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According to the characteristics of grinding process and accuracy requirements of technical indicators, a hybrid multiple soft-
sensor modeling method of grinding granularity is proposed based on cuckoo searching (CS) algorithm and hysteresis switching
(HS) strategy. Firstly, a mechanism soft-sensor model of grinding granularity is deduced based on the technique characteristics and
a lot of experimental data of grinding process. Meanwhile, the BP neural network soft-sensor model and wavelet neural network
(WNN) soft-sensor model are set up. Then, the hybrid multiple soft-sensor model based on the hysteresis switching strategy is
realized. That is to say, the optimum model is selected as the current predictive model according to the switching performance
index at each sampling instant. Finally the cuckoo searching algorithm is adopted to optimize the performance parameters of
hysteresis switching strategy. Simulation results show that the proposed model has better generalization results and prediction
precision, which can satisfy the real-time control requirements of grinding classification process.

1. Introduction

The grinding process is the main production process for the
mineral concentrator factories, whose technique is complex
and which is affected by many factors in the main loop, such
as the varied ore characteristic, the ore hardness, the particle
granularity distribution, the mineral composition, or the
varied flow rate. Serious nonlinear, strong coupling and big
time lag are the characteristics of the grinding process. Due
to the restriction of on-site and the lack of mature detection
devices, it is difficult to obtain the internal parameters
(grinding granularity and milling ore ratio) of the grinding
process in time, which resulted in not achieving the direct
closed-loop control. The soft-sensor modeling technology
can effectively solve the estimation of the industrial process
quality indexes online [1].

In order to achieve the forecasting and monitoring for
grinding granularity and milling ore ratio on time, the soft-
sensor model is established by adopting the instrumental

variables measured directly in grinding process. It has very
important significance for the stability of the grinding pro-
cess. In view of the grinding process, the domestic scholars
have proposedmany soft-sensormodelingmethods based on
neural network [2–4] and case-based reasoning [5]. Combin-
ing with the actual working conditions of the grinding clas-
sification process, a soft-sensor model is proposed based on
the RBF neural network [2]. According to the characteristics
of two-stage grinding process, a neural network soft-sensor
model for grinding granularity is set up based on themultiple
input layers neural network optimized by genetic algorithm
(GA) [3]. Based on the idea that multiple models can
improve the prediction accuracy and robustness, a multiple
neural networks soft-sensor model of grinding granularity is
proposed [4]. The case-based reasoning (CBR) technology is
applied in the grind size prediction of grinding process [5].
Now a single model structure is most used in nonlinear soft-
sensor model. In theory, if there is no limit on the model size
and there are plenty of training data, the soft-sensor model
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Table 1: Prediction data set of soft sensor model.

Number Feedingcapacity

Inlet water
flow
(m3/s)

Export
water flow
(m3/s)

Pump
pool level

(m)

Pump
pressure
(Kpa)

Current
(A)

Feed flow
of cyclone
(m3/s)

First
concentration

Ball mill
power
(kw)

TP Granularity
(%)

1 137.39 28.75 86.65 1.61 0.042 62 −129.69 65.02 1126 390.86 58.54
2 136.37 28.92 95.64 1.58 0.041 64 −128.86 65.26 1155 398.62 56.16
3 137.40 28.79 84.87 1.59 0.042 64 −128.92 66.26 1153 435.55 57.99
4 136.06 28.84 100.47 1.58 0.042 62 −129.55 64.75 1120 375.86 57.06
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600 136.53 28.98 63.93 1.69 0.042 68 −128.81 65.77 1204 279.12 58.51

based on neural network or fuzzy system can always obtain
a satisfactory model structure and a predictive accuracy. But
with the enlargement of the training area and the increased
complexity of the systemic state sharply, the prediction
accuracy, robustness, and generalization ability of the soft-
sensor model are greatly reduced. The idea of multimodel
switching can satisfy the requirement of complex working
conditions. A predictive control model of superheated steam
temperature for coal-fired power plants is proposed [6, 7].
The multiple model control strategy is applied in the blue tail
ticket tracker (BTT) missile design [8].

A hybridmultiple soft-sensor model based on the cuckoo
searching algorithm and the hysteresis switching strategy is
proposed to predict the grinding granularity, which includes
the mechanism soft-sensor model, the BP neural network
soft-sensor model, and wavelet neural network soft-sensor
model. At each sampling instant, the optimal local model
is selected as the current soft-sensor model through CS-
hysteresis switching strategy. The simulation results show
that the method can significantly improve the accuracy and
robustness.

2. Technological Flowchart of
Grinding Process

The technique flowchart of a typical grinding process is
shown in Figure 1 [9]. The grinding process is the following
technique step after ore crushing process, whose purpose is
to make all or most of useful ores reach monomer separation
and avoid overgrinding on the same time. The typical two-
stage closed-circuit grinding process is mainly composed
of ball milling machine, spiral classifier, and hydrocyclone,
where the first closed-circuit grinding process is composed
of the first-stage ball millingmachine and spiral classifier and
the second closed-circuit grinding process is composed of the
second ball milling machine and hydrocyclone.

The specific technique flowchart of the grinding classifi-
cation process is described as follows. Ore grains are fed into
the conveyer by the pendulum feeder and conveyed to ball
milling machine for grinding. The rowing ore grains from
ball milling machine go into the spiral classifier for the first
grading. The coarse ore grains are returned to the first-stage
ball milling machine by the conveyer for regrinding and the
fine ore grains from the overflow inlet of cyclone go into the
sand pump pool. Then the fine ore grains will be pumped

into the hydrocyclone by the water pump for the secondary
classification. By the centrifugal force of hydrocyclone, the
different ore grains are divided from each other. The rather
finer ore grains overflowing from the overflow outlet of the
hydrocyclone will go into the next operation process. The
coarser particles will go from the bottom flow outlet of the
hydrocyclone into the secondary ball milling machine for
regrinding. Thus these steps form a grinding closed loop.
The grinding classification process is a complex controlled
object. There are many factors influencing the key economic
and technical indicators (grinding granularity), such as the
milling feeding capacity, the inlet water flow, the export water
flow, and the pump pool level. This paper adopts 600 groups’
production data to establish soft-sensor model of grinding
granularity, which is shown in Table 1.

3. Soft-Sensor Models of Grinding Granularity

3.1. Mechanism Model

3.1.1. Separation GranularityModel. Separation granularity is
the grinding granularity fromgritmouth and overflowmouth
of hydrocyclone, each accounting for 50%. It is usually repre-
sented as 𝑑

50
. According to the empirical model published by

Splitter in 1976, the separation granularity model is described
as follows:

𝑑

50(𝑐)
=

14.2𝐷

0.46

𝑐
𝐷

0.6

𝑖
𝐷

1.21

𝑜
exp (0.063𝑉)

𝐷

0.71

𝑢
ℎ

0.38
𝑄

0.45
(𝑆 − 𝐿)

0.5
, (1)

where 𝑑
50(𝑐)

is the separation granularity of the hydrocyclone;
𝐷

𝑐
, 𝐷
𝑜
, and 𝐷

𝑢
are hydrocyclone feeding concentration,

inner diameter of hydrocyclone overflow mouth, and inner
diameter of hydrocyclone grit mouth, respectively; ℎ is the
distance between hydrocyclone overflow mouth and hydro-
cyclone grit mouth; 𝑉 is the content of solid in hydrocyclone
feeding pulp; 𝑄 is hydrocyclone feeding flow rate; 𝑆 is the
solid density of hydrocyclone feeding pulp; 𝐿 is the density
of hydrocyclone feeding pulp; 𝑃 is the hydrocyclone pressure
drop.

There is the following relationship between 𝑄 and 𝑃:

𝑄 = 9.4 × 10

−3
√

𝑃𝐷

2

𝑐
.

(2)
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Figure 1: Technique flowchart of grinding process.

According to (1) and (2), the relationship between 𝑑

50(𝑐)

and 𝑃 is described as follows:

𝑑

50(𝑐)
=

14.2𝐷
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=

14.2𝐷

0.46

𝑐
𝐷

0.6
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1.21

𝑜
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(9.4 × 10
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)
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⋅ exp (0.063𝑉) 𝑃−9/40 = Θ ⋅ exp (0.063𝑉) 𝑃−9/40,

(3)

where Θ is a variable associated with hydrocyclone structure
parameters, which has no relationship between 𝑉 and 𝑃.

Equation (3) is linearized for the convenience calculation
as

lg 𝑑
50(𝑐)

= 𝜆

0
+ 𝜆

1
𝐷

𝑜
+ 𝜆

2
𝐷

𝑖
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4
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5
𝐷

𝑐
, (4)

where 𝜆

0
, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, and 𝜆

5
are the undetermined

coefficients.

3.1.2. Theoretical Model of Grinding Granularity. Grinding
granularity is referred to granularity range or the content
of some specific granularity. The theory model of grinding
granularity is described as follows [10]:

𝑀

200
=

∑

𝑑
75

𝑖=1
𝑚

𝑖
(1 − 𝑅

𝑓
− 𝐸

𝑖
(1 − 𝑅

𝑓
))

∑

𝑁

𝑖=1
𝑚

𝑖
(1 − 𝑅

𝑓
− 𝐸

𝑖
(1 − 𝑅

𝑓
))

,
(5)

where 𝑀

200
is the quality percentage of 200 mesh (75𝜇m)

mineral granularity in the whole classification products; 𝑑
75

is the granularity size 75 𝜇m;𝑁 is the biggest granularity size
in classification products; 𝑚

𝑖
is the quality of the 𝑖th grade

grinding granularity determined by the granularity distribu-
tion of hydrocyclone feeding pulp; 𝑅

𝑓
is the mass fraction

of hydrocyclone bottom mouth, which has relations with
water content of spinning pulp and structural parameters of
hydrocyclone; 𝐸

𝑖
is the classification efficiency of the first 𝑖

grade mineral granularity, which is decided by the structural
parameters of hydrocyclone and operating parameters.
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3.1.3. Relationship between Separation Model and Theoretical
Model of Grinding Granularity. Most of grinding granularity
distribution characteristics conform to the Rosin-Rammler
granularity equation. So, the grinding granularity distribu-
tion 𝐹

𝑓
(𝑑) is represented as follows:

𝐹

𝑓 (
𝑑) = 1 − exp(−0.6931( 𝑑

𝑑

𝑓
(50)

)

𝑘

) ,
(6)

where 𝑑
𝑓
(50) is the grinding granularity when hydrocyclone

cumulative production rate is 50% and 𝑘 is a constant related
to the pulp properties.

According to conversion efficiency curve equation put
forward by Plitt, 𝐸

𝑖
is calculated by

𝐸

𝑖
= 1 − exp(−0.6931(

𝑑

𝑖

𝑑

50(𝑐)

)

𝑚

) , (7)

where 𝑑
𝑖
is a diameter of the 𝑖th grade mineral granularity;

𝑚 is related to the pulp and characteristics of grinding
classification circuit.

Through comparisons of (5), (6), and (7), there is relation-
ship between grinding granularity and separation granularity
despite of the different concepts. This relationship function
between𝑀

200
and 𝑑

50(𝑐)
is described as follows [11]:

lg (𝑀
200

) = 𝑘

0
+ 𝑘

1
(lg 𝑑
50(𝑐)

) , (8)

where 𝑘
0
, 𝑘
1
are undetermined coefficients.

Put (4) into (8), and regard properties of spinning pulp
and structural parameters of the hydrocyclone as constants.
So themechanismmodel of grinding granularity is described
as follows:

lg (𝑀
200

) = 𝑎

0
+ 𝑎

1
𝐷

𝑐
+ 𝑎

2
𝑄, (9)

where 𝑎
0
, 𝑎
1
, and 𝑎

2
are undetermined coefficients.

According to (9), the grinding granularity can be
expressed by hydrocyclone feeding concentration and hydro-
cyclone feeding flow rate. 𝑎

0
, 𝑎
1
, and 𝑎

2
are decided by the

least squaresmethod. So the grinding granularity is estimated
online through (9) after the coefficients are determined.

These models are derived based on the ideal working
conditions of hydrocyclone and a lot of experimental data of
grinding process. But the grinding process is complex and
time-varying, so these models do not have good practical
application value. However these mathematical models pro-
vide the technical guidance for using soft-sensor technology
to estimate the grinding granularity.

3.2. BP Neural Network. BP neural network is a kind of
multiple layers feed-forward neural network, whose structure
is shown in Figure 2.

In Figure 2, 𝑋
𝑗
represents the input of the input layer at

node 𝑗, 𝑗 = 1, . . . , 𝑚; 𝑤
𝑖𝑗
is the weight between node 𝑖 in

hidden layer and node 𝑗 in input layer; 𝜃
𝑖
is a threshold value

of the 𝑖th hidden layer node; 𝜙(𝑥) is the excitation function of
hidden layer; 𝑤

𝑘𝑖
is a weight between node 𝑘 in output layer

and node 𝑖 in hidden layer, 𝑖 = 1, . . . , 𝑞; 𝑎
𝑘
is a threshold value
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Figure 2: Structure of BP neural network.

of the 𝑘th output layer node, 𝑘 = 1, . . . , 𝑙;𝜓(𝑥) is the excitation
function of output layer; 𝑦

𝑘
is the output of the output layer

at node 𝑘, 𝑘 = 1, . . . , 𝑙.
Back propagation (BP) algorithm is essentially a gradient

descent method. The training of BP neural network can be
seen as a process of searchingminimal point for amultivariate
function. Its basic idea is described as follows.

Step 1. Initialize each weight value to a small randomnumber
with distributed uniformly random numbers as the initial
connection weights and the threshold values of the nodes.

Step 2. Calculate the actual output of BPNN:

(1) For the input layer nodes, their output𝑂𝐼
𝑗
are equal to

the input data𝑋
𝑗
; that is to say;𝑂𝐼

𝑗
= 𝑋

𝑗
, 𝑗 = 1, . . . , 𝑚.

(2) For the hidden layer nodes, their input is described as
follows:

net𝐻
𝑖
=

𝑚

∑

𝑗=1

𝑤

𝐻𝐼

𝑖𝑗
𝑂

𝐼

𝑗
, 𝑖 = 1, . . . , 𝑞. (10)

The output is

𝑂

𝐻

𝑖
= 𝑓 (net𝐻

𝑖
− 𝜃

𝐻

𝑖
) , (11)

where 𝑤𝐻𝐼
𝑖𝑗

is the connection weights between node
𝑖 in hidden layer and node 𝑗 in input layer; 𝜃

𝑖
is a

threshold value of hidden layer node 𝑖; 𝑞 is the number
of hidden layer nodes; 𝑂𝐼

𝑗
is the output of the input

layer at node 𝑗, that is,𝑋
𝑗
; 𝑓 is Sigmoid function.

(3) Input of the output layer nodes is described as follows:

net𝑂
𝑘
=

𝑞

∑

𝑖=1

𝑤

𝑂𝐻

𝑘𝑖
𝑂

𝐻

𝑖
, 𝑘 = 1, . . . , 𝑙. (12)

The output of the output layer nodes is

𝑦

𝑘
= 𝑓 (net𝑂

𝑘
− 𝜃

𝑂

𝑘
) , (13)

where𝑤𝑂𝐻
𝑘𝑖

is the connection weights between output
layer node 𝑘 and hidden layer node 𝑖; 𝜃𝑂

𝑘
is a threshold

value of the output layer node 𝑘.
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Step 3. The error of the output node is calculated by the
following equation:

𝑒

𝑘
= 𝑑

𝑘
− 𝑦

𝑘
. (14)

Then calculate the error squared sum of all output nodes
and obtain the energy function:

𝐸 =

1

2

𝑙

∑

𝑘=1

(𝑑

𝑘
− 𝑦

𝑘
)

2
. (15)

If 𝐸 is less than predetermined value, turn to Step 5;
otherwise continue to Step 4.

Step 4. Adjust the weights of BPNN.

(1) The weights between the output layer nodes and the
hidden layer nodes are adjusted as follows:

𝑤

𝑂𝐻

𝑘𝑖
= 𝑤

𝑂𝐻

𝑘𝑖
+ Δ𝑤
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𝑘𝑖
,

Δ𝑤

𝑂𝐻

𝑘𝑖
= 𝜂𝜎

𝑂

𝑘
⋅ 𝑂

𝐻

𝑖
,

𝜎

𝑂

𝑘
= (𝑑

𝑘
− 𝑦

𝑘
) ⋅ 𝑦

𝑘
(1 − 𝑦

𝑘
) ,

(16)

where 𝜂 is the training rate and general 𝜂 = 0.01∼1.
(2) The weights 𝑤𝐻𝐼

𝑖𝑗
between the hidden layer nodes and

the input layer nodes are adjusted as follows:

𝑤

𝐻𝐼

𝑖𝑗
= 𝑤

𝐻𝐼

𝑖𝑗
+ Δ𝑤

𝐻𝐼

𝑖𝑗
,

Δ𝑤
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𝑖𝑗
= 𝜂𝜎

𝐻

𝑖
⋅ 𝑂

𝐼

𝑗
,

𝜎

𝐻

𝑖
= 𝑂

𝐻

𝑖
(1 − 𝑂

𝐻

𝑖
)

𝑙

∑

𝑘=1

𝜎

𝑂

𝑘
𝑤

𝑂𝐻

𝑘𝑖
.

(17)

Step 5. Carry on the next training samples. The learning
process of BPNN is complete until each training sample
satisfies the target.

In this paper, the multiple input and single output three-
layer BP neural network is used. The topology of BP neural
network is 10-20-1. The neuron transfer function in hidden
layer used bipolar S type Tangent function (tansig):

𝑓 (𝑥) =

1 − 𝑒

−𝑥

1 + 𝑒

−𝑥
, (−1, 1) .

(18)

The neuron transfer function in output layer uses the
linear transfer function (purelin):

𝑓 (𝑥) = 𝑥. (19)

3.3. Wavelet Neural Network. The structure of wavelet neural
network is similar to BP neural network; that is to say, the
signal spreads forward while errors spread back. But the
transfer function in hidden layer of wavelet neural network
is the wavelet basis function [12], whose structure is shown in
Figure 3.

In Figure 3, 𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑘
are the inputs of wavelet

neural network, 𝑌
1
, 𝑌

2
, . . . , 𝑌

𝑘
are the expected outputs of

wavelet neural network, and 𝑊

𝑖𝑗
and 𝑊

𝑗𝑘
are weights of

wavelet neural network. In this paper, Morlet function is
selected as the wavelet basis function of wavelet neural
network, which is defined as follows:

𝑦 = cos (1.75𝑥) 𝑒−𝑥
2
/2
.

(20)

The output layer of wavelet neural network is calculated
by (13):

𝑦 (𝑘) =

𝑙

∑

𝑖=1

𝜔

𝑖𝑘
ℎ (𝑖) ,

(21)



6 Scientific Programming

Collecting data

Pretreatment of data

According to the performance index,
switching to the best model 

WNN 
model

BPNN 
model

Mechanism 
model

Prediction 
output

Comparing performance indicators of all models
in prediction point 

Figure 4: Structure of hybrid multiple soft-sensor model.

where𝜔
𝑖𝑘
is the weight form hidden layer to output layer; ℎ(𝑖)

is the output of the 𝑖th hidden layer nodes; 𝑙 is the number of
hidden layer nodes;𝑚 is the number of output layer nodes.

Weights of wavelet basis functions are revised by gradient
correction method, which is familiar to BP neural network.
With continuous weights correction, the prediction accuracy
of wavelet neural network has been improved continuously.

4. Hybrid Multiple Soft-Sensor Model Based
on Hysteresis Switching Strategy

4.1. Structure of Hybrid Multiple Soft-Sensor Model. The
prediction precision of multiple soft-sensor models is higher
than a signal model, but, in each calculation, the multiple
models are not suitable for the current actual situation. So
using these models to predict the grinding granularity will
not only increase the algorithm complexity but also reduce
the prediction performance. For this purpose, a multimodel
switching thought is proposed, which can dynamically select
the proper soft-sensor model. So a hybrid multiple soft-
sensor model is set up based on the cuckoo searching
algorithm and hysteresis switching strategy, which ismade up
of mechanismmodel, BP neural network, and wavelet neural
network. Its structure is shown in Figure 4.

4.2. Hysteresis Switching Strategy. Multimodel switching
strategy was, at the earliest, used to solve the stability problem
of estimationmodel in adaptive control [13]. Multiple models
adaptive control (MMAC) based on index switching strategy
was put forward by professor Narendra [14, 15] to ensure that
the prediction result is the best prediction of all submodels.
At each sampling instant, according to the performance as
an indicator, the optimal model is selected as the current
model so that the adaptive control of the whole operation is

realized. This method has better dynamic performance and
faster response speed. Performance indicators are made up
of submodel prediction errors, and the current model is a
local model that has the minimum performance indicators.
The rationality of this method is that the smaller prediction
error causes the smaller tracking error [16]. The multimodel
switching indicator is represented as follows:

𝐽

𝑖
(𝑘) = 𝛼𝑒

2

𝑖
(𝑘) + 𝛽

𝐿

∑

𝑗=1

𝑤

𝑘−𝑗
𝑒

2

𝑖
(𝑘 − 𝑗) ,

𝑖 = 1, 2, 3, . . . , 𝑁,

(22)

where 𝑒
𝑖
(𝑘) = 𝑌(𝑘)−𝑌

𝑖
(𝑘) is the difference between the actual

output and the predicted output of the 𝑖th model in 𝑘 instant;
𝛼 and 𝛽 are weight coefficients; 𝛽 determines the proportion
of history measurement in performance indicators and rep-
resents the effects of the current moment difference and the
past moment difference on performance indicators; usually
0.5 < 𝛽 < 1; 𝑁 is the number of submodels; 𝐿 is the error
range of the past performance indicators; when the range of
the current moment’s difference is larger than the current
moment’s difference, it will have no influence on performance
indicators; 𝑤 represents an error of some past time to now
moment; 𝐽

𝑖
is the switching index representing the divergence

between the forecast model and the actual model, so the
target of switching strategy is to find a minimum 𝐽

𝑖
. In the

sampling time, according to switching index function, the
forecast model is chosen, which is closest to the actual model.

If the difference of 𝑘 moment and 𝑘 − 1 moment is very
small, it is meaningless to switch and it will lead to the system
being unstable if switching frequently. In order to improve
the stability of forecasting system, the switching strategy
is replaced by the hysteresis switching strategy; namely, a
hysteresis factor is added to performance indicators. For
example, the current model is model 𝑖; after taking sample of
the process output, the switching index ofmodel 𝑗 isminimal:

𝐽

𝑗 (
𝑘) = min {𝐽

𝑖 (
𝑘)} , 𝑖 = 1, 2, . . . , 𝑁. (23)

If 𝑗 ̸= 𝑖, the switching strategy with hysteresis factor
𝜌 (𝜌 > 0) is used to determine whether model 𝑖 needs to
be replaced by model 𝑗; if 𝐽

𝑗
(𝑘) + 𝜌 ≤ 𝐽

𝑖
(𝑘), model 𝑖 will be

replaced by model 𝑗, if not, model 𝑖 will continue to be used.
Without frequent switching, the system could keep stable.
However the values of 𝛼 and 𝛽 are obtained by repeated trial
and error in lots of literatures, and then it will reduce the
efficiency of the switching and prediction accuracy. In order
to save the time of switching and improve the prediction
accuracy, the cuckoo search algorithm is used to optimize
parameters 𝛼 and 𝛽.

5. Parameters of Hysteresis Switching Strategy
Optimized by Cuckoo Search Algorithm

5.1. Cuckoo Search Algorithm. In 2009, the cuckoo searching
(CS) algorithm is proposed by Yang of Cambridge University
[17, 18]. This algorithm is mainly based on two aspects:
cuckoo’s parasitic reproduction mechanism and Levy flights
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search principle. In nature, cuckoos use a random manner
or a quasi-random manner to seek bird’s nest location. It
is not easy to fall into local optimum compared with other
intelligent algorithms and has less parameters. Because it is
simple, has less parameters, and is implemented easily, it
gradually becomes a new bright spot in the field of swarm
intelligence algorithm. Cuckoo search algorithm is inspired
by cuckoo parasitic behavior and Levy flights habits. Levy
flight is proposed by Frenchmathematician Paul Pierre; with-
out main information or food being randomly distributed,
Levy flightsmodel is an ideal searchingway for predators.The
CS algorithmhas beenwidely used inmultiobjective schedul-
ing problem [19], reliability-redundancy allocation problems
[20], feed-forward neural network training [21], structural
optimization problems [22], fractional delay-IIR filter design
[23], global numerical optimization [24], travelling salesman
problem [25], satellite image segmentation [26], and so forth.

Many animals and insects’ flying behaviors verify the
characteristics of Levy flight. In order to simulate cuckoo
behaviors, three ideal assumptions are made:

(1) Every cuckoo lays only one egg and randomly places
it in a bird’s nest.

(2) The cuckoo bird eggs which are placed in the host will
hatch and produce the next generation of cuckoo.

(3) The number of nests which the cuckoo can make use
of is certain and the probability that cuckoo bird eggs
are found is 𝑝

𝑎
.

On the basis of the above three ideal assumptions, the
procedure of CS algorithm is described as follows.

(1) Algorithm Initialization. Suppose 𝑋

0
= (𝑥

0

1
, 𝑥

0

2
, . . . , 𝑥

0

𝑁
)

is 𝑁 nest positions generated randomly. Then the testing
functions are adopted to find the optimal position, and then
it will be used in the next generation.

(2) Searching Bird’s Nest Position. Through the location
updating equation (16), search the nest positions for the next
generation of birds. And then the new nest position will
be tested by testing function. By comparing this generation
testing result with the previous generation testing result, the
better result is gotten.

(3) Selecting Bird’s Nest Position. 𝑟 ∈ [0, 1] is random number.
Compare 𝑝

𝑎
= 0.25 with the random number 𝑟. If 𝑟 > 𝑝

𝑎
, the

value of 𝑥𝑡+1
𝑖

is changed randomly; if not, the value of 𝑥𝑡+1
𝑖

remains unchangeable. Then the changed 𝑥

𝑡+1

𝑖
will be tested

by testing function, and the better position 𝑝𝑏

∗

𝑡
is selected

by comparing the test result with the previous generation
optimal position.

(4) Precision or Iteration Judgment. Calculate 𝑓(𝑝𝑏

∗

𝑡
). If it

reaches the target precision or the number of iterations, 𝑝𝑏∗
𝑡

is the global optimal solution 𝑔𝑏; if it is not, 𝑝𝑏∗
𝑡
will be kept

in the next generation and return to Step (2).
It can be seen from the above algorithm steps that

the cuckoo search algorithm adopts the Levy flight (global
searching) and elite reserving strategy (local searching). Step

(3) increases the diversity of solutions and then prevents the
algorithm from getting into local optimum. The searching
path of cuckoo search algorithm is different from the ordinary
algorithms; that is to say that the cuckoo algorithm adopts
Levy flight search method, which has strong randomness.
Broadly speaking, the step length vector of Levy flight should
obey Levy distribution; the migration direction of Levy flight
should obey uniform distribution.

Step length vector of cuckoo search algorithm is selected
byMantegna lawof Levy distribution characteristics. Accord-
ing to Mantegna law, the size of step length 𝑠 is defined as
follows:

𝑠 =

𝑢

|V|1/𝛽
, (24)

where 𝑢 and V obey the normal distribution:

𝑢 ∼ 𝑁(0, 𝜎

2

𝑢
) ,

V ∼ 𝑁(0, 𝜎

2

V) ,

𝜎V = {

Γ (1 + 𝛽) sin (𝜋𝛽/2)
Γ [(1 + 𝛽) /2] 𝛽2

(𝛽−1)/2
}

1/𝛽

,

𝜎

𝑢
= 1.

(25)

The searching method of CS algorithm is Levy flight. For
example, the 𝑖th cuckoo in 𝑡 generation produces the solution
𝑥

𝑡+1

𝑖
in 𝑡 + 1 generation:

𝑥

𝑡+1

𝑖
= 𝑥

𝑡

𝑖
+ 𝛼 ⊕ Levy (𝜆) , (26)

where ⊕ represents one point to one point multiplication; the
step length of Levy(𝜆) is represented as

Levy ∼ 𝑢 = 𝑡

−𝜆
, (1 < 𝜆 ≤ 3) ,

(27)

where 𝛼 is a control variable of step length vector to control
the direction and step size. There is a close relationship
between 𝛼 and the size of searching space. If the searching
space is too small and 𝛼 is too big, some searching space
which has optimal solutions will be ignored. The specific
relationship between 𝛼 and the searching space may be
described as

𝛼 = 𝑂(

𝐿

10

) ,
(28)

where 𝐿 is the size of searching space of the discussed
optimization problem.

5.2. Parameters of Hysteresis Switching Strategy Optimized
by Cuckoo Search Algorithm. 𝛼 and 𝛽 are the components
of each dimension of each bird’s nest. As a result, they
have one-to-one mapping relationship. The fitness function
is mean square error of a neural network model. Through
optimization of CS, the global optimal value and minimum
mean square error are obtained:

fitness (𝑖) =
∑

𝑄

𝑘=1
(𝑡

𝑘
− 𝑦

𝑘
)

2

𝑄

,

(29)
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Keep the corresponding
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Initializing 𝛼 and 𝛽

Figure 5: Procedure flowchart of hysteresis switching strategy optimized by CS algorithm.

where 𝑖 represents the 𝑖th bird’s nest; 𝑄 is the number of
training samples; 𝑦 is the actual output; 𝑡 is the expecting
output.

Before optimizing parameters of hysteresis switching
strategy, the parameters of CS need to be determined. The
number of iterations 𝑁 = 100; the number of birds’ nests
𝑛 = 25; the probability of bird’s nest is 𝑝

𝑎
= 0.25; the control

variable of step length 𝑇 = 0.01. The procedure flowchart
of hysteresis switching strategy optimized by CS algorithm is
shown in Figure 5.

6. Simulation

Aiming at the grinding classification process, the grind-
ing granularity soft-sensor model is built. The soft-sensor
modeling data are listed in Table 1, where the forehead first
500 groups are training data and the remaining 100 groups
are testing data. Before setting up the soft-sensor model,
some performance indicators shown in Table 2 are defined
to test the performance of soft-sensor models, where 𝑦̂ is the
predictive value and 𝑦 is the actual value.
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Figure 6: Prediction output curves under three soft-sensor models.
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Figure 7: Prediction error curves under three soft-sensor models.

Table 2: Definition of performance indices.

Model performance indicators Expression
Maximum positive error (MPE) MPE = max {(𝑦̂ − 𝑦) , 0}

Maximum negative error (MNE) MNE = min {(𝑦̂ − 𝑦) , 0}

Root mean square error (RMSE) RMSE = [

1

𝑛

𝑛

∑

𝑖=1

(𝑦̂

𝑖
− 𝑦

𝑖
)

2

]

1/2

Sum squares error (SSE) SSE =

𝑛

∑

𝑖=1

(𝑦̂

𝑖
− 𝑦

𝑖
)

2

To predict the grinding granularity, a mechanism model,
BPNN model, WNN model, and hybrid multiple models
based on the hysteresis switching strategy are set up. Figure 6
is the prediction curve of three soft-sensor models and
Figure 7 is the predictive error under these soft-sensor
models. Through the optimization of CS algorithm, the
parameters optimum is 𝛼 = 0.8 and 𝛽 = 0.2. The
hybrid multiple soft-sensor model is set up based on the CS-
hysteresis switching strategy, which is then compared with
the previous hybrid multiple soft-sensor model based on
the pure hysteresis switching strategy. Figures 8 and 9 are
simulation comparison results between the hybrid multiple
soft-sensor model based on hysteresis switching strategy and
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Figure 8: Prediction output curves under hybrid soft-sensormodel.
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Figure 9: Prediction error curves under hybrid soft-sensor model.

Table 3: Performance comparison of different soft-sensor models.

Soft-sensor model Performance
MPE MNE SSE RMSE

Mechanism model 2.7895 −4.4902 178.002 1.334
BPNNmodel 3.0189 −3.4657 137.430 1.172
WNNmodel 2.5782 −2.6213 115.800 1.076
Hybrid model based on HS 2.4001 −2.1960 37.322 0.6109
Hybrid model based on CS
and HS 2.4001 1.2835 32.893 0.5735

the hybridmultiple soft-sensormodel based on CS-hysteresis
switching strategy.

According to the performance indicators defined in
Table 2, the performance indicators values of all established
soft-sensor models are listed in Table 3. Performance com-
parisons in the computational time are listed in Table 4. It can
be seen from simulation results that the hybrid multiple soft-
sensor model based on CS-hysteresis switching strategy is
better than other soft-sensormodels under four performance
indices. The proposed soft-sensor model can realize the
prediction of the key technical index and fully meet the
control requirements of the grinding process on time.
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Table 4: Performance comparisons in computational time for
training different predictive models.

Soft-sensor
model BPNN WNN Hybrid model

based on HS

Hybrid model
based on CS
and HS

Computational
time 13.37 17.84 63.83 127.42

7. Conclusion

For the key technical index (grinding granularity) of the
grinding process, a hybrid multiple soft-sensor model based
on CS-hysteresis switching strategy is proposed. Through
the inferential estimation of the actual operation data, the
simulation results show that the hybrid multiple soft-sensor
models based on CS-hysteresis switching strategy have good
tracking velocity and high prediction accuracy, which can
realize the prediction of the key technical index and fullymeet
the control requirements of the grinding process on time.
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