
51

Recursive approach in sparse matrix LU
factorization

Jack Dongarra, Victor Eijkhout and
Piotr Łuszczek∗
University of Tennessee, Department of Computer
Science, Knoxville, TN 37996-3450, USA
Tel.: +865 974 8295; Fax: +865 974 8296

This paper describes a recursive method for the LU factoriza-
tion of sparse matrices. The recursive formulation of com-
mon linear algebra codes has been proven very successful in
dense matrix computations. An extension of the recursive
technique for sparse matrices is presented. Performance re-
sults given here show that the recursive approach may per-
form comparable to leading software packages for sparse ma-
trix factorization in terms of execution time, memory usage,
and error estimates of the solution.

1. Introduction

Typically, a system of linear equations has the form:

Ax = b, (1)

where A is n by n real matrix (A ∈ Rn×n), and x
and b are n-dimensional real vectors (b, x ∈ Rn). The
values of A and b are known and the task is to find
x satisfying Eq. (1). In this paper, it is assumed that
the matrix A is large (of order commonly exceeding
ten thousand) and sparse (there are enough zero entries
in A that it is beneficial to use special computational
methods to factor the matrix rather than to use a dense
code). There are two common approaches that are used
to deal with such a case, namely, iterative [33] and
direct methods [17].

Iterative methods, in particular Krylov subspace
techniques such as the Conjugate Gradient algorithm,
are the methods of choice for the discretizations of el-
liptic or parabolic partial differential equations where

∗Corresponding author: Piotr Luszczek, Department of Computer
Science, 1122 Volunteer Blvd., Suite 203, Knoxville, TN 37996-
3450, USA. Tel.: +865 974 8295; Fax: +865 974 8296; E-mail:
luszczek@cs.utk.edu.

the resulting matrix is often guaranteed to be positive
definite or close to it. However, when the linear sys-
tem matrix is strongly unsymmetric or indefinite, as
is the case with matrices originating from systems of
ordinary differential equations or the indefinite matri-
ces arising from shift-invert techniques in eigenvalue
methods, one has to revert to direct methods which are
the focus of this paper.

In direct methods, Gaussian elimination with partial
pivoting is performed to find a solution of Eq. (1). Most
commonly, the factored form of A is given by means
of matrices L, U , P and Q such that:

LU = PAQ, (2)

where:

– L is a lower triangular matrix with unitary diago-
nal,

– U is an upper triangular matrix with arbitrary di-
agonal,

– P and Q are row and column permutation matri-
ces, respectively (each row and column of these
matrices contains single a non-zero entry which is
1, and the following holds: PP T = QQT = I ,
with I being the identity matrix).

A simple transformation of Eq. (1) yields:

(PAQ)Q−1x = Pb, (3)

which in turn, after applying Eq. (2), gives:

LU(Q−1x) = Pb, (4)

Solution to Eq. (1) may now be obtained in two steps:

Ly = Pb (5)

U(Q−1x) = y (6)

and these steps are performed through forward/back-
ward substitution since the matrices involved are trian-
gular. The most computationally intensive part of solv-
ing Eq. (1) is the LU factorization defined by Eq. (2).
This operation has computational complexity of or-
der O(n3) when A is a dense matrix, as compared
to O(n2) for the solution phase. Therefore, optimiza-

Scientific Programming 9 (2001) 51–60
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

52 J. Dongarra et al. / Recursive approach in sparse matrix LU factorization

tion of the factorization is the main determinant of the
overall performance.

When both of the matrices P and Q of Eq. (2) are
non-trivial, i.e. neither of them is an identity matrix,
then the factorization is said to be using complete piv-
oting. In practice, however, Q is an identity matrix and
this strategy is called partial pivoting which tends to be
sufficient to retain numerical stability of the factoriza-
tion, unless the matrix A is singular or nearly so. Mod-
erate values of the condition number κ = ‖A−1‖ · ‖A‖
guarantee a success for a direct method as opposed to
matrix structure and spectrum considerations required
for iterative methods.

When the matrix A is sparse, i.e. enough of its entries
are zeros, it is important for the factorization process
to operate solely on the non-zero entries of the matrix.
However, new nonzero entries are introduced in the
L and U factors which are not present in the original
matrix A of Eq. (2). The new entries are referred to
as fill-in and cause the number of non-zero entries in
the factors (we use the notation η(A) for the number
of nonzeros in a matrix) to be (almost always) greater
than that of the original matrix A: η(L + U) � η(A).
The amount of fill-in can be controlled with the ma-
trix ordering performed prior to the factorization and
consequently, for the sparse case, both of the matrices
P and Q of Eq. (2) are non-trivial. Matrix Q induces
the column reordering that minimizes fill-in and P per-
mutes rows so that pivots selected during the Gaussian
elimination guarantee numerical stability.

Recursion started playing an important role in ap-
plied numerical linear algebra with the introduction
of Strassen’s algorithm [6,31,36] which reduced the
complexity of the matrix-matrix multiply operation
from O(n3) to O(nlog2 7). Later on it was recognized
that factorization codes may also be formulated recur-
sively [3,4,21,25,27] and codes formulated this way
perform better [38] than leading linear algebra pack-
ages [2] which apply only a blocking technique to in-
crease performance. Unfortunately, the recursive ap-
proach cannot be applied directly for sparse matrices
because the sparsity pattern of a matrix has to be taken
into account in order to reduce both the storage require-
ments and the floating point operation count, which are
the determining factors of the performance of a sparse
code.

2. Dense recursive LU factorization

Figure 1 shows the classical LU factorization code
which uses Gaussian elimination. Rearrangement of

Fig. 1. Iterative LU factorization function of a dense matrix A. It is
equivalent to LAPACK’s xGETRF() function and is performed using
Gaussian elimination (without a pivoting clause).

the loops and introduction of blocking techniques can
significantly increase the performance of this code [2,
9]. However, the recursive formulation of the Gaussian
elimination shown in Fig. 2 exhibits superior perfor-
mance [25]. It does not contain any looping statements
and most of the floating point operations are performed
by the Level 3 BLAS [14] routines: xTRSM() and
xGEMM(). These routines achieve near-peak MFLOP/s
rates on modern computers with a deep memory hierar-
chy. They are incorporated in many vendor-optimized
libraries, and they are used in the Atlas project [16]
which automatically generates implementations tuned
to specific platforms.

Yet another implementation of the recursive algo-
rithm is shown in Fig. 3, this time without pivoting
code. Experiments show that this code performs equal-
ly well as the code from Fig. 2. The experiments also
provide indications that further performance improve-
ments are possible, if the matrix is stored recursive-
ly [26]. Such a storage scheme is illustrated in Fig. 4.
This scheme causes the dense submatrices to be aligned
recursively in memory. The recursive algorithm from
Fig. 3 then traverses the recursive matrix structure all
the way down to the level of a single dense submatrix.
At this point an appropriate computational routine is
called (either BLAS or xGETRF()). Depending on the
size of the submatrices (referred to as a block size [2]),
it is possible to achieve higher execution rates than for
the case when the matrix is stored in the column-major
or row-major order. This observation made us adopt
the code from Fig. 3 as the base for the sparse recursive
algorithm presented below.

3. Sparse matrix factorization

Matrices originating from the Finite Element Me-
thod [35], or most other discretizations of Partial Dif-
ferential Equations, have most of their entries equal to

J. Dongarra et al. / Recursive approach in sparse matrix LU factorization 53

Fig. 2. Recursive LU factorization function of a dense matrix A equivalent to the LAPACK’s xGETRF() function with a partial pivoting code.

zero. During factorization of such matrices it pays off
to take advantage of the sparsity pattern for a significant
reduction in the number of floating point operations and
execution time. The major issue of the sparse factoriza-
tion is the aforementioned fill-in phenomenon. It turns
out that the proper ordering of the matrix, represent-
ed by the matrices P and Q, may reduce the amount
of fill-in. However, the search for the optimal order-
ing is an NP-complete problem [39]. Therefore, many
heuristics have been devised to find an ordering which
approximates the optimal one. These heuristics range
from the divide and conquer approaches such as Nest-
ed Dissection [22,29] to the greedy schemes such as
Minimum Degree [1,37]. For certain types of matrices,
bandwidth and profile reducing orderings such as Re-

verse Cuthill-McKee [8,23] and the Sloan ordering [34]
may perform well.

Once the amount of fill-in is minimized through
the appropriate ordering, it is still desirable to use the
optimized BLAS to perform the floating point opera-
tions. This poses a problem since the sparse matrix
coefficients are usually stored in a form that is not
suitable for BLAS. There exist two major approach-
es that efficiently cope with this, namely the multi-
frontal [20] and supernodal [5] methods. The Super-
LU package [28] is an example of a supernodal code,
whereas UMFPACK [11,12] is a multifrontal one.

Factorization algorithms for sparse matrices typical-
ly include the following phases, which sometimes are
intertwined:

54 J. Dongarra et al. / Recursive approach in sparse matrix LU factorization

Fig. 3. Recursive LU factorization function used for sparse matrices (no pivoting is performed).

– matrix ordering to reduce fill-in,
– symbolic factorization,
– search for dense submatrices,
– numerical factorization.

The first phase is aimed at reducing the aforemen-
tioned amount of fill-in. Also, it may be used to im-
prove the numerical stability of the factorization (it is
then referred to as a static pivoting [18]). In our code,
this phase serves both of these purposes, whereas in Su-
perLU and UMFPACK the pivoting is performed only
during the factorization. The actual pivoting strategy
being used in theses packages is called a threshold piv-
oting: the pivot is not necessarily the largest in abso-
lute value in the current column (which is the case in
the dense codes) but instead, it is just large enough to
preserve numerical stability. This makes the pivoting
much more efficient, especially with the complex data
structures involved in sparse factorization.

The next phase finds the fill-in and allocates the re-
quired storage space. This process can be performed
solely based on the matrix sparsity pattern information
without considering matrix values. Substantial per-
formance improvements are obtained in this phase if
graph-theoretic concepts such as elimination trees and
elimination dags [24] are efficiently utilized.

The last two phases are usually performed jointly.
They aim at executing the required floating point opera-
tions at the highest rate possible. This may be achieved
in a portable fashion through the use of BLAS. Super-
LU uses supernodes, i.e. sets of columns of a similar
sparsity structure, to call the Level 2 BLAS. Memory
bandwidth is the limiting factor of the Level 2 BLAS,
so, to reuse the data in cache and consequently improve
the performance, the BLAS calls are reorganized yield-
ing the so-called Level 2.5 BLAS technique [13,28].
UMFPACK uses frontal matrices that are formed dur-

J. Dongarra et al. / Recursive approach in sparse matrix LU factorization 55

Fig. 4. Column-major storage scheme versus recursive storage (left) and function for converting a square matrix from the column-major to
recursive storage (right).

ing the factorization process. They are stored as dense
matrices and may be passed to the Level 3 BLAS.

4. Sparse recursive factorization algorithm

The essential part of any sparse factorization code
is the data structure used for storing matrix entries.
The storage scheme for the sparse recursive code is
illustrated in Fig. 5. It has the following characteristics:

– the data structure that describes the sparsity pattern
is recursive,

– the storage scheme for numerical values has two
levels:

∗ the lower level, which consists of dense square
submatrices (blocks) which enable direct use of
the Level 3 BLAS, and

∗ the upper level, which is a set of integer indices
that describe the sparsity pattern of the blocks.

There are two important ramifications of this scheme.
First, the number of integer indices that describe the
sparsity pattern is decreased because each of these in-
dices refers to a block of values rather than individual
values. It allows for more compact data structures and
during the factorization it translates into a shorter ex-
ecution time because there is less sparsity pattern data
to traverse and more floating operations are performed
by efficient BLAS codes – as opposed to in code that
relies on compiler optimization. Second, the blocking
introduces additional nonzero entries that would not be
present otherwise. These artificial nonzeros amount
to an increase in storage requirements. Also, the ex-
ecution time is longer because it is spent on floating

point operations that are performed on the additional
zero values. This leads to the conclusion that the sparse
recursive storage scheme performs best when almost
dense blocks exist in the L and U factors of the ma-
trix. Such a structure may be achieved with the band-
reducing orderings such as Reverse Cuthill-McKee [8,
23] or Sloan [34]. These orderings tend to incur more
fill-in than others such as Minimum Degree [1,37] or
Nested Dissection [22,29], but this effect can be expect-
ed to be alleviated by the aforementioned compactness
of the data storage scheme and utilization of the Level
3 BLAS.

The algorithm from Fig. 3 remains almost unchanged
in the sparse case – the differences being that calls to
BLAS are replaced by the calls to their sparse recur-
sive counterparts and that the data structure is no longer
the same. Figures 6 and 7 show the recursive BLAS
routines used by the sparse recursive factorization al-
gorithm. They traverse the sparsity pattern and upon
reaching a single dense block level they call the dense
BLAS which perform actual floating point operations.

5. Performance results

To test the performance of the sparse recursive factor-
ization code it was compared to SuperLU Version 2.0
(available at http://www.nersc.gov/˜xiaoye/SuperLU/)
and UMFPACK Version 3.0 (available at http://www.
cise.ufl.edu/research/sparse/umfpack/). The tests were
performed on a Pentium III Linux workstation whose
characteristics are given in Table 1.

Each of the codes were used to factor selected matri-
ces from the Harwell-Boeing collection [19], and Tim

56 J. Dongarra et al. / Recursive approach in sparse matrix LU factorization

Fig. 5. Sparse recursive blocked storage scheme with the blocking factor equal 2.

Fig. 6. Recursive formulation of the xGEMM() function which is used in the sparse recursive factorization.

Davis’ [10] matrix collection. These matrices were
used to evaluate the performance of SuperLU [28]. The
matrices are unsymmetric so they cannot be used di-
rectly with the Conjugate Gradient method and there
is no general method for finding the optimal iterative
method other than trying each one in turn or running
all of the methods in parallel [7]. Table 2 shows the to-
tal execution time of factorization (including symbolic
and numerical phases) and forward error estimates.

The performance of a sparse factorization code can
be tuned for a given computer architecture and a par-

ticular matrix. For SuperLU, the most influential pa-
rameter was the fill-in reducing ordering used prior to
factorization. All of the available ordering schemes
that come with SuperLU were used and Table 2 gives
the best time that was obtained. UMFPACK supports
only one kind of ordering (a column oriented version of
the Approximate Minimum Degree algorithm [1]) so it
was used with the default values of its tuning parame-
ters and threshold pivoting disabled. For the recursive
approach all of the matrices were ordered using the
Reverse Cuthill-McKee ordering. However, the block

J. Dongarra et al. / Recursive approach in sparse matrix LU factorization 57

Fig. 7. Recursive formulation of the xTRSM() functions used in the
sparse recursive factorization.

size selected somewhat influences the execution time.
Table 2 shows the best running time out of the block
sizes ranging between 40 and 120. The block size de-
pends mostly on the size of the Level 1 cache but also
on the sparsity pattern of the matrix. Nevertheless, run-
ning times for the different block sizes are comparable.
SuperLU and UMFPACK also have tunable parameters
that functionally resemble the block size parameter but
their importance is marginal as compared to that of the
matrix ordering.

The total factorization time from Table 2 favors
the recursive approach for some matrices, e.g., ex11,
psmigr 1 and wang3, and for others it strongly
discourages its use (matrices mcfe, memplus and

Table 1
Parameters of the machine used in the tests

Hardware specifications
CPU type Pentium III
CPU clock rate 550 MHz
Bus clock rate 100 MHz
L1 data cache 16 Kbytes
L1 instruction cache 16 Kbytes
L2 unified cache 512 Kbytes
Main memory 512 MBytes

CPU performance
Peak 550 MFLOP/s
Matrix-matrix multiply 390 MFLOP/s
Matrix-vector multiply 100 MFLOP/s

raefsky4). There are two major reasons for the poor
performance of the recursive code on the second class.
First, there is an average density factor which is the ra-
tio of the true nonzero entries of the factored matrix to
all the entries in the blocks. It indicates how many ar-
tificial nonzeros were introduced by the blocking tech-
nique. Whenever this factor drops below 70%, i.e. 30%
of the factored matrix entries do not come from the L
and U factors, the performance of the recursive code
will most likely suffer. Even when the density factor
is satisfactory, still, the amount of fill-in incurred by
the Reverse Cuthill-McKee ordering may substantially
exceed that of other orderings. In both cases, i.e. with
a low value of the density factor or excessive fill-in,
the recursive approach performs too many unnecessary
floating point operations and even the high execution
rates of the Level 3 BLAS are not able to offset it.

The computed forward error is similar for all of the
codes despite the fact that two different approaches to
pivoting were employed. Only SuperLU was doing
threshold pivoting while the other two codes had the
threshold pivoting either disabled (UMFPACK) or there
was no code for any kind of pivoting.

Table 3 shows the matrix parameters and storage re-
quirements for the test matrices. It can be seen that
SuperLU and UMFPACK use slightly less memory and
consequently perform fewer floating point operations.
This may be attributed to the Minimum Degree algo-
rithm used as an ordering strategy by these codes which
minimizes the fill-in and thus the space required to store
the factored matrix.

6. Conclusions and future work

We have shown that the recursive approach to the
sparse matrix factorization may lead to an efficient im-
plementation. The execution time, storage require-
ments, and error estimates of the solution are compara-

58 J. Dongarra et al. / Recursive approach in sparse matrix LU factorization

Table 2
Factorization time and error estimates for the test matrices for three factorization codes

Matrix SuperLU UMFPACK Recursion
name T [s] FERR T [s] FERR T [s] FERR

af23560 44.2 5 · 10−14 29.3 4 · 10−04 31.3 2 · 10−14

ex11 109.7 3 · 10−05 66.2 2 · 10−03 55.3 1 · 10−06

goodwin 6.5 1 · 10−08 17.8 2 · 10−02 6.7 5 · 10−06

jpwh 991 0.2 3 · 10−15 0.1 2 · 10−12 0.3 3 · 10−15

mcfe 0.1 1 · 10−13 0.2 2 · 10−13 0.2 9 · 10−13

memplus 0.3 2 · 10−12 20.1 4 · 10−11 12.7 7 · 10−13

olafu 26.2 1 · 10−06 19.6 2 · 10−06 22.1 4 · 10−09

orsreg 1 0.5 1 · 10−13 0.3 2 · 10−12 0.5 2 · 10−13

psmigr 1 110.8 8 · 10−11 242.6 2 · 10−08 88.6 1 · 10−05

raefsky3 62.1 1 · 10−09 52.4 5 · 10−10 69.7 4 · 10−13

raefsky4 82.5 2 · 10−06 101.9 5 · 10+01∗ 104.3 4 · 10−06

saylr4 0.9 3 · 10−11 0.7 2 · 10−07 1.0 1 · 10−11

sherman3 0.6 6 · 10−13 0.5 2 · 10−11 0.7 5 · 10−13

sherman5 0.3 1 · 10−13 0.3 4 · 10−12 0.3 6 · 10−15

wang3 84.1 2 · 10−14 132.1 5 · 10−08 79.2 2 · 10−14

T – combined time for symbolic and numerical factorization

FERR =
‖x̂−x‖∞
‖x‖∞ (forward error)

∗ the matrix raefsky4 requires the threshold pivoting in UMFPACK
to be enabled in order to give a satisfactory forward error

Table 3
Parameters of the test matrices and their storage requirements for three factorization codes

Matrix parameters SuperLU UMFPACK Recursion
Name N NZ·103 L + U L + U L + U block

[MB] [MB] [MB] size

af23560 23560 461 132.2 96.6 149.7 120
ex11 16614 1097 210.2 129.2 150.6 80
goodwin 7320 325 31.3 57.0 35.0 40
jpwh 991 991 6 1.4 1.4 2.3 40
mcfe 765 24 0.9 0.7 1.8 40
memplus 17758 126 5.9 112.5 195.7 60
olafu 16146 1015 83.9 63.3 96.1 80
orsreg 1 2205 14 3.6 2.8 3.9 40
psmigr 1 3140 543 64.6 76.2 78.4 100
raefsky3 21200 1489 147.2 150.1 193.9 120
raefsky4 19779 1317 156.2 171.5 234.4 80
saylr4 3564 22 6.0 4.6 7.2 40
sherman3 5005 20 5.0 3.5 7.3 60
sherman5 3312 21 3.0 1.9 3.1 40
wang3 26064 177 116.7 249.7 256.7 120

N – order of the matrix
NZ – number of nonzero entries in the matrix
L + U – size of memory required to store the L and U factors

ble to that of supernodal and multifrontal codes. How-
ever, there are still matrices for which the recursive
code does not perform well. These cases should be
investigated further and possibly a metric devised that
would allow selecting the best factorization method for
a given matrix. This metric will probably include the
aforementioned density factor. During a preprocess-
ing phase, the density factor is computed and only if it
exceeds a certain threshold the recursive code is used.
An open question is which code to choose when the

recursive one is not appropriate. A performance model
is necessary that links together the features of the mul-
tifrontal and supernodal approaches with the character-
istics of the matrix to be factored and machnie it is to
be used on.

The problem with low values of the density factor
may be regarded as a future research direction. The
aim should be to make the recursive code more adaptive
to the matrix sparsity pattern. It could allow the use
of matrix orderings other than Reverse Cuthill-McKee

J. Dongarra et al. / Recursive approach in sparse matrix LU factorization 59

because the high average density of the blocks will not
be as crucial any more.

Another outstanding issue is the numerical stability
of the factorization process. As it is now, it does not
perform pivoting and still delivers acceptable accuracy.
On matrices other than those tested, the method may
still fail, and even iterative refinement may be unable
to regain sufficient accuracy. Therefore, an extended
version that performs at least some form of pivoting
would likely be much more robust.

A parallel version of the recursive approach for
sparse matrices is also under consideration. At this
point, there are many issues to be resolved and the main
direction is still not clear. Supernodal and multifrontal
approaches use symbolical data structures from the se-
quential algorithm to assist the parallel implementa-
tion. In the recusive approach no such structures are
used and consequently parallelism has to be exploited
in some other way. On the other hand, dense codes [21,
30] use recursion only locally and resort to other tech-
niques in order to expose parallelism inherent in the
factorization process [32].

Acknowledgments

This work was supported in part by the Universi-
ty of California Berkeley through subcontract num-
ber SA2283JB, as part of the prime contract ACI-
9813362 from the National Science Foundation; and by
the University of California Berkeley through subcon-
tract number SA1248PG, as part of the prime contract
DEFG03-94ER25219 from the Department of Energy.

References

[1] R. Amestoy, T. Davis and I. Duff, An approximate minimum
degree algorithm, Technical Report TR/PA/95/09, CERFACS,
Toulouse, France.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney and D. Sorensen, LAPACK User’s Guide, Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA,
Third edition, 1999.

[3] B. Andersen, F. Gustavson and J. Wasniewski, A recursive
formulation of the Cholesky factorization operating on a ma-
trix in packed storage form, in Proceedings of the 9th SIAM
Conference on Parallel Processing for Scientific Computing,
San Antonio, TX, USA, March 24–27, 1999.

[4] B. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski and
P. Yalamov, LAWRA – linear algebra with recursive algo-
rithms, in: Proceedings of the Conference on Parallel Pro-
cessing and Applied Mathematics, Kazimierz Dolny, Poland,
September 14–17, 1999.

[5] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton and H. Simon,
Progress in sparse matrix methods in large sparse linear sys-
tems on vector supercomputers, Intern. J. of Supercomputer
Applications 1 (1987), 10–30.

[6] D. Bailey, K. Lee and H. Simon, Using Strassen’s algorithm
to accelerate the solution of linear systems, The Journal of
Supercomputing 4 (1990), 357–371.

[7] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout and C. Romine,
Algorithmic bombardment for the iterative solution of linear
systems: a poly-iterative approach, JCAM 74 (1996), 91–109.

[8] E. Cuthill and J. McKee, Reducing the bandwidth of sparse
symmetric matrices, in: Proceedings of ACM National Con-
ference, Association of Computing Machinery, New York,
1969.

[9] M. Dayde and I. Duff, Level 3 BLAS in LU factorization on
Cray-2, ETA-10P and IBM 3090-200/VF, The International
Jorunal of Supercomputer Applications 3 (1989), 40–70.

[10] T. Davis, University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/˜davis/sparse/,
ftp://ftp.cise.ufl.edu/pub/faculty/davis/matrices, NA Digest
94(42) (October 16, 1994), NA Digest 96(28) (July 23, 1996),
and NA Digest 97(23) (June 7, 1997).

[11] T. Davis and I. Duff, An unsymmetric-pattern multifrontal
method for sparse LU factorization, Technical Report RAL-
93-036, Rutherford Appleton Laboratory, Chilton, Didcot,
Oxfordshire, 1994.

[12] T. Davis, User’s guide for the unsymmetric-pattern multi-
frontal package (UMFPACK), Technical Report TR-93-020,
Computer and Information Sciences Department, University
of Florida, June 1993.

[13] J. Demmel, S. Eisenstat, J. Gilbert, X. Li and J. Liu, A su-
pernodal approach to sparse partial pivoting, Technical report
UCB//CSD-95-883, Computer Science Division, U.C. Berke-
ley, Berkeley, California, 1995.

[14] J. Dongarra, J. Du Croz, I. Duff and S. Hammarling, A set of
Level 3 FORTRAN Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software 16 (March 1990), 1–
17.

[15] J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson,
An extended set of FORTRAN Basic Linear Algebra Sub-
programs, ACM Transactions on Mathematical Software 14
(March 1988), 1–17.

[16] J. Dongarra and R. Whaley, Automatically Tuned Linear Al-
gebra Software (ATLAS), in: Proceedings of SC’89, 1989.

[17] I. Duff, A. Erisman and J. Reid, Direct methods for sparse
matrices, Oxford University Press, 1989.

[18] I. Duff and J. Koster, The design and use of algorithms for
permuting large entries to the diagonal of sparse matrices,
SIAM J. Matrix Anal. Appl. 20 (1999), 889–901.

[19] I. Duff, R. Grimes and J. Lewis, Sparse matrix test problems,
ACM Transactions on Mathematical Software 15 (1989), 1–
14.

[20] I. Duff and J. Reid, The multifrontal solution of indefinite
sparse symmetric linear equations, ACM Transactions on
Mathematical Software 9(3) (September 1983), 302–325.

[21] E. Elmroth and F. Gustavson, Applying recursion to serial and
parallel QR factorization leads to better performance, IBM
Journal of Research and Development 44(4) (2000), 605–624.

[22] A. George, Nested dissection of a regular finite element mesh,
SIAM Journal of Numerical Analysis 10 (1973), 345–363.

[23] N.E. Gibbs, W.G. Poole and P.K. Stockmeyer, An algorithm
for reducing the bandwidth and profile of a sparse matrix,
SIAM Journal of Numerical Analysis 13(2) (April 1976).

60 J. Dongarra et al. / Recursive approach in sparse matrix LU factorization

[24] J.R. Gilbert and J.W.H. Liu, Elimination structures for unsym-
metric sparse LU factors, SIAM J. Matrix Anal. Appl. 14(2)
(April 1993), 334–352.

[25] F. Gustavson, Recursion leads to automatic variable blocking
for dense linear-algebra algorithms, IBM Journal of Research
and Development 41(6) (November 1997), 737–755.

[26] F. Gustavson, A. Henriksson, I. Jonsson, B. Kgström and P.
Ling, Recursive blocked data formats and BLAS’s for dense
linear algebra algorithms, in: Proceedings of Applied Parallel
Computing, PARA’98, B. Kgström, J. Dongarra, E. Elmroth
and J. Waśniewski, eds, Lecture Notes in Computer Science
1541, Springer-Verlag, Berlin, 1998, pp. 195–206.

[27] F. Gustavson and I. Jonsson, Minimal-storage high-
performance Cholesky factorization via blocking and recur-
sion, IBM Journal of Research and Development 44(6) (Nove-
meber 2000), 823–850.

[28] X. Li, Sparse Gaussian elimination on high performance com-
puters, Ph.D. thesis, University of California at Berkeley,
Computer Science Department, 1996.

[29] R.J. Lipton, D.J. Rose and R.E. Tarjan, Generalized Nested
Dissection, SIAM Journal on Numerical Analysis 16 (1979),
346–358.

[30] A. Petitet, R.C. Whaley, J. Dongarra and A. Cleary, HPL –
A portable implementation of the high-performance Lin-
pack benchmark for distributed-memory computers, http://icl.

cs.utk.edu/hpl/, http://www.netlib.org/benchmark/hpl/.
[31] M. Paprzycki and C. Cyphers, Using Strassen’s matrix multi-

plication in high performance solution of linear systems, Com-
puters Math. Applic. 31(4/5) (1996), 55–61.

[32] Y. Saad, Communication complexity of the Gaussian elimi-
nation algorithm on multiprocessors, Linear Algebra and Its
Applications 77 (1986), 315–340.

[33] Y. Saad, Iterative methods for sparse linear systems, PWS
Publishing Company, New York, 1996.

[34] S.W. Sloan, An algorithm for profile and wavefront reduc-
tion of sparse matrices, International Journal for Numerical
Methods in Engineering 23 (1986), 239–251.

[35] G. Strang and G. Fix, An analysis of the Finite Element
Method, Prentice-Hall, Inc., 1973.

[36] V. Strassen, Gaussian elimination is not optimal, Numerical
Mathematics 13 (1969), 354–356.

[37] W. Tinney and J. Walker, Direct solutions of sparse network
equations by optimally ordered triangular factorization, Pro-
ceedings of the IEEE 55 (1967), 1801–1809.

[38] S. Toledo, Locality of Reference in LU Decomposition with
partial pivoting, SIAM J. Matrix Anal. Appl. 18(4) (October
1997), 1065–1081.

[39] M. Yannakakis, Computing the minimum fill-in is NP-
complete, SIAM Journal on Algebraic and Discrete Methods
2(1) (March 1981), 77–79.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

