
Research Article
OpenCL Performance Evaluation on Modern Multicore CPUs

Joo Hwan Lee, Nimit Nigania, Hyesoon Kim, Kaushik Patel, and Hyojong Kim

School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Correspondence should be addressed to Joo Hwan Lee; joohwan.lee@gatech.edu

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Xinmin Tian

Copyright © 2015 Joo Hwan Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Utilizing heterogeneous platforms for computation has become a general trend, making the portability issue important. OpenCL
(Open Computing Language) serves this purpose by enabling portable execution on heterogeneous architectures. However,
unpredictable performance variation on different platforms has become a burden for programmerswhowriteOpenCL applications.
This is especially true for conventional multicore CPUs, since the performance of general OpenCL applications on CPUs lags
behind the performance of their counterparts written in the conventional parallel programming model for CPUs. In this paper, we
evaluate the performance of OpenCL applications on out-of-order multicore CPUs from the architectural perspective. We evaluate
OpenCL applications on various aspects, includingAPI overhead, scheduling overhead, instruction-level parallelism, address space,
data location, data locality, and vectorization, comparing OpenCL to conventional parallel programming models for CPUs. Our
evaluation indicates unique performance characteristics of OpenCL applications and also provides insight into the optimization
metrics for better performance on CPUs.

1. Introduction

The heterogeneous architecture has gained popularity, as can
be seen from AMD’s Fusion and Intel’s Sandy Bridge [1, 2].
Much research shows the promise of the heterogeneous archi-
tecture for high performance and energy efficiency. However,
how to utilize the heterogeneous architecture considering
performance and energy efficiency is still a challenging prob-
lem. OpenCL is an open standard for parallel programming
on heterogeneous architectures, which makes it possible to
express parallelism in a portable way so that applications
written inOpenCL can run on different architectures without
codemodification [3]. Currently,many vendors have released
their own OpenCL framework [4, 5].

Even though OpenCL provides portability on multiple
architectures, portability issues still remain in terms of per-
formance. Unpredictable performance variations on different
platforms have become a burden for programmers who write
OpenCL applications. The effective optimization technique
is different depending on the architecture where the ker-
nel is executed. In particular, since OpenCL shares many
similarities with CUDA, which was developed for NVIDIA
GPUs, many OpenCL applications are not well optimized
for modern multicore CPUs. The performance of general

OpenCL applications on CPUs lags behind the performance
expected by programmers considering conventional parallel
programmingmodels.The expectation comes fromprogram-
mers’ experience with conventional programming models.
OpenCL applications show very poor performance on CPUs
when compared to applications written in conventional
programming models.

The reasons we consider CPUs for OpenCL compute
devices are as follows.

(1) CPUs can also be utilized to increase the performance
of OpenCL applications by using both CPUs and
GPUs (especially when a CPU is idle).

(2) Because modern CPUs have more vector units, the
performance gap between CPUs and GPUs has been
decreased. For example, even for the massively paral-
lel kernels, sometimes CPUs can be better thanGPUs,
depending on input sizes. On some workloads with
high branch divergence or with high instruction-level
parallelism (ILP), the CPU can also be better than the
GPU.

A major benefit of using OpenCL is that the same kernel
can be easily executed on different platforms. With OpenCL,

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 859491, 20 pages
http://dx.doi.org/10.1155/2015/859491

2 Scientific Programming

Host memory

Host
CPU

Host

Compute
device

Compute
device

Compute device

.

.

.

Compute unit Compute unit

PE PE PE PE· · · · · · · · ·

Device memory

Figure 1: OpenCL platform model.

it is easy to dynamically decide which device to use at
run-time. OpenCL applications that select a compute device
between CPUs and GPUs at run-time can be easily imple-
mented. However, if the application is written in OpenMP,
for example, it is not trivial to split an application to use both
CPUs and GPUs.

Here, we evaluate the performance of OpenCL appli-
cations on modern out-of-order multicore CPUs from the
architectural perspective, regarding how the application uti-
lizes hardware resources on CPUs. We thoroughly evaluate
OpenCL applications on various aspects that could change
their performance. We revisit generic performance metrics
that have been lightly evaluated in previous works, especially
for running OpenCL kernels on CPUs. Using these metrics,
we also verify the current limitation of OpenCL and the
possible improvement in terms of performance. In summary,
the contributions of this paper are as follows.

(i) We provide programmers with a guideline to under-
stand the performance of OpenCL applications on
CPUs. Programmers can verify whether the OpenCL
kernel fully utilizes the computing resources of the
CPU.

(ii) We discuss the effectiveness of OpenCL applications
on multicore CPUs and possible improvement.

The main objective of this paper is to provide a way to
understand OpenCL performance on CPUs. Even though
OpenCL can be executed on CPUs and GPUs, most previous
work has focused on only GPU performance issues. We
believe that our work increases the understandability of
OpenCL on CPUs and helps programmers by reducing
the programming overhead to implement a separate CPU-
optimized version from scratch. Some previous studies about
OpenCL on CPUs discuss some aspects presented in this
paper, but they lack both quantitative and qualitative evalua-
tions, making them hard to use when programmers want to
estimate the performance impact of each aspect.

Section 2 describes the background and architectural
aspects to understand the OpenCL performance on CPUs.
Then, we evaluate OpenCL applications regarding those
aspects in Section 3. We review related work in Section 4 and
conclude the paper.

2. Background and Criteria

In this section, we describe the background of several aspects
that affect OpenCL application performance on CPUs: API
overhead, thread scheduling overhead, instruction-level par-
allelism, data transfer, data locality, and compiler autovec-
torization. These aspects have been emphasized in academia
and industry to improve application performance on CPUs
on multiple programming models. Even though most of
the architectural aspects described in this section are well-
understood fundamental concepts, most OpenCL applica-
tions are not written considering these aspects.

2.1. API Overhead. OpenCL has high overhead for launching
kernels, which is negligible on other conventional parallel
programmingmodels for CPUs. In addition to the kernel exe-
cution on the compute device, OpenCL needs OpenCL API
function calls in the host code to coordinate the executions of
kernels that are overheads. The general steps of an OpenCL
application are as follows [3]:

(1) Open an OpenCL context.
(2) Create a command queue to accept the execution and

memory requests.
(3) Allocate OpenCL memory objects to hold the inputs

and outputs for the kernel.
(4) Compile and build the kernel code online.
(5) Set the arguments of the kernel.
(6) Set workitem dimensions.
(7) Kick off kernel execution (enqueue the kernel execu-

tion command).
(8) Collect the results.

The complex steps of OpenCL applications are due
to the OpenCL design philosophy emphasizing portability
over multiple architectures. Since the goal of OpenCL is
to make a single application run on multiple architectures,
they make the OpenCL programming model as flexible as
possible. Figure 1 shows the OpenCL platform model and
how OpenCL provides portability. The OpenCL platform
consists of a host and a list of compute devices. A host is
connected to one ormore compute devices and is responsible
for managing resources on compute devices. The compute
device is an abstraction of the processor, which can be any

Scientific Programming 3

type of processor, such as a conventional CPU,GPU, andDSP.
A compute device has a separate device memory and a list of
compute units. A compute unit can have multiple processing
elements (PEs). By this abstraction,OpenCL enables portable
execution.

On the contrary, flexibility for various platform supports
does not exist on conventional parallel programming models
for multicore CPUs. Many of the APIs in OpenCL, which
take a significant execution time on OpenCL application do
not exist on conventional parallel programming models. The
compute device and the context in OpenCL are implicit on
conventional programming models. Users do not have to
query the platform or compute devices and explicitly create
the context.

Another example of the unique characteristics ofOpenCL
compared to conventional programming models is the “just-
in-time compilation” [6] during run-time. In many OpenCL
applications, kernel compilation time by the JIT compiler
incurs the execution time overhead. On the contrary, com-
pilation is statically done and is not performed during
application execution for the application written in other
programming models.

Therefore, to determine the actual performance of appli-
cations, the time cost to execute the OpenCL API functions
also should be considered. From evaluation, we find that the
API overhead is larger than the actual computation in many
cases.

2.2. Thread Scheduling. Unlike other parallel programming
languages such as TBB [7] and OpenMP [8], the OpenCL
programming model is a single-instruction and multiple-
thread (SIMT)model just like CUDA [9]. AnOpenCL kernel
describes the behavior of a single thread, and the host appli-
cation explicitly declares the number of threads to express
the parallelism of the application. In OpenCL terminology, a
single thread is called a workitem (a thread in CUDA).
The OpenCL programmer can form a set of workitems
as a workgroup (a threadblock in CUDA), where the
programmer can synchronize among workitems by barrier
and mem fence. A single workgroup is composed of a multi-
dimensional array of workitems. Figure 2 shows the OpenCL
execution model and how an OpenCL kernel is mapped on
theOpenCL compute device. InOpenCL, a kernel is allocated
on a compute device, and a workgroup is executed on a
compute unit. A single workitem is processed by a processing
element (PE). For better performance, programmers can tune
the number of workitems and change the workgroup size.

It is common for OpenCL applications to launch a
massive number of threads for kernels expecting speedup by
parallel execution. However, portability of OpenCL applica-
tions in terms of performance is not maintained on different
architectures. In other words, an optimal decision of how
to parallelize (partition) a kernel on GPUs does not usually
guarantee good performance on CPUs. The partitioning
decision of a kernel is done by changing the number of
workitems and workgroup size.

2.2.1. Number of Workitems. First, the number of workitems
and the amount of work done by a workitem affect

Kernel

Compute device

Work-
item

Work-
item

Work-
item

Work-
item

Workgroup

Compute unit

Processing element (PE)

Figure 2: OpenCL execution model.

performance differently on CPUs andGPUs. Amassive num-
ber of short workitems hurts performance on CPUs but helps
performance on GPUs. The performance difference comes
from the different architectural characteristics between CPUs
and GPUs. On GPUs, a single workitem is processed by
a scalar processor (SP) or one single SIMD lane. As is
widely known, GPUs are specialized for supporting a large
number of concurrently running threads, and high thread-
level parallelism (TLP) is critical to achieve high performance
[10–13]. On the contrary, on CPUs, the TLP is limited by
the number of cores, so using more threads to do the same
amount of work does not help performance on CPUs but
hurts it due to the overhead of emulating a large number
of concurrently executing workitems on a small number of
cores.

2.2.2. Number of Workitems and Instruction-Level Parallelism
(ILP). The number of workitems affects the instruction-level
parallelism (ILP) of the OpenCL kernel on CPUs. Increasing
ILP in GPU applications has not been a popular performance
optimization technique. The reasons are as follows. First,
the hardware can explore much TLP so ILP will not affect
the performance significantly. Second, the hardware does
not explore too much ILP. The GPU processor is an in-
order scheduler processor and does not also support branch
prediction to increase ILP. However, on CPUs, the hardware
has been designed to increase ILP withmultiple features such
as superscalar execution and branch predictors.

A modern superscalar processor executes more than one
instruction concurrently by dispatching multiple indepen-
dent instructions during a clock cycle to utilize the multiple
functional units in CPUs. Superscalar CPUs use hardware
that checks data dependencies between instructions at run-
time and schedule instructions to run in parallel [14].

One of the performance problems of OpenCL applica-
tions on CPUs is that usually the kernel is written mostly to
utilize the TLP, not for ILP.TheOpenCL programmingmodel
is an SIMTmodel, and it is common for an OpenCL applica-
tion to have a massive number of threads. Since independent
instructions computing different elements are separated into
different threads, most instructions in a single workitem in
the kernel are usually dependent on previous instructions,
so that typically most OpenCL kernels have ILP one; only
one instruction can be dispatched to execute in a workitem.
On the contrary, on conventional programming models
such as OpenMP, independent instructions exist between
different loop iterations. For better performance onCPUs, the

4 Scientific Programming

OpenCL kernel should be written to have more independent
instructions.

2.2.3. Workgroup Size. The second important component is
the workgroup size. Workgroup size determines the amount
of work in a workgroup and the number of workgroups
of a kernel. On GPUs, a workgroup or multiple groups
are executed on a streaming multiprocessor (SM), which is
equivalent to a physical core on the multicore CPU. Similarly,
a workgroup is processed by a logical core of the CPU
[15, 16]. (Even though it depends on the implementation,
many implementations have this characteristic in common.).
A workload size that is too small per workgroup makes
the scheduling overhead more significant in total execution
time on CPUs since the thread context switching overhead
becomes bigger.

An OpenCL programmer can explicitly set workgroup
size or let the OpenCL implementation decide. If NULL value
is passed for workgroup size when the host application
calls clEnqueueNDRangeKernel, the OpenCL implemen-
tation automatically partitions global workitems into the
appropriate number of workgroups.

2.2.4. Proposed Solutions and Limitations. Many proposals to
reduce the scheduling overhead by serialization have been
presented [15–17]. Scheduling overhead is not a fundamental
problem with the OpenCL programming model. Better
OpenCL implementation can have less overhead than other
suboptimal implementations. Serialization is a technique that
serializes multiple workitems into a single workitem. For
example, SnuCL [15] overcomes the overhead of a large
number of workitems by serializing them to have fewer
workitems in the run-time. However, even with serialization,
multiple OpenCL implementations for CPUs still have high
scheduling overhead due to the complexity of compiler
analysis. Therefore, instead of using many workitems, as is
usually the case for OpenCL applications on GPUs, we are
better off assigning more work to each workitem with fewer
workitems on CPUs. The results from our experiments agree
with the above inferences.

2.3. Memory Allocation and Data Transfer. In general, a
parallel programming model can have two types of address
space options: unified memory space and disjoint memory
space [18]. Conventional programming models for CPUs
provide the unified memory address space both for the
sequential code and for parallel code. The benefit of unified
memory space is easy programming, with no explicit data
transfer for kernel execution.

On the contrary, even though it is hard for programmers
to program, OpenCL provides disjoint memory space to
programmers. This is because most heterogeneous comput-
ing platforms have disjoint memory systems due to the
different memory requirements of different architectures.
OpenCL assumes for its target a system where communica-
tion between the host and compute devices are performed
explicitly by a system network, such as PCI-Express. But, the
assumption of discrete memory systems is not true when
we use CPUs as compute devices for kernel execution. The

host and compute devices share the same memory system
resources such as last-level cache, on-chip interconnection,
memory controllers, and DRAMs.

The drawback of disjoint memory address space is that it
requires the programmer to explicitly manage data transfer
between the host and compute devices for kernel execu-
tion. In common OpenCL applications, the data should be
transferred back and forth in order to be processed by the
host or the compute device [3], which becomes unnecessary
when we use only the host for computation. To minimize
the data transfer overhead on a specific architecture, OpenCL
programmers usually have to rewrite the host code [3]. Often,
they need to change the memory allocation flags or use
different data transfer APIs for performance. For example,
the programmer should allocate memory objects on host
memory or device memory depending on target platform.
These rewriting efforts have been a burden for programmers
and have even been a waste of time due to the lack of
architectural or run-time knowledge of a specific system in
most cases.

2.3.1. Memory Allocation Flags. One of rewriting efforts is
changing the memory allocation flag. OpenCL provides the
programmer multiple options for memory object allocation
flags when the programmer calls clCreateBuffer that
could affect the performance of data transfer and kernel
execution.The memory allocation flag is used to specify how
the object is accessed by a kernel and where it is allocated.

Access Type. First, programmers can specify if the memory
object is a read-only memory object (CL MEM READ ONLY)
or write-only one (CL MEM WRITE ONLY) when referenced
inside a kernel.Theprogrammer can setmemory objects used
as input to the kernel as read-only and memory objects used
as output from the kernel as write-only. If the programmer
does not specify access type, the default option is to create
a memory object that can be read and written by the kernel
(CL MEM READ WRITE). CL MEM READ WRITE can also be
explicitly specified by programmers.

Where to Allocate. The other option that programmers
can specify is where to allocate a memory object. When
the programmer does not specify allocated location, the
memory object is allocated on the device memory in the
OpenCL compute device. OpenCL also supports the pinned
memory. When the host code creates memory objects using
the CL MEM ALLOC HOST PTR flag, the memory object is
allocated on the host-accessible memory that resides on the
host. Different from allocating the memory object in the
device memory, there is no need to transfer the result of
kernel execution back to the host memory when the result
is required by the host.

2.3.2. Different Data Transfer APIs. OpenCL also provides
different APIs for data transfer between the host and
compute devices. The host can enqueue commands
to read data from an OpenCL memory object that
is created by clCreateBuffer call to the memory
object that is mostly created by malloc call in the

Scientific Programming 5

host memory (by clEnqueueReadBuffer API). The
host can also enqueue commands to write data to the
OpenCL memory object from the memory object in the
host memory (by clEnqueueWriteBuffer API). The
programmer can also map an OpenCL memory object
to have the host-accessible pointer of the mapped object
(by clEnqueueMapBuffer API).

2.4. Vectorization andThread Affinity

2.4.1. Vectorization. Utilizing SIMD units has been one of
the key performance optimization techniques for CPUs [19].
Since SIMD instructions can perform computation on more
than one data item at the same time, SIMD utilization
could make the application more efficient. Many vendors
have released various SIMD instruction extensions on their
instruction set architectures, such as MMX [20].

Various methods have been proposed to utilize the SIMD
instruction: using optimized function libraries such as Intel
IPP [21] and Intel MKL [22], using C++ vector classes with
Intel ICC [23], or usingDSL compilers such as the Intel SPMD
Program Compiler [24]. Programmers can also program in
assembly or use intrinsic functions. However, all of these
methods assume rewriting the code. Due to this limitation,
and to help programmers easily write applications utilizing
SIMD instruction, autovectorization has been implemented
in many modern compilers [19, 23].

It is quite natural for programmers to expect that a
programming model difference has no effect on compiler
autovectorization on the same architecture. For example, if
a kernel is written in both OpenCL and OpenMP and both
implementations are written in a similar manner, program-
mers would expect that both codes are vectorized in a similar
fashion, thereby giving similar performance numbers. Even
though it depends on the implementation, this is not usually
true. Unfortunately, today’s compilers are very fragile about
vectorizable patterns, which depend on the programming
model. Applications should satisfy certain conditions in order
to fully take advantage of compiler autovectorization [19].
Our evaluation in Section 3.5.1 shows an example of this
fragility and verifies the possible effect of programming
models on vectorization.

2.4.2. Thread Affinity. Where to place threads can affect the
performance on modern multicore CPUs. Threads can be
placed on each core in different ways, which can create
a performance difference. The performance impact of the
placement would increase with more processors on the
system.

The performance difference can occur for multiple rea-
sons. For example, because of the different latency on the
interconnection network, threads that are far away will take
longer to communicate with each other, whereas threads
close to the adjacent core can communicate more quickly.
Also, an application that requires data sharing among adja-
cent threads can benefit if we assign these adjacent threads
to nearby cores. Proper placement can also eliminate the
communication overhead by utilizing shared cache. For the

Table 1: Experimental environment.

CPUs Intel Xeon E5645
Cores 4
Vector width SSE 4.2, 4 single precision FP
Caches L1D/L2/L3: 64KB/256KB/12MB
FP peak performance 230.4GFlops
Core frequency 2.40GHz
DRAM 4GB
GPUs NVidia GeForce GTX 580
SMs 16
Caches L1/Global L2: 16 KB/768KB
FP peak performance 1.56 TFlops
Shader Clock
frequency 1544MHz

O/S Ubuntu 12.04.1 LTS

Platform Intel OpenCL Platform 1.5 for CPU
NVidia OpenCL Platform 4.2 for GPU

Compiler Intel C/C++ compiler 12.1.3

performance reason, most conventional parallel program-
ming models support affinity, such as CPU AFFINITY in
OpenMP [8].

Unfortunately, thread affinity is not supported in
OpenCL. An OpenCL workitem is a logical thread, which is
not tightly coupled with a physical thread even though most
parallel programming languages provide this feature. The
reason for the lack of this functionality is that the OpenCL
design philosophy emphasizes portability over efficiency.

We present the lack of affinity support as one of the
performance limitations of OpenCL on CPUs compared to
other programming languages for CPUs. We would like to
present a potential solution to enhanceOpenCL performance
on CPUs. We found the benefit of better utilizing cache
on OpenCL applications by thread affinity. An example is
presented in Section 3.5.2.

3. Evaluation

Given the preceding background on the anticipated effects of
architectural aspects to understand theOpenCLperformance
on CPUs, the goal of our study is to quantitatively explore
these effects.

3.1. Methodology. The experimental environment for our
evaluation is described in Table 1. Our evaluation was per-
formed on a heterogeneous computing platform consisting
of a multicore CPU and a GPU; the OpenCL kernel was
executed either on the Intel OpenCL platform [4] or the
NVidia OpenCL platform [5]. We implemented an execution
framework so that we can vary and control many aspects
on the applications without code changes. The execution
framework is built as an OpenCL delegator library that
invokes OpenCL libraries from vendors: the one from Intel
for kernel execution on CPUs and the other from NVidia for
kernel execution on GPUs.

6 Scientific Programming

Table 2: List of NVidia OpenCL benchmarks for API overhead
evaluation.

Benchmark
oclBandwidthTest, oclBlackScholes, oclConvolutionSeparable,
oclCopyComputeOverlap,
oclDCT8x8, oclDXTCompression, oclDeviceQuery,
oclDotProduct, oclHiddenMarkovModel,
oclHistogram, oclMatrixMul, oclMersenneTwister,
oclMultiThreads, oclQuasirandomGenerator,
oclRadixSort, oclReduction, oclSimpleMultiGPU,
oclSortingNetworks, oclTranspose,
oclTridiagonal, oclVectorAdd

We use different applications for each evaluation. To
verify the API overhead, We use NVIDIA OpenCL Bench-
marks [5]. For other aspects, including scheduling overhead,
memory allocation, and data transfer, we first use simple
applications for evaluation. We also vary the data size of
each application.The applications are ported to the execution
framework we implemented. After evaluation with simple
applications, we also use the Parboil benchmarks [25, 26].
Tables 2, 3, and 4 describe evaluated applications and their
default parameters.

We use the wall-clock execution time. To measure stable
execution time without fluctuation, we iterate the kernel
execution until the total execution time of an application
reaches a long enough running time, 90 seconds in our
evaluation.This is sufficiently long to have amultiple number
of kernel executions for all applications in our evaluation.
Using the average kernel execution time per kernel invocation
calculated, we use normalized throughput to clearly present
the performance difference on multiple sections.

3.2. API Overhead. As we discussed in Section 2.1, the
OpenCL application has API overhead. To verify the API
overhead, we measured the time cost of each API function
in executing the OpenCL application in NVIDIA OpenCL
Benchmarks [5]. The workload size for each benchmark is
the size the application provides as a default. Figure 3 shows
the ratio of the execution time of kernel execution and
auxiliary API functions to the total execution time of each
OpenCL benchmark. (Auxiliary API functions are OpenCL
API functions called in the host code to coordinate kernel
execution.) The last column total means the arithmetic
mean of the data from each benchmark. From the figure, we
can see that a large portion of execution time is spent on
auxiliary API functions instead of kernel execution.

For detailed analysis, we categorized OpenCL APIs into
16 categories. We group multiple categories for visibility
in the following. Figure 4 provides a detailed example of
API overheads by showing the execution time distribu-
tion of each API function category for oclReduction.
Enqueued Commands category includes kernel execution
time and data transfer time between the host and compute
device and accounts for 12.1% of execution time. We find that
the API overhead is larger than the actual computation.

3.2.1. Overhead due to Various Platform Supports. Figure 5
shows the ratio of the execution time of each category
to the total execution time of each OpenCL benchmark.
The figure shows the performance degradation due to the
flexibility of various platforms. We see that the API func-
tions in Platform, Device, and Context categories con-
sume over 80 percent of the total execution time of each
OpenCL benchmark on average. The need to call API
functions in these categories comes from the fact that each
OpenCL application needs to set up an execution envi-
ronment for which the detailed mechanism would change,
depending on the platform. From our evaluation, we also
see that each call to the API functions in these categories
requires a long execution time. In particular, context man-
agement APIs incur a large execution time overhead. Figure 6
shows the execution time distribution of clCreateContext
and clReleaseContext to total execution time in each
benchmark. These functions are called at most once on each
OpenCL benchmark. But in conventional parallel program-
ming models, context and device are implicit, so there is no
need to call such management functions.

3.2.2. Overhead due to JIT Compilation. The list of OpenCL
kernels in the application is represented by the cl program
object. cl program object is created using either clCre-
ateProgramWithSource or clCreateProgramWithBi-
nary. JIT compilation is performed by either calling the
clBuildProgram function or a sequence ofclCompilePro-
gram and clLinkProgram functions for the cl program
object to build the program executable for one or more
devices associated with the program [3].

JIT compilation overhead is another source of the API
overhead. Figure 7 shows the execution time distribution
of Program category to the sum of execution time of all cate-
gories except Platform, Device, and Context categories.
We exclude these 3 categories that we have evaluated in
previous section. The figure clearly shows the performance
degradation due to the JIT compilation. We see that the
API functions in Program category consume around 33% of
the total execution time for 13 categories of the API func-
tions including kernel execution. Execution time overhead
of clBuildProgram is not negligible in most benchmarks.

Caching. Caching JIT compiled code can help reduce
the overhead. Some of the caching ideas are available in
OpenCL. Programmers can extract compiled binary by using
the clGetProgramInfo API function and store it using
FILE I/O functions. When the kernel code is not modified
since caching, programmers can load the cached binary on
disk and use the binary instead of performing JIT compilation
on every execution of the application.

3.2.3. Summary. In this section, we can see the high overhead
of explicit context management (Section 3.2.1) and JIT com-
pilation (Section 3.2.2) in OpenCL applications. These are
unique characteristics of OpenCL compared to conventional
programming models for portable execution over multiple
architectures.

Scientific Programming 7

Table 3: Configurations of simple applications.

Benchmark Kernel Global work size Local work size
Square Square 10000, 100000, 1000000, 10000000 NULL
Vectoraddition vectoadd 110000, 1100000, 5500000, 11445000 NULL
Matrixmul matrixMul 800 × 1600, 1600 × 3200, 4000 × 8000 16 × 16
Reduction reduce 640000, 2560000, 10240000 256
Histogram histogram256 409600 128
Prefixsum prefixSum 1024 1024
Blackscholes blackScholes 1280 × 1280, 2560 × 2560 16 × 16
Binomialoption binomialoption 255000, 2550000 255
Matrixmul(naive) matrixMul 800 × 1600, 1600 × 3200, 4000 × 8000 16 × 16

Table 4: Configurations of the Parboil benchmarks.

Benchmark Kernel Global work
size Local work size

CP Cenergy 64 × 512 16 × 8

MRI-Q computePhiMag
computeQ

3072
32768

512
256

MRI-FHD RhoPhi
computeFHD

3072
32768

512
256

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

l

Kernel execution
Auxiliary

Ra
tio

 (%
) 100

80
60
40
20

0

Figure 3: Execution time distribution of kernel execution and
auxiliary API functions.

It should be noted that the workload size for the evalua-
tion in Section 3.2 is the size that the application provides as
the default workload size, which is relatively small.Therefore,
these overheads can be reduced with a large workload size
and thus a long kernel execution time. But it is also true that
these overheads are not negligible with small workload size,
so the programmer should consider the workload size when
they decide whether to use OpenCL or not.

3.3. Thread Scheduling

3.3.1. Number of Workitems. Associated with the discussion
in Section 2.2.1, to evaluate the effect of the number of
workitems and the workload size per workitem, we perform
an experiment on OpenCL applications by allocating more
computation per workitem. We coalesce multiple workitems
into a single workitem by forming a loop inside the kernel.

Ra
tio

 (%
)

40.0

30.0

20.0

10.0

3
.8

%
0

.0
%

3
8

.0
%

0
.0

%
1

7
.8

%
0

.0
%

1
4

.1
%

0
.0

%
0

.0
%

0
.0

%

1
4

.1
%

1
2

.1
%

0
.0

%
0

.0
%

0
.0

%
0

.0
%

0.0

(1
) P

lat
fo

rm
(2

) D
ev

ic
e

(3
) C

on
te

xt
(4

) C
om

m
an

d
qu

eu
e

(5
) M

em
or

y
ob

je
ct

(6
) S

am
pl

er
(7

) P
ro

gr
am

 o
bj

ec
t

(8
) K

er
ne

l o
bj

ec
t

(9
) E

ve
nt

 o
bj

ec
t

(1
0

) P
ro

fil
in

g
A

PI
(1

1
) F

lu
sh

 an
d

fin
ish

(1
2

) E
nq

ue
ue

d
co

m
m

an
ds

(1
3

) E
xt

en
sio

n
fu

nc
tio

n
(1

4
) O

pe
nG

L
(1

5
) O

pe
nG

L
ex

te
ns

io
n

(1
6

) O
pe

nC
L

ex
te

ns
io

n

Figure 4: Execution time distribution of each category of API
function for oclReduction.

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

lRa
tio

 (%
) 100

80
60
40
20

0

Command queue, memory object, sampler, program object,
kernel object, event object, profiling API, flush and finish,
enqueued commands, extension function, openGL,
openGL extension, openCL extension
Platform, device, context

Figure 5: Execution time distribution of each category of API
functions.

To keep the total amount of computation the same, we
reduce the number of workitems to execute the kernel. The
number of workitems coalesced increases from 1 to 1000
workitems by multiplying by 10 for each step. Figure 8
shows the performance of Square and Vectoraddition
applications with a different amount of computation per

8 Scientific Programming

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

l

Ra
tio

 (%
) 100.0

80.0

60.0

40.0

20.0

0.0

clCreateContext
clReleaseContext

Figure 6: Execution time distribution of clCreateContext
and clReleaseContext.

oc
lB

an
dw

id
th

Te
st

oc
lB

la
ck

Sc
ho

le
s

oc
lC

on
vo

lu
tio

nS
ep

ar
ab

le
oc

lC
op

yC
om

pu
te

O
ve

rla
p

oc
lD

CT
8

x8
oc

lD
XT

C
om

pr
es

sio
n

oc
lD

ev
ic

eQ
ue

ry
oc

lD
ot

Pr
od

uc
t

oc
lH

id
de

nM
ar

ko
vM

od
el

oc
lH

ist
og

ra
m

oc
lM

at
rix

M
ul

oc
lM

er
se

nn
eT

w
ist

er
oc

lM
ul

tiTh
re

ad
s

oc
lQ

ua
sir

an
do

m
G

en
er

at
or

oc
lR

ad
ix

So
rt

oc
lR

ed
uc

tio
n

oc
lS

im
pl

eM
ul

tiG
PU

oc
lS

or
tin

gN
et

w
or

ks
oc

lT
ra

ns
po

se
oc

lT
rid

ia
go

na
l

oc
lV

ec
to

rA
dd

To
ta

lRa
tio

 (%
) 100

80
60
40
20

0

Command queue, memory object, sampler, kernel object,
event object, profiling API, flush and finish,
enqueued commands, extension function, openGL,
openGL extension, openCL extension
Program object

Figure 7: Execution time distribution of Program category API
functions except Platform, Device, and Context categories.

workitem. Table 5 shows the number of workitems used in
this evaluation.

From Figure 8, we find a performance gain for allocating
more work per workitem on CPUs. A noticeable example is a
case of Vectoraddition, wherewe add an array of numbers.
If we create asmanyworkitems as the size of arrays, we end up
creating significant overhead on CPUs. When we reduce the
number of workitems, we see a major performance improve-
ment for CPUs. We could also find that the performance is
saturated sometimes when the workload assigned per each
workitem goes over a certain threshold. This shows that
when each workitem has a sufficient workload, scheduling
overhead is reduced.

Compared to CPUswith high overhead of handlingmany
workitems, GPUs have low overhead for maintaining a large
number of workitems, as our evaluation shows. Furthermore,
reducing the number of workitems degraded performance
on GPUs significantly.The large performance degradation on
GPUs is because we could no longer take advantage of many
processing units on GPUs.

One of the reasons for performance improvement by
allocating more workload per workitem is the reduced num-
ber of instructions. Figure 9 shows the number of dynamic
instructions of Square and Vectoraddition applications
with a different amount of computation per workitem.
The left figure of Figure 9 shows the dynamic instruction
count including instructions from OpenCL APIs on top of
instructions from the OpenCL kernel. And the right figure of
Figure 9 represents the instructions only from the kernel.

For this evaluation, we implement a tool based on Pin
[27] that counts the number of instructions. The tool also
identifies the function to which the instruction belongs.
From Figure 9, we can see that the number of instructions
is reduced with more workload per workitem even though
the amount of computation is the same regardless of the
number of workitems. The number of instructions from
OpenCL APIs as well as that from the kernels increases, so
that the scheduling overhead exists on both OpenCL APIs
and the JIT compiled OpenCL kernel binary. Figure 10 shows
reduced overhead on OpenCL APIs with increased workload
per workitem. The instructions from OpenCL APIs are for
scheduling, not for computation intended by programmers
represented as an OpenCL kernel. So a reduced number of
instructions from OpenCL APIs means reduced overhead.

Figure 11 shows the performance of Parboil benchmarks
with a similar experiment [25, 26].The number of workitems
coalesced is different depending on the benchmark since we
could not increase the workload per workitem in the same
manner for all kernels. We find a similar performance gain
of allocating more work per workitem. Figure 12 represents
the reduced number of dynamic instructions with increased
workload per workitem.

3.3.2. Number of Workitems and Instruction-Level Parallelism
(ILP). As we discussed in Section 2.2.2, the number of
workitems, and therefore how to parallelize the computation,
also affects the instruction-level parallelism (ILP) of the
OpenCL kernel on CPUs. Coalescingmultiple workitems can
not only reduce the scheduling overhead but also improve the
performance by utilizing ILP.

To evaluate the ILP effect on both the CPU and the GPU,
we implemented a set of compute-intensive microbench-
marks that share common characteristics. Every benchmark
has an identical number of dynamic instructions and mem-
ory accesses. Each benchmark also has the same instruction
mixture, such as a ratio of the number of branch instructions
over the total number of instructions. The only difference
between each benchmark is ILP by varying the number of
independent instructions. From the baseline implementa-
tion, we increase the number of operand variables, so that
the number of independent instructions can increase. For
example, in the case of ILP 1, the next instruction depends
on the output of the previous instruction so that the number
of independent instructions is one; but in the case of ILP 2,
an independent instruction exists between two dependent
instructions.

Figure 13 shows the performance with increasing ILP. We
provide enoughworkitems to fully utilize TLP.Thenumber of
workitems remains the same for all microbenchmarks. The

Scientific Programming 9

Sp
ee

du
p

Sp
ee

du
p

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

5.00

4.00

3.00

2.00

1.00

0.00

Base(GPU)
10x(GPU)

100x(GPU)
1000x(GPU)

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Figure 8: Performance of Square and Vectoraddition applications with different workload per workitem.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

100.0

80.0

60.0

40.0

20.0

0.0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

n
(%

)

100.0

80.0

60.0

40.0

20.0

0.0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

n
(%

)

Figure 9: The number of dynamic instructions of Square and Vectoraddition applications with different workload per workitem including
(L) instructions from OpenCL APIs and (R) kernel only.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Base(CPU)
10x(CPU)

100x(CPU)
1000x(CPU)

100.0

80.0

60.0

40.0

20.0

0.0

Ra
tio

 o
f i

ns
tr

uc
tio

ns
fro

m
 k

er
ne

l (
%

)

Figure 10: The ratio of instructions from kernel over the instruc-
tions around clEnqueueNDRangeKernel for Square and Vectorad-
dition applications with different workload per workitem.

left 𝑦-axis represents the throughput of the CPUs, and the
right one represents the throughput of the GPUs. From the
figure, we find that performance improves depending on the
ILP value of the OpenCL kernel on CPUs. On the contrary,
there is no performance variation on GPUs with different
degrees of instruction-level parallelism.

3.3.3. Workgroup Size. Associated with the discussion in
Section 2.2.3, the number of workitems in workgroups can
affect the performance of the OpenCL application. We evalu-
ate the effect of workgroup size, both on CPUs and GPUs.We
vary the number of workitems in a workgroup by passing a
different argument for workgroup size (local work size)
on kernel invocation. We maintain the total number of
workitems of the kernel as the same. Table 6 shows the
different workgroup size for each benchmark, and Figures 14,
16, and 18 show the performance of applicationswith different
workgroup sizes. When the NULL argument is passed on
kernel invocation, the workgroup size is implicitly defined by
the OpenCL implementation.

The benchmarks can be categorized into three cate-
gories, depending on the behavior. The first group con-
sists of Square, Vectoraddition, and naive implementa-
tion of Matrixmul; Matrixmul belongs to the second
group; and Blackscholes belongs to the last.

Square, Vectoraddition, and naive implementation
of Matrixmul show a performance increase with increased
workgroup sizes on the CPU, as can be seen in Figure 14.
On the Square and Vectoraddition applications, per-
formance achieved with the NULL workgroup size is less
than the peak performance we achieve. This implies that

10 Scientific Programming

0

1

2

3

4

5

CP: cenergy MRI‐Q:
computeQ

MRI‐FHD:
computeFHD

Sp
ee

du
p

0

0.5

1

1.5

2

MRI‐Q: computePhiMag

Sp
ee

du
p

Base(1x)
2x
4x

Base(1x)
2x
6x

MRI-FHD: RhoPhi

Figure 11: Performance of Parboil benchmarks with different
workloads per workitem.

CP: cenergy MRI‐Q:
computeQ

MRI‐FHD:
computeFHD

Base(1x)
2x
4x

Base(1x)
2x
4x

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

) 100

120

80

60

40

20

0

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

100

120

80

60

40

20

0

MRI‐Q: computePhiMag MRI-FHD: RhoPhi

Figure 12: The number of dynamic instructions of Parboil bench-
marks with different workload per workitem.

0
100
200
300
400
500
600

0
10
20
30
40
50

CPU
GPU

G
PU

 th
ro

ug
hp

ut

(G
Fl

op
s)

CP
U

 th
ro

ug
hp

ut

(G
Fl

op
s)

1 2 3 4

Figure 13: Performance of ILP microbenchmark on the CPU and
the GPU.

Table 5: Number of workitems for each application.

Benchmark Base 10x 100x 1000x
Square 1 10000 1000 100 10
Square 2 100000 10000 1000 100
Square 3 1000000 100000 10000 1000
Square 4 10000000 1000000 100000 10000
Vectoradd 1 110000 11000 1100 110
Vectoradd 2 1100000 110000 11000 1100
Vectoradd 3 5500000 550000 55000 5500

Table 6: Workgroup size for each application.

Benchmark Base Case 1 Case 2 Case 3 Case 4
Square NULL 1 10 100 1000
Vectoraddition NULL 1 10 100 1000
Matrixmul 16 × 16 1 × 1 2 × 2 4 × 4 8 × 8
Blackscholes 16 × 16 1 × 1 1 × 2 2 × 2 2 × 4
Matrixmul(naive) 16 × 16 1 × 1 2 × 2 4 × 4 8 × 8

programmers should explicitly set the workgroup size for
the maximum performance. The performance with a small
workgroup size is also bad on GPUs since the workgroup is
allocated per SM, so that the small workgroup size makes
GPUs unable to utilize many warps in an SM. Even though
no hardware TLP is available inside a logical core on CPUs
(the evaluated CPU is an SMT processor, so multiple logical
cores share one physical core), performance increases with
a large workgroup size. This is because the overhead of
managing a large number of workgroups, many threads
in many implementations, is reduced. We also find that
performance is saturated at a certain workgroup size.

The left figure of Figure 15 shows the number of dynamic
instructions of Square, Vectoraddition, and naive
implementation of Matrixmul with different workgroup
size on CPUs. The right figure of Figure 15 shows the
ratio of instructions from kernel over the instructions
around clEnqueueNDRangeKernel for those applications
with a different workgroup size. From the left figure of
Figure 15, we can see that the number of instructions is
reduced with larger workgroup size. This is because the
number of instructions from OpenCL APIs is reduced, as
can be seen from the right figure of Figure 15. The number

Scientific Programming 11

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

2.00

1.50

1.00

0.50

0.00

1.20
1.00
0.80
0.60
0.40
0.20
0.00

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sp
ee

du
p

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Figure 14: Performance of applications with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Ra
tio

 o
f i

ns
tr

uc
tio

ns
fro

m
 k

er
ne

l (
%

)

100.00

80.00

60.00

40.00

20.00

0.00

300.0

200.0

100.0

0.0

Figure 15: (U) The number of dynamic instructions of Square, Vectoraddition, and naive implementation of Matrixmul with different
workgroup size on CPUs. (L) The ratio of instructions from kernel over the instructions around clEnqueuNDRangeKernel for Square,
Vectoraddition, and naive implementation of Matrixmul with different workgroup size.

of instructions from the OpenCL kernel remains the same
regardless of workgroup size.

As we can see from Figure 16, we also see a significant
performance increase on the Matrixmul applicationwith an
increased workgroup size.The optimal workgroup size of this
application is different, depending on platforms. For inputs 1
and 2, the optimal workgroup size on CPUs is 8 × 8, but
the optimal size on GPUs is 16 × 16. Here, the performance
depends not only on the scheduling overhead, but also on
the cache usage. Matrixmul utilizes the local memory in
OpenCL by blocking. Workgroup size can change the local
memory usage of the kernel. Since the size of the cache in
CPUs and the scratchpad memory in GPUs are different, the
optimal workgroup size can be different. Figure 17 shows the
reduced number of dynamic instructions of Matrixmul with
increasing workgroup size.

Unlike other applications, Blackscholes shows differ-
ent performance behavior on CPUs and on GPUs. As we
can see in Figure 18, the workgroup size does not change the
performance on CPUs, but it affects the performance signif-
icantly on GPUs. Since the workload allocated on a single
workitem is relatively long compared to other applications,
the overhead of managing a large number of workgroups
becomes negligible. On the contrary, the number of warps

in the SM is defined by the workgroup size on GPUs, which
makes the performance on GPUs low on small workgroup
sizes. Figure 19 shows that the number of instructions does
not change much for Blackscholes, regardless of workgroup
size.

Figure 20 shows the performance of Parboil benchmarks
with different workgroup sizes. We increase the workgroup
size from one to 16 times by multiplying by 2 for each step.
Since the workgroup size for CP:cenergy kernel is two-
dimensional, we increase the workgroup size of the kernel in
two directions. CP:cenergy(x) represents the performance
with workgroup sizes 1 × 8, 2 × 8, 4 × 8, 8 × 8, and
16 × 8. CP:cenergy(y) represents the performance with
workgroup sizes 16 × 1, 16 × 2, 16 × 4, 16 × 8, and
16 × 16. In general, we find the performance gain with
a large workgroup size. The performance saturates when
there is enough computation inside the workgroup. Figure 21
shows that the performance gain is due to reduced scheduling
overhead, which is represented by a reduced number of
dynamic instructions.

3.3.4. Summary. Here, we summarize the findings on thread
scheduling for OpenCL applications.

12 Scientific Programming

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

1.50

1.00

0.50

0.00

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Sp
ee

du
p

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Matrixmul_1 Matrixmul_2 Matrixmul_3 Matrixmul_1 Matrixmul_2 Matrixmul_3

Figure 16: Performance of Matrixmul with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

1000.0

800.0

600.0

400.0

200.0

0.0

Matrixmul_1 Matrixmul_2 Matrixmul_3

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Figure 17: The number of dynamic instructions of Matrixmul with
different workgroup size on CPUs.

(1) Allocating more work per workitem by manually
coalescing multiple workitems reduces scheduling
overhead on CPUs (Section 3.3.1).

(2) High ILP increase performance on CPUs but not on
GPUs (Section 3.3.2).

(3) Workgroup size affect performance both on CPUs
and GPUs. In general, large workgroup size increases
performance by reducing scheduling overhead on
CPUs and enables utilizing high TLP on GPUs.
Workgroup size can also affect the cache usage
(Section 3.3.3).

3.4. Memory Allocation and Data Transfer. Associated with
the discussion in Section 2.3, to evaluate the performance
effect of differentmemory object allocation flags and different
APIs for data transfer, we perform an experiment onOpenCL
applications with different combinations of the following
options. To measure exact execution performance, we use a
blocking call for all kernel execution commands andmemory
object commands so that no command overlaps with other
commands. The combination we use is three-dimensional as
follows.

3.4.1. Evaluated Options for Memory Allocation and
Data Transfer

(1) Different APIs for data transfer:

(i) explicit transfer: clEnqueueReadBuffer and
clEnqueueWriteBuffer for explicit read and
write;

(ii) mapping: clEnqueueMapBufferwith CL MAP
READ, CL MAP WRITE for implicit read and
write.

(2) Kernel access type when referenced inside a kernel:

(i) the kernel accesses the memory object as read-
only/write-only:
(a) CL MEM READ ONLY for the input to the

kernel;
(b) CL MEM WRITE ONLY for computation re-

sults from the kernel;
(ii) the kernel accesses the memory object as

read/write: CL MEM READ WRITE for all mem-
ory objects.

(3) Where to allocate a memory object:

(i) allocation on the device memory;
(ii) allocation on the host-accessiblememory on the

host (pinned memory).

3.4.2. Metric: Application Throughput. The throughput we
present here is the performance, including data transfer
time, between the host and compute devices, not just the
kernel execution throughput on the compute device. For
example, the throughput of an application becomes half of the
throughput when we consider only the kernel execution time
if the data transfer time between the host and the compute
device equals the kernel execution time.Theway we calculate
the throughput of an application is illustrated in

Throughput app =
Throughput kernel

kernel time + transfer time
. (1)

3.4.3. Different Data Transfer APIs. We compare the per-
formance of different data-transfer APIs on all possible
allocation flags. (The combinations are as follows: (1) read-
only/write-only memory object + allocation on the device;
(2) read-only/write-only memory object + allocation on the

Scientific Programming 13

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Blackscholes_1

Sp
ee

du
p

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Sp
ee

du
p

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Base(GPU)
Case_1(GPU)
Case_2(GPU)

Case_3(GPU)
Case_4(GPU)

Blackscholes_2 Blackscholes_1 Blackscholes_2

Figure 18: Performance of Blackscholes with different workgroup size on CPUs and GPUs.

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

)

100.0

120.0

80.0

60.0

40.0

20.0

0.0

Blackscholes_1 Blackscholes_2

Base(CPU)
Case_1(CPU)
Case_2(CPU)

Case_3(CPU)
Case_4(CPU)

Figure 19:Thenumber of dynamic instructions of Blackscholeswith
different workgroup size on CPUs.

0
1
2
3
4
5

Sp
ee

du
p

CP
: c

en
er

gy
(X

)

CP
: c

en
er

gy
(Y

)

co
m

pu
te

Ph
iM

ag
M

RI
‐Q

:

M
RI

‐Q
:

co
m

pu
te

Q

M
RI

‐F
H

D
:

co
m

pu
te

FH
D

Base(1x)
2x
4x

8x
16x

M
RI

‐F
H

D
:

Rh
oP

hi

Figure 20: Performance of Parboil benchmarks with different
workgroup size on CPUs.

host; (3) read-write memory object + allocation on the
device; (4) read-write memory object + allocation on the
host.) Figure 22 shows the performance of the benchmarks
with different APIs for data transfer. The 𝑦-axis represents
the normalized application throughput (Throughput app)
whenweusemapping for data transfer over the baselinewhen
we use explicit data transfer APIs.We find that mapping APIs
have superior performance compared to explicit data transfer
APIs, regardless of the decision on other dimensions. First,
the performance of mapping APIs is superior wherever the
memory object is allocated: on device memory or on pinned
memory on host. Second, mapping APIs also perform better

N
um

be
r o

f d
yn

am
ic

in
str

uc
tio

ns
 (%

) 100

80

60

40

20

0

CP
: c

en
er

gy
(X

)

CP
: c

en
er

gy
(Y

)

co
m

pu
te

Ph
iM

ag
M

RI
‐Q

:

M
RI

‐Q
:

co
m

pu
te

Q

M
RI

‐F
H

D
:

co
m

pu
te

FH
D

Base(1x)
2x
4x

8x
16x

M
RI

‐F
H

D
:

Rh
oP

hi

Figure 21: The number of dynamic instructions of Parboil bench-
marks with different workgroup size on CPUs.

regardless of the decision for allocating the memory object as
read-only/write-only or as read/write object.

Different APIs change data transfer time. Figure 23 shows
the normalized data transfer throughput from the host
to a compute device between different data transfer APIs.
Figure 24 shows the one from compute device to host. The
data transfer time is shorter with mapping APIs. The differ-
ence of data transfer throughput increases with increases in
workload sizes and therefore increases in data transfer sizes.

We also report the performance of Parboil benchmarks
with different APIs for data transfer [25, 26]. Since the data
transfer time is much shorter than the kernel execution
time on Parboil benchmarks, instead of using application
throughput as shown in (1), we report the data transfer
time from the host to device, and data transfer time from
the device to host with different APIs. Figure 25 shows the
different data transfer time of the Parboil benchmarks with
different APIs for data transfer. The 𝑦-axis represents the
data transfer time in milliseconds.The left figure in Figure 25
shows the data transfer time from the host to the compute
device with different data transfer APIs. The right figure
shows the one from the compute device to the host. As with
simple applications, we find that the data transfer time is
shorter with mapping APIs on these benchmarks.

14 Scientific Programming

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

ai
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Figure 22: Normalized application throughput of mapping over explicit data transfer for all combinations on other dimensions. The
performance of mapping APIs is superior to explicit data transfer on all possible combinations.

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

2.50

2.00

1.50

1.00

0.50

0.00

N
or

m
al

iz
ed

 d
at

a t
ra

ns
fe

r
th

ro
ug

hp
ut

 (h
os

t t
o

de
vi

ce
)

Figure 23: Normalized data transfer (host to device) throughput of mapping over explicit data transfer for all combinations on other
dimensions.

The difference of data transfer time is due to the different
behaviors of different APIs. When the host code explicitly
transfers data between the host and the compute device,
the OpenCL run-time library should allocate a separate
memory object for the device and copy the data between
the memory object allocated by the malloc call and the
memory object allocated for the device that is allocated
by the clEnqueueReadBuffer call. However, a separate
memory object is not needed when the host code uses
mapping; only returning a pointer of the memory object
is needed. So, copying between memory objects becomes
unnecessary.

3.4.4. Kernel Access Type When Referenced inside a Ker-
nel. We also verify the performance effect of specifying a
memory object as read-only/write-only or as read/write.
Figure 26 shows the performance implication of this flag.

The 𝑦-axis represents the normalized throughput when we
allocate the memory object as read-only/write-only from the
baseline when we allocate the object as read/write. OpenCL
implementations can utilize the detailed information of how
the memory object is accessed in the OpenCL kernel for
optimization instead of naively assuming all objects are read
and modified in the OpenCL kernel. However, we do not
see a noticeable performance difference with our evaluated
workloads. Kernel execution time and data transfer time
between the host and compute device do not differ regardless
of this memory allocation flag.

3.4.5. Where to Allocate a Memory Object. Finally, we
also verify the performance effect of the allocation loca-
tion of memory objects. Programmers can allocate the
memory object on the host memory or the device mem-
ory. Figure 27 shows the performance of benchmarks with

Scientific Programming 15

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2

Read-only or write-only, allocation on device
Read write, allocation on device
Read-only or write-only, allocation on host
Read write, allocation on host

N
or

m
al

iz
ed

 d
at

a t
ra

ns
fe

r
th

ro
ug

hp
ut

 (d
ev

ic
e t

o
ho

st)
10000.00

1000.00

100.00

10.00

1.00

0.10

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Figure 24: Normalized data transfer (device to host) throughput of mapping over explicit data transfer for all combinations on other
dimensions.

H
os

t t
o

de
vi

ce
da

ta
 tr

an
sfe

r t
im

e (
m

s)

CP MRI-Q MRI-FHD

2

1.5

1

0.5

0

Explicit transfer
Mapping

(a)

CP MRI-Q MRI-FHD

D
ev

ic
e t

o
ho

st
da

ta
 tr

an
sfe

r t
im

e (
m

s)
0.4

0.3

0.2

0.1

0

Explicit transfer
Mapping

(b)

Figure 25: Data transfer time with different APIs for data transfer. (Left) host to device and (Right) device to host.

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Allocation on device, explicit transfer
Allocation on device, mapping
Allocation on host, explicit transfer
Allocation on host, mapping

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

ai
ve

)_
3

Figure 26: Normalized application throughput of read-only/write-onlymemory objects over read/writememory objects for all combinations
on other dimensions. There is no noticeable performance difference.

16 Scientific Programming

Sq
ua

re
_1

Sq
ua

re
_2

Sq
ua

re
_3

Sq
ua

re
_4

Ve
ct

or
ad

d_
1

Ve
ct

or
ad

d_
2

Ve
ct

or
ad

d_
3

Ve
ct

or
ad

d_
4

M
at

rix
m

ul
_1

M
at

rix
m

ul
_2

M
at

rix
m

ul
_3

Re
du

ct
io

n_
1

Re
du

ct
io

n_
2

Re
du

ct
io

n_
3

H
ist

og
ra

m

Pr
efi

xs
um

Bl
ac

ks
ch

ol
es

_1

Bl
ac

ks
ch

ol
es

_2

Bi
no

m
ia

lo
pt

io
n_

1

Bi
no

m
ia

lo
pt

io
n_

2N
or

m
al

iz
ed

 ap
pl

ic
at

io
n

th
ro

ug
hp

ut

Read-only or write-only, explicit transfer
Read write, explicit transfer
Read-only or write-only, mapping
Read write, mapping

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

M
at

rix
m

ul
(n

ai
ve

)_
1

M
at

rix
m

ul
(n

a i
ve

)_
2

M
at

rix
m

ul
(n

a i
ve

)_
3

Figure 27: Normalized application throughput of the pinned memory over the device memory for all combinations on other dimensions.
Where to allocate a memory object does not change the performance much on CPUs.

different allocation locations. The 𝑦-axis represents the nor-
malized throughput when we allocate the memory object on
the host memory from the baseline when we use the device
memory. We find that an allocation location does not have a
huge impact on performance both for kernel execution time
and data transfer time. This is because the device memory
and the host memory reference the same memory, the main
memory of the system when the compute device is the CPU.
Therefore, a different memory allocation location does not
imply performance differences. On the contrary, when the
compute device is not the CPU, memory allocation location
can affect the performance significantly.

3.4.6. Summary. In this section we find that mapping APIs
perform superior compared to explicit data transfer APIs
with reduced data transfer time by eliminating the copying
overhead on CPUs. Allocated location and kernel access type
do not affect the performance on CPUs.

3.5. Vectorization andThread Affinity

3.5.1. Vectorization. We evaluate the possible effect of
programming models on vectorization, even though
vectorization is more about compiler implementation. For
evaluation, we port the OpenCL kernels to identical
computations being performed by their OpenMP
counterparts. We map multiple workitems on OpenCL to a
loop to port OpenCL kernels to their OpenMP counterparts.
We utilize the Intel C/C++ 12.1.3 compiler and the Intel
OpenCL platform 1.5 for our evaluation. The programmer’s
expectation is that when we run the same computation in
the OpenCL and OpenMP applications, both runs should
give comparable performance numbers. However, the results
show that this assumption does not hold. For the evaluated
benchmarks, the OpenCL kernels outperform their OpenMP
counterparts. Figure 28 shows the different performance
of OpenMP and OpenCL implementations. The reason for
this mismatch is the different way OpenMP and OpenCL
compilers vectorize code.

M
Be

nc
h1

M
Be

nc
h 2

M
Be

nc
h3

M
Be

nc
h4

M
Be

nc
h5

M
Be

nc
h 6

M
Be

nc
h 7

M
Be

nc
h8Th

ro
ug

hp
ut

 (G
FL

op
s)

1000

100

10

1

OpenMP
OpenCL

Figure 28: Performance impact of vectorization.

OpenCL Vectorization.The vectorization by the OpenCL ker-
nel compiler is coalescing workitems. OpenCL vectorization
enables the execution of several workitems together by a
single vector instruction.Vectorization enablesmultiplework
items to be processed concurrently on a single thread. For
example, if the target instruction set is SSE 4.2, and the
computation is based on a single precision floating point, then
fourworkitems couldmake progress concurrently, so they are
coalesced into a single workitem. By doing this, vectorized
OpenCL code would have fewer dynamic instruction counts
compared to nonvectorized code.

OpenMP Vectorization. On the other hand, the OpenMP
compiler vectorizes loops by unrolling a loop combined
with the generation of packed SIMD instructions. To
be vectorized, a loop should be countable, have sin-
gle entry and single exit, and have a straight control
flow graph inside the loop [28]. Many factors could
prevent the vectorization of a loop in OpenMP. Two
key factors are (1) non-contiguous memory access and
(2) data dependence.

(1) Noncontiguous memory access:

(i) four consecutive floats may be loaded directly
from the memory in a single SSE instruction;

Scientific Programming 17

/∗OpenMP computation that doesn’t vectorize due to dependencies.∗/
intmain(){
⋅ ⋅ ⋅

for (int 𝑗 = 0; 𝑗 < 4; 𝑗++){
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
}

⋅ ⋅ ⋅

}

/∗Similar OpenCL kernel computation which vectorizes.∗/
void VectorAdd (. . ., global float ∗dm src, global float ∗dm dst){
⋅ ⋅ ⋅

for (int 𝑗 = 0; 𝑗 < 4; 𝑗++){
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
FMUL(𝑎[𝑗], 𝑏[𝑗])
}

⋅ ⋅ ⋅

}

Algorithm 1: Vectorization on OpenCL versus OpenMP. The equivalent code in OpenCL is vectorizable while OpenMP code is not
vectorizable.

but if the four floats to be loaded are not
consecutive, we will have a load using multiple
instructions; loops with a nonunit stride are an
example of the above scenario.

(2) Data dependence:

(i) vectorization requires changes in the order of
operations within a loop since each SIMD
instruction operates on several data elements at
once; but such a change of order might not be
possible due to data dependencies.

Example. Algorithm 1 shows an example of how different
vectorizationmechanisms fromOpenMP andOpenCL com-
pilers affect whether identical codes are to be vectorized or
not. When there is a true data dependence inside an OpenCL
kernel or inside a loop iteration in OpenMP parallel for
section, the OpenCL kernel is vectorized, while the OpenMP
code is not. Therefore, they show different performance even
when vectorization of OpenMP loops seems possible. The
vectorization of an OpenCL kernel is relatively straightfor-
ward because no dependency checks are required as in the
case of traditional compilers. Even though we only show the
example of when theOpenCL compiler shows the benefit, the
opposite case is also possible: when the OpenMP compiler
vectorizes code, but the OpenCL compiler fails.

New OpenMP Compiler. We have also evaluated OpenMP
vectorization with OpenMP 4.0 SIMD extension and the
newer compiler (Intel C/C++ compiler 15.0.1).The evaluation

revealed comparable performance of OpenMP and OpenCL
implementations. Compiler vectorization is dependent on the
compiler implementation.

3.5.2. Thread Affinity. We evaluate the performance benefit
using the CPU affinity in OpenMP. We use OMP PROC BIND
and GOMP CPU AFFINITY to control the scheduling of
threads on the processors [8]. When the OMP PROC BIND
is set to be true, the threads will not be moved between
processors. GOMP CPU AFFINITY enables us to control the
allocation of a thread on a particular core.

We use a simple application for evaluation. The aim of
the application is to verify the effects of binding threads
to cores in terms of cache utilization. Performance can
improve when the OpenCL run-time library maps logical
threads of a kernel on physical cores so that it can utilize
the cached data of the previous kernel execution. The appli-
cation we use consists of two kernels: Vector Addition
and Vector Multiplication. Computation of each kernel
is distributed among eight cores: and the computation of
second kernel is dependent on the first one, using the data
produced by the first one.

Table 7 shows the method we use. The upper table in
Table 7 represents the (a) Aligned case, and the lower
table represents the (b) Misaligned case. The numbers
in the table represent the logical thread IDs. Threads with
identical IDs of both the kernels access the same data.
On the (a) Aligned case, we bind threads of the second
kernel to the cores on which the threads of the first kernel

18 Scientific Programming

Table 7: Performance impact of CPU affinity.

(a) Aligned

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
Computation 1 0 1 2 3 4 5 6 7
Computation 2 0 1 2 3 4 5 6 7

(b) Misaligned

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
Computation 1 0 1 2 3 4 5 6 7
Computation 2 6 3 4 0 2 1 7 5

/∗First Kernel: Vector Addition.∗/
#pragma omp parallel for shared(𝑎, 𝑏, 𝑐) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){
𝑐[𝑖] = 𝑎[𝑖] + 𝑏[𝑖];
}

/∗(a) Aligned Second Kernel: Vector Multiplication.∗/
#pragma omp parallel for shared(𝑏, 𝑐, 𝑑) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){
𝑑[𝑖] = 𝑏[𝑖] + 𝑐[𝑖];
}

/∗(b) Misaligned Second Kernel: Vector Multiplication.∗/
#pragma omp parallel for shared(𝑏, 𝑐, 𝑑) private (𝑖)
for (int 𝑖 = 0; 𝑖 <MAX INDEX; 𝑖++){

int 𝑗 = MAX INDEX − 1 − 𝑖;
𝑑[𝑗] = 𝑏[𝑗] + 𝑐[𝑗];
}

Algorithm 2: Code snippet of simple application.

are bound. On the (b) Misaligned case, we shuffle this
binding. Algorithm 2 shows the code snippet of this simple
application.

As we expect, the (a) Aligned case shows higher
performance than does the (b) Misaligned case. The
(b) Misaligned one runs longer by 15%. This is because
during the execution of the second kernel, the cores on the
CPU encounter cache misses on their private caches. On the
contrary, the (a) Aligned case would have more cache hits
than the (b) Misaligned case because the data accessed by
the second kernel would already be on the cache after the
execution of the first kernel on the (a) Aligned case.

As the results show, even though OpenCL emphasizes
portability, adding the affinity support to OpenCL may
provide a significant performance improvement in some
cases. Hence, we argue that coupling logical threads with
physical threads (cores on the CPU) is needed on OpenCL,
especially for CPUs. The granularity for the assignment
could be a workgroup; in other words, the programmer
can specify the core where a specific workgroup would
be executed. This functionality would help to improve the
performance ofOpenCL applications. For example, data from
different kernels can be shared without a memory request if
the programmer allocates cores for specific workgroups in

consideration of the data sharing of different kernels.Thedata
can be shared through the private caches of cores.

4. Related Work

Multiple research studies have been done on how to optimize
OpenCL performance on GPUs. The GPGPU community
provides TLP [29] as a general guideline for optimizing
GPGPU applications since GPGPUs are usually equipped
with a massive number of processing elements. Since
OpenCL has the same background as CUDA [9], most
OpenCL applications are written to better utilize TLP. The
widely used occupancy metric indicates the degree of TLP.
However, this scheme cannot be applied on CPUs since even
when the TLP of the application is large, the physical TLP
available on CPUs is limited by the number of CPU cores, so
that the context switching overhead is much higher on CPUs
than on GPUs for which this overhead is negligible.

Several publications refer to the performance of OpenCL
kernels on CPUs. Some focus on algorithms and some refer
to the performance difference by comparing it with GPU
implementation and OpenMP implementation on CPUs [16,
30, 31]. However, to the best of our knowledge, our work is the
first to provide a broad summary, combining applicationwith
the architecture knowledge to provide a general guideline to
understand OpenCL performance on multicore CPUs.

Ali et al. compare OpenCL with OpenMP and Intel’s TBB
on different platforms [30]. They mostly discuss the scaling
effects and compiler optimizations. But it misses out on why
the optimizations listed in the paper give the performance
benefit mentioned and lacks quantitative evaluation. We,
too, evaluate the performance of OpenCL and OpenMP for
a given application. However, our work considers various
aspects that can change application performance and provide
quantitative evaluations to help programmers estimate the
performance impact of each aspect.

Seo et al. discuss OpenCL performance implications for
theNAS parallel benchmarks and give a nice overview of how
they optimize the benchmarks by first getting an idea of the
data transfer and scheduling overhead and then coming up
with ways to avoid them [31]. They also show how to rewrite
a good OpenCL code, given an OpenMP code. Stratton et al.
describe a way to implement a compiler for fine-grained
SPMD-thread programs on multicore execution platforms
[16]. For the fine-grained programming model, they start

Scientific Programming 19

with CUDA, saying that it will apply to OpenCL as well.They
focus on the performance improvement over the baseline.
Our work is more generalized and broad compared to these
previous studies and also includes some of the important
points that are not addressed in these papers.

One of the references that is very helpful to understand
the performance behavior of OpenCL is a document from
Intel [32]. It broadly lays out some general guidelines to follow
to get better performance out ofOpenCL applications on Intel
processors. However, it does not discuss the performance
improvement and also does not state how much benefit can
be achieved.

5. Conclusion

We evaluate the performance of OpenCL applications on
modern multicore CPU architectures. Understanding the
performance in terms of architectural resource utilization is
helpful for programmers. In this paper, we evaluate various
aspects, including API overhead, thread scheduling, ILP, data
transfer, data locality, and compiler-supported vectorization.
We verify the unique characteristics of OpenCL applications
by comparing them with conventional parallel programming
models such as OpenMP. Key findings of our evaluation are
as follows.

(1) OpenCL API overhead is not negligible on CPUs
(Section 3.2).

(2) Allocating more work per workitem therefore reduc-
ing the number of workitems helps performance on
CPUs (Section 3.3.1).

(3) Large ILP helps performance onCPUs (Section 3.3.2).
(4) Large workgroup size is helpful for better perfor-

mance on CPUs (Section 3.3.3).
(5) On CPUs,Mapping APIs perform superior compared

to explicit data transfer APIs.Memory allocation flags
do not change performance (Section 3.4).

(6) Programming model can have possible effect on
compiler-supported vectorization. Conditions for the
code to be vectorized can be complex (Section 3.5.1).

(7) Adding affinity support to OpenCL may help perfor-
mance in some cases (Section 3.5.2).

Our evaluation shows that considering the characteris-
tics of CPU architectures, the OpenCL application can be
optimized further for CPUs, and the programmer needs to
consider these insights for portable performance.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Jin Wang and Sudhakar
Yalamanchili, Inchoon Yeo, the Georgia Tech HPArch mem-
bers, and the anonymous reviewers for their suggestions and

feedback. We gratefully acknowledge the support of the NSF
CAREER award 1139083 and Samsung.

References

[1] AMD, AMDAccelerated Processing Units (APUs), http://www
.amd.com/en-us/innovations/software-technologies/apu.

[2] Intel, “Products (Formerly Sandy Bridge),” http://ark.intel.com/
products/codename/29900/Sandy-Bridge.

[3] Khronos Group, “OpenCL: the open standard for parallel pro-
gramming of heterogeneous systems,” http://www.khronos.org/
opencl.

[4] Intel, “Intel OpenCL SDK,” http://software.intel.com/en-us/
articles/intel-opencl-sdk/.

[5] NVIDIA, “NVIDIA OpenCL SDK,” http://developer.nvidia
.com/cuda/opencl/.

[6] J. Aycock, “A brief history of just-in-time,” ACM Computing
Surveys, vol. 35, no. 2, pp. 97–113, 2003.

[7] Intel, Intel Threading Building Blocks, http://threadingbuild-
ingblocks.org/.

[8] The OpenMP Architecture Review Board, OpenMP, http://
openmp.org/wp/.

[9] NVIDIA, CUDA Programming Guide, V4.0, 2011.
[10] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

and W.-M. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’08), pp.
73–82, February 2008.

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.Ueng,
andW.-M.W. Hwu, “Program optimization study on a 128-core
GPU,” in Proceedings of the 1st Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU '07), October
2007.

[12] S. Ryoo,C. I. Rodrigues, S. S. Stone et al., “Programoptimization
space pruning for a multithreaded GPU,” in Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’08), pp. 195–204, 2008.

[13] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC ’08), pp. 31:1–31:11, November 2008.

[14] R. Balasubraamonian, S. Dwarkadas, and D. H. Albonesi,
“Reducing the complexity of the register file in dynamic
superscalar processors,” in Proceedings of the 34th Annual
International Symposium on Microarchitecture, pp. 237–248,
December 2001.

[15] J. Kim, S. Seo, J. Lee, J. Nah, and G. Jo, “SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceed-
ings of the 26th ACM International Conference on Supercomput-
ing (ICS ’12), pp. 341–351, June 2012.

[16] J. A. Stratton, V. Grover, J. Marathe et al., “Efficient compilation
of fine-grained SPMD-threaded programs for multicore CPUs,”
in Proceedings of the 8th International Symposium on Code
Generation andOptimization (CGO ’10), pp. 111–119, ACM,April
2010.

[17] G. Diamos, “The design and implementation Ocelot’s dynamic
binary translator fromPTX toMulti-Core x86,” Tech. Rep. GIT-
CERCS-09-18, Georgia Institute of Technology, 2009.

[18] B. Saha, X. Zhou, H. Chen et al., “Programming model for
a heterogeneous x86 platform,” in Proceedings of the ACM

20 Scientific Programming

SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09), pp. 431–440, June 2009.

[19] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua,
“An evaluation of vectorizing compilers,” in Proceedings of
the 20th International Conference on Parallel Architectures and
Compilation Techniques (PACT '11), pp. 372–382,Galveston, Tex,
USA, October 2011.

[20] L. Gwennap, “Intel’sMMX speedsmultimedia,”Microprocessor
Report, 1996.

[21] Intel, “Intel Integrated Performance Primitives,” https://soft-
ware.intel.com/en-us/intel-ipp.

[22] Intel, Intel Math Kernel Library, http://software.intel.com/en-
us/intel-mkl.

[23] Intel, Intel C and C++ Compilers, https://software.intel.com/
en-us/c-compilers.

[24] M. Pharr and W. R. Mark, “ispc: a SPMD compiler for
high-performance CPU programming,” in Proceedings of the
Innovative Parallel Computing (InPar ’12), pp. 1–13, IEEE, San
Jose, Calif, USA, May 2012.

[25] D. Grewe and M. F. P. O’Boyle, “A static task partition-
ing approach for heterogeneous systems using OpenCL,” in
Proceedings of the 20th International Conference on Compiler
Construction (CC ’11), pp. 286–305, Saarbrücken, Germany,
March 2011.

[26] The IMPACT Research Group and UIUC, “Parboil benchmark
suite,” http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

[27] C.-K. Luk, R. Cohn, R. Muth et al., “Pin: building customized
program analysis tools with dynamic instrumentation,” in
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’05), pp. 190–200,
June 2005.

[28] Intel, A Guide to Auto-Vectorization with Intel C++ Compilers,
http://software.intel.com/en-us/articles/a-guide-to-auto-vec-
torization-with-intel-c-compilers.

[29] S. Hong andH. Kim, “An analyticalmodel for a gpu architecture
with memory-level and thread-level parallelism awareness,” in
Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA ’09), pp. 152–163, June 2009.

[30] A. Ali, U. Dastgeer, and C. Kessler, “OpenCL for programming
shared memory multicore CPUs,” in Proceedings of the MULTI-
PROGWorkshop at HiPEAC, 2012.

[31] S. Seo, G. Jo, and J. Lee, “Performance characterization of the
NAS Parallel Benchmarks in OpenCL,” in Proceedings of the
IEEE International Symposium on Workload Characterization
(IISWC '11), pp. 137–148, Austin, Tex, USA, November 2011.

[32] Intel, “Writing Optimal OpenCL Code with Intel OpenCL
SDK,” http://software.intel.com/file/37171.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

