes the transmission of the
second generation encoded blocks.

The two encoded blocks of the second generation are
lost, and the sender does not have more blocks to send. Upon
the expiration of the server timeout interval, it sends a 4.08
missing response with C=2 to indicate the loss of two
encoded blocks. The client sends two encoded blocks of the
second generation to overcome the losses. The two blocks are
delivered, and the server responds with 2.04 changed in-
dicating the successful delivery of the resource.

Q-Block2 has the exact same behavior as Q-Blockl with
the difference that the resource is sent from the server to the
client as part of a response as shown in Figures 3 and 4.
Figure 3 shows the behavior of Q-Block2 with NC when
there are no losses, while Figure 4 shows the behavior of Q-
Block2 with NC when there are losses.

5. Homomorphic Encryption

With the increasing popularity of IoT, there are increasing
concerns related to privacy and security. With the increasing
number of IoT devices connected, there are increasing se-
curity risks. With that, there is a need for higher security
measures for enhanced protection. At the same time, there is
a growth on the number of real-time IoT applications in
different sectors like healthcare and the industry which
require fast response and minimal security computational
requirements and delays [21-26].

Different approaches have been proposed to overcome
the security concerns in IoT. Encryption can be employed



COAP Client COAP Server

PUT QB1:0/0/3/1024/1

PUT QB1:0/1/3/1024/1

PUT QB1:0/2/3/1024/1

2.31 Continue

PUT QB1:1/0/3/1024/1

PUT QB1:1/1/3/1024/1

PUT QB1:1/2/3/1024/0

2.04 Changed

FiGure 1: Q-Blockl with NC no loss scenario, a resource of two
generations (k=3).

COAP Client COAP Server
PUT QB1:0/0/3/1024/1
PUT QB1:0/1/3/1024/1
PUT QB1:0/2/3/1024/1 />
Non-Timeout-Random
PUT QB1:1/0/3/1024/1
4.08 Missing
Gl C=1
PUT QB1:0/3/3/1024/1
PUT QB1:1/1/3/1024/1 oo
PUT QB1:1/2/3/1024/0 p———"——"—>
Non-Receive Timeout
4.08 Missing
G2C=2
PUT QB1:1/3/3/1024/1
PUT QB1:1/4/3/1024/0
2.04 Changed

FiGURE 2: Q-Blockl with NC loss scenario, a resource of two
generations (k=3).

while taking in consideration of the computational overhead
added which can be a challenge for IoT devices that have
limited resources. Homomorphic encryption is gaining
momentum due to the ability of performing operations on
encrypted data to generate a cipher that can be decrypted at
the receiver to generate the data that are the result of the
operations performed while being encrypted. Homomor-
phic encryption allows performing operations on the data
while being encrypted which preserves the privacy of the
data. Moreover, homomorphic encryption allows per-
forming operations on the encrypted data on the cloud
without risking the privacy of the data while being on the
cloud. Once the receiver decrypts the received data, it will get
the result of the operations performed on the data while
being on the cloud.

Homomorphic encryption is a public key encryption
scheme. With the homomorphic property, specific arith-
metic and logical operations performed on the encrypted
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COAP Client COAP Server

GET QB2 G1 E1

2.05 QB2: 0/0/3/1024/1

2.05 QB2: 0/1/3/1024/1

2.05 QB2: 0/2/3/1024/1

GET QB2 G2 E1

2.05 QB2:1/0/3/1024/1

2.05 QB2:1/1/3/1024/1

2.05 QB2:1/2/3/1024/0

FicURE 3: Q-Block2 with NC no loss scenario, a resource of two
generations (k=3).

COAP Client COAP Server
GET QB2 GO E1
PUT QB2: 0/0/3/1024/1
PUT QB2: 0/1/3/1024/1
<« PUT QB2: 0/2/3/1024/1
Non-Timeout-Random
PUT QB2: 1/0/3/1024/1
4.08 Missing
G1C=1 7
PUT QB2: 0/3/3/1024/1
<«—  PUT QB2: 1/1/3/1024/1
<«——  PUT QB2: 1/2/3/1024/0
4,08 Missing Non-Receive Timeout
G2C=2
PUT QB2: 1/3/3/1024/1
PUT QB2: 1/4/3/1024/0
2.04 Changed

FiGure 4: Q-Block2 with NC loss scenario, a resource of two
generations (k= 3).

data provide encrypted results that when decrypted provide
the results of the operations performed on the plain text [23].
For the messages 11, and m,, the cipher messages C, and C,
are

Cl = EKpub (ml)’

(10)
G, = EKpub (mZ)
For the operation Add,
Add(C,,Cy) = Expup (my +my). (11)

Hence, the decrypted message that results from the Add
operation is

Dypriy (Add(Cy, Cy)) = my +m,. (12)

Homomorphic encryption can be employed with NC to
secure the encoding vectors used to generate the encoded
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blocks. The size of the encrypted data can be controlled
according to the size of the encoding vector. The size of the
encoding vector depends on the generation size. This is
suitable for IoT applications where the capabilities of
communicating devices are limited. Next, we will show how
homographic encryption can be applied along with BWT to
secure the transfer of the resource blocks.

5.1. At the Sender. For a generation of k blocks, the sender
appends an encoding vector to each block. The encoding
vector size is k coefficients. The encoding vector of block b; has
the i coefficient one and all other coefficients zeros. If the NC
computations performed are using the finite field GF (2%), then
the size of each coefficient is one byte. The sender then encodes
the blocks by multiplying each block (encoding vector along
with data) by a randomly generated coefficient from the finite
field. At least k encoded blocks are generated at the sender in
the same way. Linearly encoding the blocks at the sender
protects the sender blocks against losses. Losses require the
retransmission of the lost blocks. On the other hand, by
linearly encoding blocks at the sender and in case of loss, it is
sufficient to send additional encoded blocks that can be used to
increase the number of encoded blocks at the receiver to
decode and recover the sender blocks. After generating the
encoded blocks, the sender encrypts the encoding vector of
each encoded block using homomorphic encryption.

5.2. At the Receiver. Once the receiver receives k encoded
blocks, it decrypts the encoding vector of each received
block. After decrypting the encoding vectors of the k
encoded blocks, the receiver performs decoding to generate
the k sender blocks. In case the receiver receives less than k
encoded blocks, the sender sends additional encoded blocks
of the same generation.

For the sender to send additional encoded blocks of
a specific generation, it generates an encoding vector to be
used to re-encode the k encoded blocks of the generation.
Re-encoding is done on the generation encoded blocks that
have encrypted encoding vectors. This means in order to
generate an additional encoded block, there will be no need
for any decryption or encryption of data at the sender.

6. NC Transmission and
Computational Overhead

There is a cost for the enhancements achieved by applying NC.
The cost of NC comes from the overhead caused by sending
the encoding vector used to generate the encoded block along
with the encoded block [4, 5]. Also, there is the cost of per-
forming NC operations which are encoding at the sender and
decoding at the receiver. Because the encoding vector is
encrypted, the size of the encoding vector is an important
parameter that affects encryption computational overhead.

6.1. Generation Size and Transmission/Encryption Overhead.
The encoding vector size used to generate an encoded block
depends on the number of encoded blocks. As the number of
blocks increases, the size of the encoding vector increases.

The number of blocks in a resource can be controlled by
controlling the size of the block. A larger block means
a smaller number of blocks, while a smaller block means
a larger number of blocks of a resource.

To control the size of the encoding vector, blocks can
be grouped in generations. A generation consists of
a fixed number of blocks (k). The size of the encoding
vector can be controlled by increasing or decreasing the
generation size.

A resource of size Rbytes consists of G generations
where each generation consists of k blocks. NC parameters
include the number of blocks per generation (k) and the
finite field size used for NC computations. The relationship
between the generation size, finite field size, and encoding
vector size is shown in Table 1. From the table, it is clear that
increasing the generation size increases the size of the
encoding vector and hence increases the transmission
overhead associated with each encoded block.

Block size (S) also affects the performance of NC. To
assess this effect, let us consider a resource of size
R=1500kB. Table 2 shows the number of generations in the
resource for different block sizes (S) and different generation
sizes (k). As the size of the block increases, the number of
blocks per resource decreases, and hence, the number of
generations decreases.

Also, Table 2 shows the relationship between the block
size (S), generation size (k), and encoding vector size. Since
the encoding vector is the part of the block that is encrypted,
then decreasing the encoding vector size decreases the en-
cryption computational overhead. Increasing the size of the
block decreases the number of resource blocks which de-
creases the encoding vector overhead.

In conclusion, having smaller block size increases the
encoding vector overhead. On the other hand, smaller
generation size decreases encoding vector overhead.
Moreover, decreasing the encoding vector overhead can be
achieved by increasing block size and decreasing generation
size. Since the encoding vector is the part of the encoded
block that is encrypted, having a smaller encoding vector
limits the encryption computational overhead.

6.2. Generation Size and the Reliability of Block Delivery.
Increasing the size of the generation increases the overhead
that results from the size of the encoding vector sent with the
encoded block. On the other hand, increasing the size of the
generation may enhance the reliability of block delivery. For
a generation of size k, let p be the probability of block loss. If
m additional blocks are sent to overcome losses, then the
probability of successful delivery (P,) is as follows [5]:

kom ( fe+m . .
Pk:Z< i ).(l—p)’.p(k””’). (13)

i=k

Figure 5 shows the effect of increasing the generation size
on the probability of successful delivery. It is clear in the
figure that the bigger the generation, the smaller number of
additional transmissions needed to provide the receiver with
the encoded blocks it needs to decode.
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TaBLE 1: Generation size and encoding vector size.

Generation size (k)

Encoding vector size (bytes)

GF (2% GF (2'%)
10 10 20
20 20 40
30 30 60
40 40 80
50 50 100

TaBLE 2: Encoding vector overhead for a resource of 1500kB for different block sizes.

Block size Number resource Number of generations (G) Encoding vector overhead (GF2%)
(S) blocks k=20 k=30 k=50 k=20 k=30 k=50
100 15000 750 500 300 0.2 0.3 0.5
300 5000 250 167 100 0.067 0.1 0.167
800 1875 94 63 38 0.025 0.0375 0.0625
1500 1000 50 34 20 0.0133 0.02 0.033
2000 750 38 25 15 0.01 0.015 0.025
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F1GURE 5: The effect of increasing generation size on the delivery of
sender’s data.

In conclusion, increasing the generation size enhances
the reliability of data transfer. On the other hand, increasing
the generation size increases the overhead caused by the
increased encoding vector size. To balance the overhead
caused by the encoding vector size, the size of the block
should be relatively bigger than the encoding vector size. At
the same time, increasing the size of the block increases the
cost of the additional transmissions needed to achieve
successful delivery.

7. Performance Evaluation

In this section, we evaluate the performance of block-wise
transfer (BWT) Blockl, Block2, Q-Blockl, and Q-Block2
options by comparing the total number of transmissions

needed to achieve successful delivery of the resource to the
destination with and without NC. With Blockl and Block2,
each block sent must be acknowledged before sending the
next block. An extra transmission is needed in the case of
a lost block or a lost acknowledgment. On the other hand,
with Q-Blockl and Q-Block2, blocks are sent without
waiting for acknowledgments.

Let p be the probability of packet loss, where p<1. A
packet could be a resource block or an acknowledgment. Let
p, be the probability of a packet to be critical. A critical
packet is a packet whose loss causes the retransmission of
a resource block in the case of no NC or the transmission of
an additional encoded resource block in the case of NC.

In the case of sending resource blocks (without NC),
each packet whether it is a resource block or an acknowl-
edgment is critical. The loss of a resource block or its ac-
knowledgment causes the retransmission of that resource
block. On the other hand, in the case of sending encoded
resource blocks (with NC), an additional encoded block is
sent only in the case of a lost encoded block.

If the resource size is k blocks (N = k) and if every block
sent is acknowledged (N = N ), then the total number of
packets sent (resource blocks and acknowledgments) in the
case of no loss is 2k.

7.1. BWT Block1/Block2 with or without NC. Without NC,
the sender sends the next block after receiving the ac-
knowledgment of the previous one. The block is retrans-
mitted if it is lost or its acknowledgment is lost. A round trip
transmission is successful when the resource block is re-
ceived by the receiver and its acknowledgment is received by
the sender.

With NC, the sender sends the next encoded block after
receiving the acknowledgment of the previous encoded
block. This is the same as in the case of Blockl/Block2
without NC. Hence, the performance of BWT Block1/Block2
with NC is the same as that without NC. For a successful
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round trip transmission, the number of round trip trans-
missions performed is

_
(1-p7*

For a resource of k blocks (N =k), the total number of
round trip transmissions which is the total number of sender
transmissions needed to deliver the resource is

_k
(1-p)*

(14)

(15)

7.2. BWT Q-Block1/Q-Block2 without NC. The sender can
send more than one block without waiting for acknowl-
edgment. The receiver acknowledges received blocks as they
are received. The sender retransmits the blocks that were not
acknowledged after timeout. A single acknowledgment can
be sent for multiple blocks. The total number of sender
transmissions needed to successfully deliver a block is

! 16
5 (16)
For a resource of k blocks (N =k), the total number of
sender transmissions needed to successfully deliver the re-
source is

k
q. (17)

7.3. BWT Q-Block1/Q-Block2 with NC. The sender sends
encoded blocks without waiting for acknowledgments.
Acknowledgments are used to inform the sender about the
number of encoded blocks received. The sender needs to
send an additional encoded block only if a previously sent
encoded block was lost.

For Ny resource blocks of and N, acknowledgments
sent while communicating a resource, then

Ng

=—F 1
Nrp+N, (18)

br

The total number of sender transmissions needed to
successfully deliver a block is

v
1-p.p,

And hence, for a resource of k blocks (N = k), the total
number of sender transmissions needed to successfully
deliver the resource is

(19)

_k
1-p.p,

Figure 6 shows the total number of transmissions needed
to deliver a resource of 100 blocks. It is clear the NC im-
proves the reliability of block delivery so that the total
number of transmissions needed is less in the case of NC
than that in the case of block transfer without NC.

(20)

450 T T T T T T T T

400 -

350 | 4

300 s

250 | : -

200 | s

150 =T

Total number of transmissions
\

100 EZZ=722772---7-

50 i i . . i i i i
005 01 015 02 025 03 035 04 045 05

Probability of packet loss

--- BWT B1 B2
BWT QB1 QB2 without NC
--- BWT QBI QB2 with NC, Pr=0.5

FiGure 6: Total number of transmissions needed to deliver a re-
source of 100 blocks p, =0.5.

8. Conclusion

In this paper, we have shown that the new options for block-
wise transfer (Q-Blockl and Q-Block2) can significantly
benefit from NC. The benefits are in terms of securing the
transfer of blocks and enhancing the reliability of the
transfer. Securing the transfer is achieved by encrypting the
encoding vectors used to generate the encoded blocks
without the need to encrypt the whole block which limits
encryption computational overhead. Moreover, it was
shown in the paper that NC enhances the reliability by
enabling the receiver to recover sender resource faster after
receiving the sufficient number of encoded blocks [27].
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