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The recent advent of novel multi- and many-core architectures forces application programmers to deal with hardware-specific
implementation details and to be familiar with software optimisation techniques to benefit from new high-performance computing
machines. Extra care must be taken for communication-intensive algorithms, which may be a bottleneck for forthcoming era of
exascale computing.This paper aims to present a high-level stencil framework implemented for the EULerian or LAGrangianmodel
(EULAG) that efficiently utilises multi- andmany-cores architectures. Only an efficient usage of bothmany-core processors (CPUs)
and graphics processing units (GPUs) with the flexible data decomposition method can lead to the maximum performance that
scales the communication-intensive Generalized Conjugate Residual (GCR) elliptic solver with preconditioner.

1. Introduction

The recent advent of novel multi- and many-core architec-
tures, such as GPU and hybrid models, offer notable advan-
tages over traditional supercomputers [1]. However, applica-
tion programmers have to deal with hardware-specific imple-
mentation details and must be familiar with software opti-
misation techniques to benefit from new high-performance
computing machines. It is therefore of great importance to
develop expertise in methods and algorithms for porting and
adapting the existing and prospective modelling software to
these new, yet already established, machines.

Elliptic solvers of elastic models are usually based on
standard iterative algorithms for solving linear systems,
for example, CG, GMRES, or GCR. Numerous reports on
porting them tomodern architectures are available [2]. How-
ever, in an anelastic solver for geophysical flows, fast-acting
physical processes may enter the elliptic problem implicitly.
Furthermore, formulation of the boundary conditions is not
trivial and therefore it is not feasible to use standard iterative
solvers from linear algebra packages. For simulating physical
experiments with a high degree of anisotropy, additional
preconditioning is necessary to improvematrix conditioning.

Such preconditioner for anisotropic geometries often relies
on the direct inversion using the Thomas algorithm. A com-
prehensive study on implementations of tridiagonal solvers
on GPU found that it is possible to implement solvers which
perform exceptionally well in the range of grid nodes [3].

EULAG [4], an anelastic model for simulating low Mach
number flows under gravity, developed in the National
Center for Research, is widely used in an international
community and has a rich portfolio of applications. It fea-
tures nonoscillatory forward-in-time (NFT) numerics, which
are original and unique. It also employs preconditioned,
nonsymmetric, generalised conjugate-residual type “Krylov”
scheme [5–8] to solve an elliptic boundary value problem,
reported to be among the most effective methods for solving
difficult elliptic problems [9]. Based on variational principles,
Krylov solvers provide a hierarchical framework, which
assures an asymptotic convergence rate in inverse proportion
to the square root of the condition number of the linear
operator, resulting from the numerical formulation of the
model.The hierarchical design of Krylov solvers relies on the
operator preconditioning, the goal of which is to accelerate
the convergence of the main solver beyond the theoretically
optimal limit.
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Our work utilises the C++ framework to distribute the
stencil computations onmultiple CPUs andGPUs simultane-
ously. Previous systems distributed stencil computations with
simple decompositionmethodswith uniformpartitionwhere
each processor and accelerator receives subdomains of the
same size. Unlike our work, previous approaches do not allow
careful load balancing of the domain decomposition between
heterogeneous architectures.

The framework is based on a domain-specific language
(DSL) that expresses the stencil computations. It has a similar
semantics to Fortran to ease the transition for the end users.
It is specialized for partial differential equations defined on
the regular multidimensional Cartesian grids. The usage of
the standard C++ language allows avoiding the nonstandard
language expression and nonstandard programming models
and requires no external libraries. The flexible architecture
of the framework is suited for the computations on different
configurations of the clusters that contain diverse number of
CPUs and GPUs within the computational node. The frame-
work is able to efficiently spread computations on the CPU-
only clusters including the NUMA machines, architectures
with global shared memory, on the GPU-only clusters with
fat nodes containing one GPU per single CPU core as well
as on the hybrid clusters with powerful CPUs and GPUs.
It provides the seamless subdomain decomposition to the
blocks to efficiently utilise processors’ memory hierarchy.
Additionally, it allows the end user to manually tune the
blocking size for the future processor architectures. The
framework contains the communication library with the
unified interface that allows for the efficient intranode and
internode communication. The automatic parallelisation for
multi-CPU, multi-GPU, and hybrid resources allows the
users to write stencil functions that are translated to selected
architectures. The usage of the C++ templates and provision
of as much as possible of static information for the compiler
improves the optimisation during compilation.With the new
generations of compilers the code will scale for the future
architectures.

Our research is to provide novel methods to adapt scien-
tific code to novel hardware architectures, taking EULAG as
an example. In this paper we focus on efficient communica-
tionmethods with efficient load balancing to scale the elliptic
solver along with the preconditioner.

2. Related Works

A number of previous works have been focused on accel-
erating stencil computations on GPUs [10–12]. The works
presented in [10, 11] used autotuning techniques to efficiently
parallelise stencils on multicore CPU and on many-core
GPU. Other approaches employ multiple GPUs in solving
stencil computations. They treat each GPU as an accelerator
associated with separate MPI process where CPU acts as
a management entity that does only the communication.
Authors in [13] employed compiler based approach for auto-
matic parallelisation of a code written in a domain-specific
language into the Compute Unified Device Architecture
(CUDA) programming standard.Thework in [12] distributes

gcrk( ) {

prforc( )

divrhs( )

precon( )

reduction( )

laplc( )

for it=1..solver iterations {

reduction( )

if(exit) quit for loops;

precon( )

laplc( )

}

}

Algorithm 1: The body of the elliptic solver code.

stencil computations across multiple GPUs with explicit
attention to the PCI express configuration.

Our work is more related to approaches that utilise
multiple CPUs and GPUs simultaneously. Previous systems
distributed stencil computations with simple decomposition
methods with uniform partition where each processor and
accelerator receives subdomains of the same size. For exam-
ple, work in [14] utilises a high-level problem description
to parallelise the code on the CPU and GPU clusters by
combining OpenMP and CUDA. On the other hand, authors
in [15] provide a framework that allows programmers to
partition the data contiguously between CPU and GPU
within single node. Unlike our work, their approach does not
allow careful load balancing of the domain decomposition
between heterogeneous architectures.

3. Description of the GCR Solver

The body of the elliptic solver code consists of five major rou-
tines (Algorithm 1). The main routine advances the solution
iteratively by calling othermajor computational routines.The
routines prforc and divrhs initialise the solver. The former
routine evaluates the first guess of the updated velocity, by
combining the explicit part of the solution and the estimation
of the generalised pressure gradient, while imposing an
appropriate boundary condition. The latter routine evaluates
the density weighted divergence of the velocity, and thus
the initial residual error of the elliptic problem for pressure
is computed. Among the most computationally intensive
routine of the GCR solver is laplc that iteratively evaluates the
generalised Laplacian operator (a combination of divergence
and gradient) acting on residual errors. Another important
part of the solver is the precon routine that accelerates the
convergence of the variational scheme. By performing the
direct matrix inversion in the vertical dimension of the grid;
it is especially useful for large-scale simulations on thin
spherical shells with grids characterised by a large anisotropy.
The routine precon employs the sequentialThomas algorithm
[16] to solve tridiagonal systems of equations with the right-
hand side consisting of the horizontal divergence of the
generalised horizontal gradient. This gradient is evaluated
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by nablaCnablaxy, which also belongs to the most computa-
tionally intensive routines of the GCR solver. With regard to
the data access pattern, the computational loops within the
elliptic solver can be simply divided into three categories: (i)
reductions, (ii) implicit methods of the Thomas algorithm,
and (iii) explicit methods of the stencils. In our workwe focus
on the explicit methods.

4. Multicore and Many-Core Architectures

This section describes two computing architectures utilised
in our work: the cache-coherent NUMAmachine with global
shared memory and heterogeneous CPU-GPU supercom-
puter. Many of nowadays multi- andmany-core architectures
are NUMA, machines equipped with nonuniform memory
access where memory access times depend on the memory
location relative to the processor: one processor can access its
local memory faster than the memory of another processor.
Although NUMA is used in a symmetric multiprocessing
(SMP) systems in particular, it is also used in multi- and
many-core nodes, equipped with Intel Xeon and Itanium
processors (that use QPI, QuickPath architecture) and AMD
Opteron (usingHyperTransport). To keep a consistent image,
a cache-coherent protocol is used (ccNUMA), which simpli-
fies the use of multiple cores, while exhibiting complex per-
formance properties [17]. The recent advent of novel multi-
and many-core architectures, such as GPU, offers notable
advantages over traditional supercomputer. In our work we
use the Piz-Daint supercomputer with heterogeneous CPU-
GPU nodes. Each node contains the Intel Xeon E5-2670 CPU
with 32GB of RAM and single Nvidia Tesla K20X GPU. For
the tests of large ccNUMA architecture we use the Chimera,
the SGI Ultraviolet machine equipped with 256 Intel Xeon
E7-8837 processors (a.k.a. NUMA nodes, 8 cores each), and
16 TB of RAM.

5. High-Level Stencil Framework

This section describes the design goals of the proposed
framework. The major objectives during development are
described as follows.

The GCR solver code was ported from the Fortran 77
language. The framework is based on a domain-specific
language (DSL) that expresses the stencil computations. It
has a similar semantics to Fortran to ease the transition
for the end users. The usage of the standard C++ language
allows avoiding the nonstandard language expression and
nonstandard programming models and requires no external
libraries. The flexible architecture of the framework is suited
for the computations on different configurations of the
clusters that contain diverse number of CPUs and GPUs
within the computational node. The framework is able to
efficiently spread computations on the CPU-only clusters
including the NUMA machines, architectures with global
shared memory, and on the GPU-only clusters with fat nodes
containing one GPU per single CPU core as well as on the
hybrid clusters with powerful CPUs and GPUs. It provides
the seamless subdomain decomposition to the blocks to effi-
ciently utilise processors’ memory hierarchy. Additionally, it

Geometry ∗geom = Geometry::init<

DomainSize<NP,MP,LP>,

HaloSize<HLEFT,HRIGHT,HBOT,

HTOP,HGND,HSKY>,

ProcessorGridSize<NPX,NPY,NPZ>>( );

Communicator ∗comm =

Communicator::init(geom);

Algorithm 2

allows the end user to manually tune the blocking size for the
future processor architectures. The framework contains the
communication library with the unified interface that allows
for the efficient intranode and internode communication.
Depending on the decomposition of a computational domain
between processors, on a position of the actual processor and
on the periodicity of the boundaries, the library transparently
chooses the most efficient communication method. The
automatic parallelisation for multi-CPU, multi-GPU, and
hybrid resources allows the users to write stencil functions
that are translated to selected architectures. The usage of
the C++ templates and provision of as much as possible of
static information for the compiler improves the optimisation
during compilation. With the new generations of compilers
the code will scale for the future architectures.

5.1. Programming Model. The following sections describe the
implementation of the framework. Firstly, the structure of the
framework is outlined with the initialisation of the necessary
resources.Then, themethodology of the writing and running
user stencils with an example is given. Lastly, the domain
decomposition method with the communication model is
illustrated.

5.2. Framework Structure. The idea behind the parallelisation
of the computation between the processors is based on the
data decomposition where each process updates the fixed
part of the global domain called a subdomain. Since the
stencil computations require the neighbour points to update a
point, the boundaries of the subdomains have to be commu-
nicated between processors. The communicated boundaries
are saved in a designated buffer called a halo region. In
order to efficiently utilise the data locality the OpenMP and
MPI models are employed for the intranode and internode
communication. Each CPU and GPU have assigned separate
MPI processes that are pinned to the selected cores. The
GPU parallelisation is done using CUDA whereas the CPU
parallelisation employs the OpenMP model.

5.3. Initialisation. During the initialisation of the framework
user has to create the computational subdomain for eachMPI
process by using the Geometry and Communicator classes
(See Algorithm 2).

The Geometry class initialises the 3D domain
decomposition by using the DomainSize, HaloSize, and
ProcessorGridSize classes. The ProcessorsGridSize
class specifies the number of the subdomains in each
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Figure 1: Domain decomposition: (a) allowed decomposition, (b) forbidden decomposition.

dimension. The decomposed subdomains may have different
sizes with a restriction that each pair of the neighbouring
processors sharing boundary in the single dimension have
the same boundary size in that dimension; see Figure 1.

The three values NP, MP, and LP in DomainSize describe
the size of the subdomain whereas the HaloSize class char-
acterises the size of the halo region on each side. Furthermore,
the Geometry class creates 𝑛 − 1 OpenMP threads for CPU
with 𝑛 cores where the MPI processor of GPU is pinned
to the 𝑛th core only if GPU is used. The Communicator
class creates the specific communicator depending on the
processor’s architecture. To hide the communication time
with the computation on GPU the communicator utilises
the CUDA streams to concurrently exchange the boundary
data during the computation of the subdomain. The com-
municator based on the position of the processor within the
global domain handles communication in a specific way.The
processors inside the domain always communicate the data
while the processors on the boundaries communicate the data
for the periodic boundaries only and do not communicate
them for the nonperiodic boundaries. Additionally, for the
decomposed domain with the single processor in a given
dimension, the data is exchanged using only the processor’s
local memory.

5.4. Stencils. The task of computing the stencils can be
essentially divided into two parts. First, the stencil with an
access pattern updating the domain point has to be defined.
Second, the rangewithin the computational domain onwhich
stencil will be executed has to be provided. To enable this
in the framework, the user defines the stencil functions and
executes them through a kernel.

5.4.1. Writing Stencils. In the framework the stencils are
defined as the C++ functors called the stencil functions. The
3D Laplacian function is defined as shown in Algorithm 3.

The DEFINE DO macro allows quickly defining the func-
tor. The stencil access pattern on the 3D domain is described
by using the IN3D macro. There also exist IN1D and IN2D
macros that allow operating on the 1D and 2D domains.
The functor through template parameters passes information

struct LaplcStencil {

DEFINE DO(const T ∗ restrict in p,

T ∗ restrict out p,const

T &cCoeff){

IN3D(out p, 0, 0, 0) = cCoeff ∗ (

IN3D(in p, -1, 0, 0, CACHED) +

IN3D(in p, 1, 0, 0, CACHED) +

IN3D(in p, 0, -1, 0, CACHED) +

IN3D(in p, 0, 1, 0, CACHED) +

IN3D(in p, 0, 0, -1, CACHED) +

IN3D(in p, 0, 0, 1, CACHED));

}

};

Algorithm 3

about the domain dimensions and index parameters 𝑖, 𝑗, 𝑘
to the macros. The first parameter of the IN3D macro takes
a pointer to an array; the parameters from the second to
the fourth take the positions of the domain point related to
currently updated point. For example, IN3D(p, −1, 2, 0)
returns indices of (𝑖 − 1, 𝑗 + 2, 𝑘). The last parameter of the
IN3Dmacro is optional and gives a hint to the framework that
the following point should be cached in the shared memory
of GPU to improve efficiency. The decision which points of
which array should be cached is based on howmany points of
a given array are accessed. Typically, the array with the largest
number of accessed points should have its values cached to
reduce the number of main memory accesses. However, if
only single point is accessed per array, the CACHED macro
should not be used as it would degrade performance. Due to
the small size of the shared memory, the points of the single
array can be cached at a time. The function parameters of
stencil functionsmust begin with the pointer to the array that
is cached. In case of 3D Laplacian example the pointer to the
in p is first. The details of the algorithm that does stencil
computations can be found in our previous work [18] (See
Algorithm 4).

The comparison of the C++ stencil function to the
sequential Fortran 77 code shows that the framework’s code
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do 3 k=2,lp-1

do 3 j=2,mp-1

do 3 i=2,np-1

3 out p(i,j,k)=cCoeff∗(

⋅ in p(i+1,j,k)+in p(i-1,j,k)+

⋅ in p(i,j+1,k)+in p(i,j-1,k)+

⋅ in p(i,j,k+1)+in p(i,j,k-1))

Algorithm 4

Table 1: Number of SLOC (source lines of code) for the Fortran 77
MPI code and the C++ MPI + OpenMP + CUDA code.

Language SLOC
F77 MPI 11238
C++ MPI + OpenMP + CUDA 10066

is compact and enforces regular neighbour access pattern.
Table 1 compares the source lines of code for the originalMPI
Fortran code with the code developed with the framework.
The source code developed with the framework has similar
size comparing to the manually writtenMPI Fortran version.
Although it handles three programming models comparing
the F77 code, still Fortran is powerful for writing the scientific
code.However, the source code lines are not an idealmetric as
the higher source code size does not necessarily mean lower
productivity; still it is easy to understand metric to compare
the program complexity.

5.4.2. Running Stencils. In order to apply the stencil function,
the framework provides the kernel conf function that is
used to invoke the 3D Laplacian on the 3D computation
domain as shown in Algorithm 5.

The kernel conf function is initialised with the type
of the floating-point calculations type t such as float or
double. Similarly to the Geometry class the user pro-
vides DomainSize and HaloSize. The StencilSize class
describes the number of accessed neighbouring points on
each side of the stencil function. In our example the
3D Laplacian provides StencilSize<1,1,1,1,1,1>. To
restrict the computation region of the stencil function the
ComputeRegion class with the range parameters is used.The
stencil function will be applied from the SLEFT index to the
index NP-1-SRIGHT where NP is size of the subdomain in
the 𝑖 direction. The updateInner/updateLeft/. . . enum
allows parallelising the update of the boundary points with
the inner points of the subdomain by the utilisation of
the GPU streams. In our 3D Laplacian stencil example
the inner points use updateInner whereas the boundaries
updates are modelled with updateLeft/updateRight. . .
so that the separate kernel calls are utilised for each side.
The Cache class drives the usage of the cache. The TRUE
and FALSE macros switch on and off the caching of the
neighbouring points of the stencil function, respectively. The
cache size is automatically determined by the framework.
However, if needed, the optional parameter CSIZE allows
manually controlling the cache size in bytes. The order of the

kernel conf<

type t, DomainSize<NP,MP,LP>,

StencilSize<SLEFT,SRIGHT,SBOT,

STOP,SGND,SSKY>,

HaloSize<HLEFT,HRIGHT,HBOT,

HTOP,HGND,HSKY>,

ComputeRegion<0+SLFET,NP-1-SRIGHT,0+SBOT,

MP-1-STOP,0+SGND,LP-1-SSKY>,

LaplcStencil,

updateInner,

Cache<TRUE,CSIZE>

>(in p, out p, cCoeff);

Algorithm 5

parameters ofkernel confmust be the same as in the stencil
function.

The kernel conf function executes the stencil functions
using OpenMP for CPU while for GPU the CUDA kernel
functions are called.

5.5. Domain Decomposition. There are a number of the
different decomposition strategy options available. Typically
systems use MPI-all parallelisation scheme with a uniform
partition where each individual core maps to the MPI
process with no utilisation of the shared memory on a
compute node. This scheme is very simple to implement and
straightforward to run as it requires no knowledge about the
NUMA topology of the physical node. On the other hand, the
number of MPI messages required to exchange is a multiple
of the number of cores; thus the communication overhead
is substantial. Another choice is a strategy which assigns
single MPI process to the whole node. It decomposes the
obtained subblock for a specified number of processors and
accelerators and minimizes the number of MPI processes,
thus the communication overhead; see the methodology
described in [19]. The drawback of this method is that
the inner part of the subblock is only decomposed in one
dimension; hence it is not flexible in balancing the load
between the accelerators and processors. Additional strategy
performs a uniform decomposition where pair of CPU and
GPU is mapped to single MPI process. In this case the
boundaries of the subdomain are updated and communicated
by CPU whereas the inner points are handled by GPU.
In this scenario CPU serves as a management entity and
does not execute any computations thus it inefficiently uses
CPUs. Our framework utilises single MPI process per each
processor with a flexible and efficient decomposition strategy
to make best use of the hybrid architectures. The scheme can
partition the domain in all three dimensions to nonuniform
subblocks for the arbitrary number of the processors and
accelerators. This scheme enables computing on different
cluster configurations that contain diverse number of CPUs
and GPUs within the computational node. The framework
is able to efficiently decompose the domain on the CPU-
only clusters including the NUMA machines, architectures
with global shared memory, and on the GPU-only clusters
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with fat nodes containing one GPU per single CPU core
as well as on the hybrid clusters with powerful CPUs and
GPUs. The partition mechanism is employed once before
the compilation of the code for the target architecture thus
the obtained decomposition is static during computations.
This static decomposition allows the compiler to optimise the
code for the stencil loops by utilisation of various techniques
such as loop unrolling and vectorisation. Once the subblock
for each processor is obtained, it is further decomposed to
the optimal size for the cache blocking thus receiving the
optimal size for the processor. The details of the subblock
decomposition are described in our previous work [18].

5.6. Load Balancing. Careful load balancing is essential in
order to find the good partition of the computational domain
between the heterogeneous resources.The goal is tominimize
the difference of the finish time of computing the portion
of the partition between CPU and GPU. To reach this goal
the two-level decomposition method is employed. First of
all, the domain is partitioned to equally sized subdomains
between the machine nodes. The partition of the domain
may be one-, two-, or three-dimensional. If for the given
partition the domain dimension size is not evenly divisible
by the number of the machine nodes, the last node obtains
resized subdomain to fit the domain size. Please note that it
is assumed that each node contains the same resources. Next,
the obtained subdomain size is utilized to benchmark CPU
and GPU to measure the computational time and calculate
the size of the subblocks assigned to each processor within
the node. For example, the size of the subblock obtained from
the one-dimensional decomposition is calculated as follows:

𝑓cpu =
𝑡gpu

𝑡cpu + 𝑡gpu
,

𝑛cpu = 𝑛𝑛,

𝑚cpu = 𝑚𝑛 ∗ 𝑓cpu,

𝑙cpu = 𝑙𝑛.

(1)

The 𝑡cpu and 𝑡gpu values equal to the computational times
necessary to update the subdomain are assigned to the
cluster node on CPU and GPU, respectively. The 𝑓cpu value
determines the chunk of the subdomain assigned to the
processor. The subdomain size is specified by the 𝑛

𝑛
,𝑚
𝑛
, and

𝑙
𝑛
values. The final block size is described by the 𝑛cpu, 𝑚cpu,

and 𝑙cpu values.

5.7. Communication and Computation Overlap. The frame-
work utilises the MPI communication to exchange messages
between processors. The halo data transfer between the
accelerators is conducted through CPU. CPU acts as a bridge
that receives the data from the GPU and then packs it
to the MPI message and sends it to the host CPU of the
target accelerator. The host CPU unpacks data and transfers
it through PCI express to the target GPU. Please notice
that the framework currently does not support GPUDirect
RDMA to directly exchange data between GPUs located on
different nodes without using CPUs as we did not have access

Communicator ∗comm =

Communicator::init(geom);

comm->update(p in,sizeLeft,shiftLeft,

sizeRight,shiftRight,updateLeft);

// or

comm->update beg(p in,sizeLeft,shiftLeft,

sizeRight,shiftRight,updateLeft);

// kernel execution

comm->update end(p in,sizeLeft,shiftLeft,

sizeRight,shiftRight,updateLeft);

Algorithm 6

// left processor call

comm->update(p in,1,-1,1,0,updateLeft);

// right processor call

comm->update(p in,1,0,1,-1,updateLeft);

Algorithm 7

to the machine that supports it. The framework provides
the aforementioned Communicator class to transfer data
between processors and accelerators. The example usage of
the class is showed in Algorithm 6.

The class provides two methods of sending MPI mes-
sages: synchronous and asynchronous. The update method
is used to apply synchronous communication whereas for
the asynchronous communication type the pair of methods
update beg and update end are exploited. The kernel exe-
cution is surrounded by asynchronous MPI calls to overlap
communication with the computation.The Communication
class is able to flexibly exchange boundaries on each side
of the domain. The update method requires six parameters
where p in is pointer to the 3D array containing data. The
following pair of parameters defines the size and the shift of
the boundary data received from the left processor whereas
the next pair determines the size and the shift of the boundary
data sent to the right processor. The last parameter of the
update method specifies the side of the update in this case
the left update. For example, the domain is decomposed to
the two processors in the 𝑖 direction. There are two defined
stencil functions on the domain. The computation range of
the first stencil called the boundary stencil is constrained to
left boundary of the domain while the second stencil called
the inner stencil updates the inner points of the domain.
The boundary stencil models the boundary condition and
requires single point from the left shifted by one position; it
is the i-2 index.The inner stencil demands single point from
the left with the i-1 index. To fulfil the stencils requirements
for the left and right processors the update method is as
shown in Algorithm 7.

From the perspective of the sender the left processor
sends its right boundary to the right processor whereas the
right processor sends its right boundary to the left processor;
see Figure 2. This communication method simplifies the
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P1 P2

Send P1→ P2
i

j

Halo region
Inner stencil

Boundary stencil
Exchanged data

Send P2→ P1

Figure 2: Example of the communication between two processors.

exchange of the boundaries for the sophisticated stencils
that require the values from the distant neighbours. To
efficiently scale the code on large number of processors
and accelerators the framework utilises the overlapping of
the communication with the computation. The idea of the
overlapping is based on the separation of the computation
of the boundary regions and the inner region. The separate
kernel calls are employed for each side and the inside of the
subdomain. The communication of the boundaries with the
computation of the inside of the subdomain is overlapped
and what is more the boundary kernels are computed in
parallel to more efficiently utilise the accelerator resources.
Figure 3 shows the flow of the overlapping method based
on GPU of the 3D Laplacian stencil. To concurrently update
the boundaries with the inside of the subdomain the seven
streams are utilised. In case of more sophisticated stencils
up to 27 streams are used. The kernel with the zero-copy
memory is used to copy boundary data fromGPU to the host
CPU.The kernel with the zero-copymemory allows us on the
fly to change the 3D layout of the boundary data to linear
ordered without using an intermediate buffer. The linear
ordered data is directly passed to the MPI send function.The
order of copying the boundaries is as follows: first, the left
and right boundaries are copied, next the bottom and top
boundaries, and finally the ground and sky boundaries. The
order is specified by the time needed to send the data through
PCI express. The kernel updating inner of the subdomain
is executed concurrently with the copy kernels. After the
first boundary is copied to CPU it is sent through MPI to
the proper processor, depicted as Communication in the
figure. As soon as the halo region is received, it is sent
back to GPU. Finally, the stencil updating the boundary
is executed. This overlapping methodology allows us to
concurrently execute five events: copying from and to GPU,
computing the inner subdomain, MPI communication, and
computing the boundaries. Depending on the decomposition
of the computational domain between processors, on the
position of the actual processor, and on the periodicity of
the boundaries the library transparently chooses the most
efficient communication method. The processors inside the
domain always communicate the data while the processors
on the boundaries communicate the data for the periodic

boundaries only and do not communicate them for the
nonperiodic boundaries. Additionally, for the decomposition
with the single processor in a given dimension, the data is
exchanged using only the processor’s local memory.

5.8. MPI Scheduler for NUMA. With the novel multi- and
many-core architectures it is of great importance to place
properly all processes and threads on the underlying hard-
ware. In [20] we proposed a method for mapping application
topology to cluster. We used the MPI ping-pong benchmark
to measure the sustained latency and bandwidth between
all nodes to calculate the cost matrix. Next, the minimum
path is calculated and, eventually, the application topology
is mapped to the hardware, using the Hilbert curve to
calculate the spatial locality [21]. We have extended this
functionality especially to NUMA architectures, taking into
account proper placement of MPI and OpenMP threads
across system. The developer can rely on Intel or GNU
facilities for proper thread placement and KMP and GOMP
environments variables, respectively. It allows users to give a
hint to the system about on which cores OpenMP threads
should be placed, as well as not moving threads between
cores during the run. To pin MPI processes accordingly,
one has to rely on Intel or OpenMPI facilities, which are
not always available. To automate processes and threads
placement on underlying hardware, we use theHWLOC [22],
a portable hardware locality software package that provides a
portable abstraction of the hierarchical topology of modern
architectures. Using aforementioned HWLOC, we calculate
distances between each pair of NUMA nodes (which may be
whole node in traditional cluster or socket or a processor in
more SMP-like environment). Next, we find the minimum
path as previously, and using the Hilbert curve we place each
MPI process and its OpenMP threads on cores, where for
most cases one MPI process per NUMA node is the most
efficient allocation.

5.9. Integration with Fortran. Together the GCR solver with
the MPDATA method are a dynamical core of the EULAG
software. As described above, EULAG is developed in Fortran
thus the stencil framework has to provide a flexible way of
the integration of different programmingmodels. It is of high
importance to flexibly define the memory layout of the data
to avoid the cost of the transposition. In case of the GCR
solver the memory layout is the same as in the Fortran code
𝑖, 𝑗, 𝑘 where the 𝑖 index is linearly ordered in the memory for
both the CPU and GPU code. To avoid the cost of the data
movement between CPU and GPU all arrays are allocated
on GPU before executing the time loop and persist during
the entire run. The framework provides the Fortran bindings
to ease the combination with C++, OpenMP, and CUDA.
The arrays can be easily shared between Fortran and the
framework.The arraysmay be allocated in two different ways:
(a) with a pointer that is allocated in Fortran and is reused in
the framework; (b)with a copywhere the framework allocates
the aligned copy of the array and copy it when it is used in the
Fortran code.
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Figure 3: Flow of the overlapping method based on GPU.

6. Experimental Evaluation

In this section, the strong and weak scaling results are
presented using the GCR solver on the Piz-Daint super-
computer and on the Chimera SMP machine. The Piz-Daint
supercomputer contains 5272 nodes equipped with an Intel
Xeon E5-2670 CPU with 32GB of RAM and Nvidia Tesla
K20X GPU. The Chimera machine has 2048 CPU cores with
Intel Xeon E7-8837 CPUs clocked at 2.66GHz with 16 TB of
RAM.

The implementation of theGCR solver is validated using a
standard benchmark test case for incompressible flow solvers.
We simulate decaying turbulence of a homogeneous incom-
pressible fluid. Here, only the simplified setup proposed
by Taylor and Green [23] is considered. The details of the
problem can be found in our previous work [18].

6.1. Weak Scaling. The GCR solver is tested using five
different versions of the code. The Fortran CPU MPI-all
version is the original code developed in Fortran 77. The
remaining variants including C++ CPUMPI+OpenMP, C++
OpenMP, C++ GPU MPI+CUDA, and C++ CPU-GPU
MPI+OpenMP+CUDA are implemented with our frame-
work. In order to evaluate the performance of all codes the
number of floating-point operations is counted by calculating
their occurrence in the source code. The MPI ranks in the
MPI-all code are pinned to individual cores whereas for the
MPI+OpenMP version singleMPI rank is used for eachCPU.
The work is distributed across cores by using the OpenMP
threads. In case of the GPU code single MPI rank is used. For
the heterogeneous CPU-GPU case twoMPI ranks are pinned
to single CPU. The first MPI rank executes seven OpenMP
threads where the second MPI rank is pinned to the last
CPU core and handles the execution of GPU. For ccNUMA
architecture, OpenMP threads are distributed across all the
allocated cores. For the MPI+OpenMP version, MPI ranks
are placed on separate sockets (a.k.a. NUMAnodes), with the
corresponding set of OpenMP threads. Figure 4 shows the
weak scaling results. All the codes almost reach the perfect
linear scaling up to 512 nodes. Using 8 CPUs on the 4883
domain size the C++ MPI+OpenMP version is 1.4x faster
than the Fortran MPI-all code. Moving the code to GPUs
for the same domain leads to 6x speedup comparing to the
original Fortran code. The heterogeneous CPU-GPU code

further improves speedup to 7x by distributing subdomains
to CPUs. Figure 5 presents the performance per watt for the
weak scaling case.The greatest number of GFlop/s per watt is
obtained for the GPU-only code. In case of using 8 nodes the
GPU code is 2.13x more power efficient than the CPU code.
The hybrid CPU-GPU code is 1.88xmore power efficient than
the CPU code. In summary, in our case it is more power
efficient to run code only onGPUs instead of using the hybrid
CPU-GPU code.

6.2. Strong Scaling. Figure 4 shows the strong scaling results
for a fixed grid size 2443 with the varying number of
processors and accelerators for two-dimensional domain
decomposition along the 𝑦 and 𝑧 directions. The results are
presented for the best domain decompositions for all code
variants. The CPU codes scale up to more than 100 nodes;
however the run with GPU saturates at 128GPUs count.
In order to efficiently use the GPU resources it requires a
minimal number of domain points to saturate the memory
bandwidth. The similar saturation can be observed with the
CPU-GPU code. Figure 5 demonstrates the performance per
watt for the strong scaling with the same grid size. Up to the
64 computational nodes the GPU code is the most power
efficient whereas the CPU code reaches high power efficiency
with the number of nodes equal to or larger than 128. For
higher number of the nodes the power efficiency of the GPU
code and the hybrid CPU-GPU code is converging. For both
the weak scaling and the strong scaling case it is more power
efficient to use the GPU code than the hybrid CPU-GPU
code.

6.3. Load Balancing. As described in Section 5 the two-level
decomposition is employed to balance the load between the
computational resources. Figure 6 shows the performance
of the first-level decomposition of the domain to the sub-
domains distributed between the cluster nodes for a fixed
grid size 6143. The decomposition strategies include the 2D
partition through 𝑗 and 𝑘 dimensions and the 3D partition
through 𝑖, 𝑗, and 𝑘 dimensions. The 3D partition provides up
to 1.16x better performance for the larger number of nodes.
The second-level decomposition of the subdomain between
theCPU andGPUprocessors is presented in Figure 6. For the
subdomain size larger than 104 grid cells on average the 80%
of the subdomain is assigned to GPU. When the subdomain
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Figure 4: Performance. (a) Weak scaling for the 2443 domain size per CPU/GPU; (b) strong scaling for the total 2443 domain size. Used
machines: PD: Piz-Daint cluster; CH: Chimera SMP.
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Figure 6: (a) First-level decomposition for the strong scaling for the 6143 domain size. (b) Second-level decomposition for the subdomains
obtained from the first-level decomposition on the Piz-Daint cluster.
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size is smaller than 104 grid cells the size of the subdomain
assigned toCPUgrows.However, for such a small subdomain
size, it is generally not efficient to employ GPUs.

6.4. MPI Scheduler Impact. The scheduler was tested on
ccNUMA machine equipped with 256 nodes (8 cores each)
and global shared memory. MPI and OpenMP allocation
impact is presented using different version of OpenMP-only
and MPI+OpenMP GCR solver implementation: with and
without aforementioned framework. In the MPI+OpenMP
version, MPI ranks are placed on separate sockets (NUMA
nodes), with the corresponding set of OpenMP threads.
For OpenMP-only version, threads are distributed across all
the allocated cores with different scheduling policy. Figure 7

presents how different OpenMP affinity policies impact
execution time of the C++ OpenMP-only implementation of
GCR. The 128 × 128 × 128 problem is solved by 128 cores.
The weakest result is for NONE affinity, where no thread
affinity is set, while threads are allowed to migrate between
cores during the execution. The default policy set in the
system typically means that threads can be run even on the
single core, while possible migration is up to the system. The
GOMP policy, which improves execution time greatly, means
that the GOMP-CPU-AFFINITY environment variable was
used to affect thread affinity (set to GATHER). The best
result however is achieved for framework version of thread
affinity, which places subsequent threads on sockets based on
distances between them (minimal path is selected). Various
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types of MPI processes scheduling were tested: (i) MINALL:
the minimum path between all NUMA nodes, (ii) MAX-
ALL: the maximum path between all NUMA nodes, (iii)
COMPACT: the minimum path between allocated NUMA
nodes (side by side in performed tests), and (iv) BALANCED:
placement balanced over all available NUMA nodes (one
processor per board except for the 128 cores being used).
The results are presented in Figure 8 for Fortran version
and Figure 9 for C++ version. When all NUMA nodes are
used (128 cores), the execution time for all MPI/OpenMP
placement types is the same, except for the MAXALL which
uses the longest path between MPI ranks. Where less MPI
ranks are present, attention to and careful study of Figure 10
are needed. It presents Chimera’s hardware topology of one
board equipped with 2 processors (8 cores each). There were
8 such boards available for testing purposes. For example,
when using 32 cores (i.e., 4 MPI ranks and 8 OpenMP
threads each), BALANCED placement is using 0, 4, 8, and 12
processors (each MPI rank is run in its own distant board)
and MINALL utilises 0, 1, 4, and 5 processors (there are
2 MPI ranks running on the same boards; the boards are
distant to each other), while COMPACT uses 0, 1, 2, and
3 processors; (i.e., there are 2 boards near each other; each
is running 2 MPI ranks). For the hardware architecture like
Chimera, BALANCED placement seems to be the best, even
if it does not form a minimal path between MPI ranks, while
COMPACT should be used every time all allocated cores are
used for calculations.

7. Conclusions

In this work, the stencil framework is presented that utilises
a domain-specific language to simplify the development of
stencil computations onmulti- andmany-cores architectures.
The framework is written with C++ templates that provide
portable code with no need for the additional dependencies.
The C++ templates with the static domain decomposition
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Figure 9: MPI+OpenMP decomposition, framework version.

allow the compiler to efficiently optimise the prepared code.
The flexible domain decomposition scheme with the sub-
domain partition to fit the memory hierarchy of the target
architecture supports load balancing the work between an
arbitrary number of CPUs andGPUs.The resulting code with
the communication overlap method achieves high scalability
and a 7x speedup against the FortranMPI-all code. However,
the GPU code is 1.14 more power efficient than the hybrid
CPU-GPU code. The framework can be used with a good
outcome on NUMA machines, including those equipped
with global shared memory, and on the heterogeneous CPU-
GPU supercomputers.

The results from the evaluation tests showed that the
heterogeneous cluster configurations promise relatively large
energy savings. For future work, we want to develop the
scheduling methods to dynamically allocate stencil tasks to
various unit blocks to optimize the energy efficiency.Wewant
to take into account the communication between processors
to better predict the runtime and the energy usage of stencil
computations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the Polish National Center of
Science under Grant no. UMO-2011/03/B/ST6/03500. This
research was supported in part by PL-Grid Infrastructure.
This work was supported by a grant from the Swiss National
Supercomputing Centre (CSCS) under project ID d25.



12 Scientific Programming

The following riser cards plug into the mezzanine connector:
(1) Base I/O card
(2) Boot drive
(3) Integrated PCIE GEN2 (supports two PCIe cards)
(4) I/O expansion (supports two PCIe card expansion channels)

DDR3 1066 MT/s/lane
8.5GB/s aggregate for both DDR3 channels

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

Memory DIMM
Memory DIMM

0

1

0

1

0
1

0
1

Mill Brook

Mill Brook

Mill Brook

Mill Brook
0

1

2

3

Mill Brook

Mill Brook

Mill Brook

Mill Brook
4

5

6

7

SMI 6.4GT/s
8.53GB/s read
7.20GB/s write

SMI 6.4GT/s
8.53GB/s read
7.20GB/s write

SMI 6.4GT/s
8.53GB/s read
7.20GB/s write

SMI 6.4GT/s
8.53GB/s read
7.20GB/s write

A
B

C
D

Branch 0

Nehalem
processor

P0

Branch 1

Branch 1

Nehalem
processor

P1

Branch 0

QPI-0

QPI-1

QPI-2

QPI-3

QPI-3

QPI-2

QPI-1

QPI-0

DDR3 1066MT/s/lane
8.5GB/s aggregate for both DDR3 channels

FBD 0 channel
7.7GB/s read

Directory memory

Memory DIMM
5.87GB/s read BW

Note: the directory memory

the main memory sizeriser board

Memory DIMM
Memory DIMM

CSI-0CSI-1

UV Hub

Channel specs:
QPI = 25.6GB/s (32 lanes × 6.4GT/s/8)
SMI = 8.53GB/s (((12 lanes × 6.4GT/s × 128)/144)/8)

Note: both DIMMs connected
to a Mill Brook must be the
same frequency

The following DIMM sizes are
supported: 1, 2, 4, 8, and 16GB

733MT/s
(9bit transfers)

(4) NL5 ports
15.0GB/s aggregate
6.25GT/s per port

GPIO
I2C

JTAG
End to backplane

SIO

BMC

6.4GT/s 6.4GT/s

Intel Scalable Memory Interconnect (SMI)
Intel Quick Path Interconnect (QPI)
Note: QPI and CSI are the same channel

RLD
(reduced latency

DRAM)

A
B

C
D

Nexlev mezzanine
connector
(z-axis)

Backplane

0
1

0
1

0
1

0
1

5.86GT/s 5.86GT/s

4.4GT/s,

size is 1/16 the size of

Figure 10: SGI UV board (Chimera).

References

[1] J. Kurzak, D. Bader, and J. Dongarra, Scientific Computing with
Multicore and Accelerators, CRC Computer and Information
Science Series, Chapman & Hall, 2010.

[2] S. Georgescu and H. Okuda, “Conjugate gradients on multiple
GPUs,” International Journal for Numerical Methods in Fluids,
vol. 64, no. 10-12, pp. 1254–1273, 2010.

[3] Y. Zhang, J.M. Cohen, and J. D.Owens, “Fast tridiagonal solvers
on the GPU,” ACM SIGPLAN Notices—PPoPP ’10, vol. 45, no. 5,
pp. 127–136, 2010.

[4] J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki,
“EULAG, a computational model for multiscale flows,” Com-
puters & Fluids, vol. 37, no. 9, pp. 1193–1207, 2008.

[5] P. K. Smolarkiewicz and L. G. Margolin, “Variational elliptic
solver for atmospheric applications,” Applied Mathematics and
Computer Science, vol. 4, pp. 527–551, 1994.

[6] P. K. Smolarkiewicz, V. Grubisić, and L. G. Margolin, “On
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programming framework for CPU-GPU systems,” Concurrency
and Computation: Practice and Experience, vol. 27, no. 17, pp.
4938–4953, 2015.

[16] J. C. Strikwerda, Finite Difference Schemes and Partial Differen-
tial Equations, SIAM, 2004.

[17] S. Ramos and H. Torsten, “Cache line aware optimizations
for ccNUMA systems,” in Proceedings of the 2th International
ACM Symposium on High-Performance Parallel and Distributed
Computing, Portland, Ore, USA, June 2015.

[18] K. A. Rojek, M. Ciznicki, B. Rosa et al., “Adaptation of fluid
model eulag to graphics processing unit architecture,” Concur-
rency and Computation: Practice & Experience, vol. 27, no. 4, pp.
937–957, 2015.

[19] W. Xue, C. Yang, H. Fu et al., “Enabling and scaling a global
shallow-water atmospheric model on Tianhe-2,” in Proceedings
of the 28th IEEE International Parallel andDistributed Processing
Symposium (IPDPS ’14), pp. 745–754, IEEE, Phoenix, Ariz, USA,
May 2014.

[20] M. Ciznicki, P. Kopta, M. Kulczewski, K. Kurowski, and P.
Gepner, “Elliptic solver performance evaluation on modern
hardware architectures,” in Parallel Processing and Applied
Mathematics: 10th International Conference, PPAM 2013, War-
saw, Poland, September 8–11, 2013, Revised Selected Papers, Part
I, vol. 8384 of Lecture Notes in Computer Science, pp. 155–165,
Springer, Berlin, Germany, 2014.

[21] S.-I. Kamata, R. O. Eason, and Y. Bandou, “A new algorithm for
N-dimensional Hilbert scanning,” IEEE Transactions on Image
Processing, vol. 8, no. 7, pp. 964–973, 1999.

[22] F. Broquedis, J. Clet-Ortega, S. Moreaud et al., “Hwloc: a
generic framework for managing hardware affinities in HPC
applications,” in Proceedings of the 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP ’10), IEEE Computer Society Press, Pisa, Italia,
February 2010.

[23] G. I. Taylor and A. E. Green, “Mechanism of the production of
small eddies from large ones,” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 158, no.
895, pp. 499–521, 1937.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


