
Research Article
Global Scheduling Heuristics for Multicore Architecture

D. C. Kiran,1 S. Gurunarayanan,2 Janardan Prasad Misra,1 and Abhijeet Nawal3

1Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India
2Department of Electrical Electronics and Instrumentation, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India
3Oracle India Pvt. Ltd., Bangalore, Karnataka 560076, India

Correspondence should be addressed to D. C. Kiran; dckiran@gmail.com

Received 22 July 2014; Revised 26 March 2015; Accepted 27 April 2015

Academic Editor: Jan Weglarz

Copyright © 2015 D. C. Kiran et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work discusses various compiler level global scheduling techniques for multicore processors. The main contribution of the
work is to delegate the job of exploiting fine grained parallelism to the compiler, thereby reducing the hardware overhead and the
programming complexity. This goal is achieved by decomposing a sequential program into multiple subblocks and constructing
subblock dependency graph (SDG). The proposed schedulers select subblocks from the SDG and schedules it on different cores,
by ensuring the correct order of execution of subblocks. In conjunction with parallelization techniques, locality optimizations are
performed to minimize communication overhead between the cores. The results observed are indicative of better and balanced
speed-up per watt.

1. Introduction

Multicore or on-chipmultiprocessor is the technique to build
high performance and energy efficient microprocessors. In
general, computing systems using a multicore processor do
not directly result in faster execution and reduced power
consumption. To fully exploit the architectural capability
and inherent fine grained parallelism of an application, it is
desired to have parallel program. Writing parallel program
is tedious and requires expertise. It is essential to provide
compiler level support for converting the preexisting sequen-
tial program to parallel implementations such that it can be
scheduled on multiple cores. Parallelization can be achieved
in the following ways:

(i) Allow programmers to use parallel programming
constructs to explicitly specify which parts of the
program can run in parallel.

(ii) Allow operating system (OS) to schedule different
tasks on different cores.

(iii) Allow hardware to extract parallelism and schedule it
dynamically.

(iv) Allow the compiler to extract parallelism and sched-
ule it.

In the first approach, developing and verifying an explicitly
parallel program are expensive and do not scale with the
number of cores [1]. In the second approach, the operat-
ing system realizes each core as a separate processor and
OS scheduler schedules coarse grain threads onto different
cores. In the thread style approach, two explicit parallel
primitives are independent unless explicit communication
primitives (for synchronization) are added to stress what is
inside the original program. Further the multicore processor
architecture differs from traditional multiprocessors in terms
of having shared caches, memory controllers, smaller cache
sizes available for each computational unit, and low commu-
nication latency between cores [2]. Owing to the architectural
difference, it is desirable to extract fine grained thread and
schedule it onto multiple cores instead of scheduling coarse
grained thread as done in multichip multiprocessing systems
(SMP system).

In hardware-centric approach, the hardware dynamically
detects opportunities for parallel execution and schedules
operations to exploit available resources [3]. This approach
addsmore circuits, resulting in complex hardware implemen-
tations of algorithms such as branch prediction, instruction
level parallelism detection, and register renaming. The hard-
ware based approach works under heavy resources and time
constraints.

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 860891, 12 pages
http://dx.doi.org/10.1155/2015/860891



2 Scientific Programming

In software-centric approach, a compiler analyzes the
program for the possibilities of parallelism, identifies the
segments of the programwhich could be executed in parallel,
and uses suitable scheduler to schedule the parallel constructs
onto multiple cores. Using the various kinds of dependency
analysis, the compiler can identify the independent instruc-
tions that can run in parallel [4]. The compilation being
offline, one time activity, rigorous analysis to achieve the
optimal amount of program parallelization can be carried
out.

The aim of our research is to provide compiler support
to exploit parallelism by extracting fine grained threads from
a sequential program and creating schedules for multiple
cores.The following challenges in multicore environment are
addressed.

(i) Parallelizing sequential program and scheduling.
(ii) Memory management and data communication:

(a) Register allocation.
(b) Memory bandwidth.
(c) Locality of reference.
(d) Memory contention.

(iii) Power consumption.

Herein, four-compiler level global scheduling heuristics has
been proposed and speed-up performance for each of the
approaches has been compared. For each of the techniques,
the intercore communication cost has been considered and
an effort has been made to reduce the communication cost.
Further, the power consumption for each of the techniques is
evaluated and compared.

The paper is organized as follows. Section 2 gives an
overview of different parallel architectures and their relation
with the compiler. Section 3 gives a detailed background of
the proposedwork. An example illustrating the steps involved
in the proposed algorithm is presented in Section 3. Section 4
provides the detailed description of the proposed global
scheduling algorithms. A brief description of the compiler
and the model of the multicore architecture used in the work
is given in Section 5. Analysis and discussion of the results are
given in Sections 6, 7, and 8, respectively. Finally, Section 9
concludes, summarizing the main achievements of our work.

2. Relation between ILP, Parallel Processor
Architectures, and Compiler

To achieve high performance computing, a single core
processor with parallel processing features was developed
during 1975–2000 before multicore architecture was intro-
duced by IBM in 2001.These parallel architectures either had
multiple instruction processing units or multiple functional
units. As computer architecture started becoming more
complex, the compiler technology has also equally become
an important factor. The success of every innovation in
computer architecture is dependent on the ability of compiler
technology to generate efficient code for these architectures.
Parallelism has become one of the distinguishing factors

in the design of high-performance computers. Parallelism
comes in different forms, namely, instruction level parallelism
(ILP), task/thread level parallelism (TLP), memory level
parallelism, and so forth. A compiler was used by the parallel
architectures to exploit parallelism as required by them to
squeeze more performance.

This section discusses the relationship between parallel
architectures, Instruction Level Parallelism (ILP) extraction
techniques, and compiler support to exploit ILP for corre-
sponding architecture. Several existing parallel architectures
such as pipeline, VLIW, and superscalar architectures are
investigated to understand how multicore is different from
them.

Instruction level parallelism (ILP) is used for speeding
up the execution of a program by allowing a sequence
of instructions derived from a sequential program to be
parallelized for execution [3]. The basis of ILP is dependency
analysis. The result of this analysis is used to identify
the independent instructions which can be executed in
parallel. The instruction dependency is of three types, the
name dependency, the control dependency, and the data
dependency. There are two types of name dependencies,
Write afterWrite dependency (WAW)or antidependency and
Write after Read dependency (WAR) also known as output
dependency which can be eliminated by register renaming.
Dynamic register renaming (by hardware) can eliminate
WAW and WAR dependencies. But when an intermediate
representation of program in static single assignment (SSA)
form is used, WAW and WAR dependencies are removed
without any need of hardware. A SSA form is an intermediate
representation of a program in which each variable is defined
only once. The control dependencies can be removed by
using the hardware to predict conditional branches. Read
after Write dependency (RAW) the true dependency that
falls under data dependency category can be removed at run
time using dynamic optimizations like data collapsing [5]
and reassociation [6]. These methods need extra hardware
to implement the optimization which violates the basic
philosophy of RISC architecture to reduce hardware and
power consumption. Also, any optimization done at runtime
has a direct impact on the performance of the processor.

In the past, remarkable advancement has been made
in the design of parallel architecture, and the compiler is
used for exploiting ILP on such architectures [7]. The nature
of compiler support for the processor architecture is an
indenture and varies across design philosophy.

The hardware approach for achieving ILP is being able
to execute multiple instructions simultaneously either by
pipelining the instructions or by providing multiple execu-
tion units. Pipelined processor, VLIW (Very Long Instruction
Word), and superscalar processors are the three existing
techniques. In pipelined processor, a task is broken into stages
and is executed on different (shared) processing units by
overlapping the execution of instructions in time [8, 9]. The
potential increase in performance resulting from pipelining
is proportional to the number of pipeline stages. However,
this increase would be achieved only if pipelined opera-
tion could be continued without interruption throughout
program execution. Unfortunately, the processor sometimes



Scientific Programming 3

stalls as a result of data dependency and branch instructions.
The RISC solution to this problem is instruction reordering.
The task of instruction reordering is generally left to the
compiler, which recognizes data dependencies and attempts
to minimize performance stalls by reordering the program
instructions.

VLIW processor follows the static scheduling. VLIW
issues one long instruction per cycle. Each long instruction
consists of many tightly coupled independent operations.
These independent operations are simultaneously processed
by suitable execution units in a small and statically pre-
dictable number of cycles. The task of grouping independent
operations into a long instruction is done by a compiler [10].
The major drawbacks of VLIW are its high instruction stor-
age requirement and high instruction memory bandwidth
requirements, due to the horizontal nature of instruction
and its fetch frequency. Further, programs compiled for one
VLIW machine are not compatible with another generation
of a processor family. Superscalar processors are those which
allow several instructions to be initiated simultaneously and
executed independently. These processors have ability to
initiate multiple instructions during the same clock cycle [11].
For proper utilization of a superscalar machine of degree 𝑛,
we must have 𝑛 instructions that can execute in parallel at all
times. If an instruction-level parallelism of 𝑛 is not available,
stalls and dead timewill occur forcing the instructions to wait
for the results of prior instructions. Another major drawback
with the superscalar processor is that all the execution units
share the memory and register file leading to more register
spilling and race condition.

VLIW and superscalar machines both benefit from
instruction reordering resulting in better ILP. In VLIW,
all dependencies are checked during compile time, and
the search of independent instructions and scheduling is
done exclusively by the compiler. The hardware has no
responsibility for the final scheduling. On the other hand,
superscalar machines depend on hardware for scheduling the
instructions. But it is accepted that compiler techniques for
exploiting parallelism must be used in superscalar machines
to achieve better performance.

In multicore architectures the compiler requires to go
beyond exploiting ILP in the innermost loops as has usually
been the case in traditional ILP compilers. Also, themulticore
system has some spatial requirements. First, when a value is
live across the scheduling region, its definition and uses must
be mapped to the same core to reduce communication cost.
Second, the instructions like load and store must access the
memory banks like a personal cache for performance reason
and to avoid race condition.

2.1. Instruction Scheduling. In superscalar and VLIW
machines, the only scheduling issue is a parallelism which
is bonded with temporal issues [12, 13]. ILP is achieved in
presence of register pressure.The spatial problem is neglected
as these architectures exchange the shared/dependent
operands through a shared register file which is absent in
multicore systems. In pipeline based machines, scheduler
reorders instructions in such a way that minimizes pipeline
stalls.The rescheduling of the instructions should not change

the set of operations performed and should make sure that
interfering operations are performed in order.

In the past, researchers have proposed several instruction
scheduling techniques which include list scheduling, trace
scheduling, superblock scheduling, and hyperblock schedul-
ing. All these scheduling techniques are classified based on
the nature of the control flow graph they use, that is, whether
it uses multiple or single basic blocks and whether it is cyclic
or acyclic control flow graph.

The scheduler that schedules single acyclic basic block is
known as local scheduling. List scheduling is an example of
local scheduling [14] and is based on highest level priority
scheme. Trace scheduling and superblock and hyperblock
scheduling are global scheduling techniques that work on
regions known as traces which consist of a contiguous set
of basic blocks [15]. Trace scheduling combines the most
common trace of basic blocks and schedules them as a
single block [16]. Superblock scheduling is the same as
trace scheduling without side entrances [17]. Hyperblock
scheduling combines basic blocks obtained from multiple
paths of control flow graph [18].

In run-time scheduling, an instruction is issued after it
is decoded and when its operands are available [19]. The
run-time scheduling mechanisms exhibit adaptive behavior
which leads to a higher degree of load balancing. The run-
time scheduling policies incur high run time overhead,
which may lead to degradation of performance. The logic to
make decision at run time should be simple and constant
time heuristics; otherwise it leads to expensive and complex
hardware design which requires a relatively large amount
of silicon area. The complex hardware in turn results in
increased power consumption. The advantage of compile
time scheduling over the run-time scheduling is that it can
carry out rigorous dependency analysis. The complexity of
the scheduling techniques will affect the compile time of a
program but has no adverse impact on its execution time.

All the existing scheduling techniques are unable to
make optimal choices as scheduling algorithms are strongly
dependent on themachinemodel.The instruction scheduling
techniques are NP-complete and follow heuristics [20]. Some
heuristics use loop transformations, static branch predic-
tion, speculative codemotion, predicated execution, software
pipelining, and clustering [21]. Different heuristics work well
with different types of graphs.

3. Background of the Proposed Work

This section introduces the background of the proposed
global scheduling techniques. The proposed work involves

(i) Parallel region formation or extracting fine grained
threads [22–24].

(ii) Local scheduler to schedule fine grained threads onto
multiple cores [25, 26].

Two additional passes are introduced into the original flow of
compiler as shown in Figure 1: fine grained thread extractor
pass and scheduler pass. The fine grained thread extractor
module acts upon the basic blocks (B𝑝) of control flow graph



4 Scientific Programming

DAG2CFG,
optimizations

Register
allocator

Fine grained
thread

extractor

Assembly code
generator

Front
end

DAG CFG

Schedule
Scheduler

Subblocks

Source
code SSA

translation
CFG

Figure 1: Modified flow of compiler.

B1

B2 B3

B4

SB1

SB1 SB1

SB1

SB2

SB2
SB2

SB2

SB3

SB3 SB4

(a)

Subblocks Dependency list

1
2
3
4

5
6
7
8
9
10
11

SB1B1

SB2B1

SB3B1

SB1B2

SB2B2

SB1B3

SB2B3

SB1B4

SB2B4

SB3B4

SB4B4

SB1B1

SB3B1

SB3B1

SB2B1

SB1B2

SB1B3

SB2B2

SB2B2

SB2B3

(b)

Figure 2: (a) Subblock dependency graph. (b) Dependency matrix.

(CFG). The instructions in each basic block of CFG are
analyzed for dependency to create disjoint subblocks. The
instructions in the subblocks are in SSA form and are true
dependent. This ensures the spatial and temporal locality. In
Figure 2(a), the CFG has four basic blocks B1, B2, B3, and B4.
The disjoint set operations are applied to each basic block to
form subblock SB𝑖.The subblock SB𝑖 belonging to basic block
B𝑝 is referred to as SB𝑖B𝑝. To facilitate global scheduling new
data structure called subblock dependency graph (SDG) is
proposed. The SDG is a graph 𝐺(𝑉, 𝐸), where vertex V𝑖 ∈ 𝑉
is a subblock SB𝑖B𝑝, and the directed edge 𝑒 ∈ 𝐸 is drawn
between vertex SB𝑖 ∈ B𝑝 and vertex SB𝑗 ∈ B𝑞 where 𝑝 ̸= 𝑞.
The total number of out-edges from a vertex (subblock) in
SDG is referred to as degree of dependency. We say that

SB𝑗B𝑞 is, AFTER related to SB𝑖B𝑝. SDG is represented as
dependency matrix in Figure 2(b). In dependency matrix all
subblocks are arranged in the first column and the rest of the
column entry indicates the dependency list. If the subblock
SB𝑗B𝑞 is dependent on subblock SB𝑖B𝑝, then SB𝑖B𝑝 is added
to the dependency list of SB𝑗B𝑞, meaning that SB𝑗B𝑞 should
be scheduled only after SB𝑖B𝑝 completes its execution. The
subblock SB𝑗B𝑞 can be scheduled only if the list is empty;
otherwise it should wait till the list becomes empty. Efforts
are made to reduce the compilation time for performing fine
grained extraction pass. The subblocks are created such that
they ensure spatial and temporal locality.

TheCFG shown is the output of the fine grained extractor
pass and SDG formation phase of the compiler.The subblock
SB1 of basic block B2 is AFTER related to SB1 of block B1 and
it is denoted by SB1B1 → SB1B2 and similarly SB2B1 →
SB2B3. The corresponding dependency matrix is shown in
Figure 2(b).

The fine grained threads can be scheduled using sched-
uler. The scheduler ensures that the subblocks scheduled on
different cores at the same time will not communicate nor
access the same data, thus providing lock-free synchroniza-
tion.

The scheduling pass follows the SSA translation and fine
grained thread extraction pass in the proposed compiler
framework. The disjoint subblocks created in the subblock
creation phase are scheduled onto the cores. The local
scheduling is coined as intrablock scheduling (IBS), where
only subblocks inside a basic block are considered for
scheduling. The results of IBS are compared with the results
of global scheduling algorithm in the later section.

4. Global Scheduling Heuristics

Theglobal scheduling heuristics identify the subblocks across
the CFG that can execute in parallel on different cores. This
is termed as interblock scheduling. The subblocks are disjoint
within a basic block ofCFG, but the subblocks across the basic
blocks need not be disjoint.The nondisjoint subblocks should
be executed sequentially. Interblock parallelism is a process of
finding the nondisjoint subblocks across the basic blocks.

In this section, four novel global scheduling heuristics
are proposed to achieve the conflicting goals such as high
performance, low communication cost, high performance
per power, and scalability. The novelty of the proposed
algorithms is their efficient scheduling strategies which yield
better solutions without incurring a high complexity.



Scientific Programming 5

The proposed global scheduling algorithms use the sub-
block dependency graph (SDG) to schedule subblock onto
multiple cores. The first algorithm, called the Height Instruc-
tion Count Based (HIB) algorithm, is based on priority
calculated using the height and instruction count of the
subblock in the SDG. It is a linear-time algorithm which uses
an effective search strategy to schedule the subblock onto the
core with minimum schedule time. The second algorithm,
called Dependent Subblock Based (DSB) scheduler, is based
on the scheduling latency and subblocks dependency. All
the paths from a given block to leaf node of SDG are
identified and schedule latency for each path is computed.
The subblocks in the path with the highest schedule latency
are chosen for scheduling on different cores. The third
algorithm is a Maximum Dependency Subblock (MDS)
that calculates priority of the subblock based on maximum
dependencies and minimum execution time. The fourth
algorithm is the Longest Latency Subblock First (LLSF)which
schedules considering only latency of the subblock. The
proposed algorithms have been evaluated through extensive
experimentations and yield consistently better performance
when compared with numerous existing algorithms.

The aim of all the four proposed global scheduling heuris-
tics is to create correct schedules that exploit the computing
competence of multicore processor fully by decreasing the
execution time of the program. It is desired to have compile
time efficient scheduling heuristics along with being capable
of creating correct schedule. The four heuristics differ in
compilation time but do not compromise with speed-up.The
data structure requirement of each heuristic is different and
this requirement drives the compilation time. Based on the
nature of the program, that is, degree of dependency between
the subblocks of the program, the data structure requirement
changes. Thus, based on the nature of the program being
compiled, the best suitable scheduler may be used to create
correct schedule efficiently. The HIB scheduler is suitable
when the SDG is not too dense; that is, subblocks in SDG
have fewer children and efficient techniques to traverse
the tree that can be used. The DSB and MDS schedulers
try to schedule dependent subblocks onto same core to
reduce the communication cost.These schedulers are suitable
when SDG is dense and benefits only when fewer cores are
used by applying the power optimization technique. DSB
is compile time efficient than MDS as the latter spends
time in prioritizing the subblock before creating schedule.
The LLSF scheduler has advantage over the other proposed
global schedulers in terms of speed-up but has penalty of
communication cost and power. This scheduler can be used
in an environment where performance is crucial and no other
optimization is required. A detailed discussion on selecting
the best suitable scheduler for the program being compiled is
given in Section 8.

In general, the global scheduler selects the subblock 𝑖 of
basic block B𝑝 (SB𝑖B𝑝) from the subblock dependencymatrix
if its dependency list is empty. Once SB𝑖B𝑝 is scheduled
and completes its execution, its entry is removed in all
dependency lists. The decision of scheduling a subblock on
a core is based on the invariants such as scheduling latency,
computed ready time (TRdy), and finish time (TFns) of

the subblock SB𝑖B𝑝. The schedule time (TSch) of subblock
and total scheduled time of core (TSct) are also taken into
consideration to check the availability of a core to schedule
the subblocks. Height and schedule latency of subblocks are
computed in bottom-up fashion. The total scheduled time
of core (TSct) is the time taken by a core to complete the
execution of the subblocks currently scheduled on it. TSct
is computed in top-down fashion on SDG. TSct suggests the
time atwhich next subblock could be scheduled onto the core.
The ready subblock is scheduled on a core with lower TSct.

The height of the sub-block SB𝑖B𝑝 is one more than the
maximum height of all its immediate successors (AIS):

Height
𝑖
= Maximum (Height (AIS)) + 1. (1)

Equation (2) gives the predicted finish time (TFns) of a
subblock SB𝑖B𝑝:

TFns𝑖 = 𝐶𝑖 +TSch𝑖, (2)

where 𝐶𝑖 is a total cycle time of 𝑖th subblock and TSch𝑖 is
schedule time of 𝑖th subblock.

The ready time (TRdy) of a subblock SB𝑖B𝑝 is given below
in (3). Ready time of a subblock is the time at which subblock
is free from all its dependencies and ready to be scheduled
on a core, that is, maximum finish time of all its immediate
predecessors (AIP):

TRdy
𝑖
= Maximum (TFns (AIP)) . (3)

The schedule latency (𝐿 𝑖) of a subblock is given in (4). The
schedule latency of leaf subblock in SDG is the total number
of instructions in the leaf subblock. The schedule latency of
SB𝑖B𝑝 is a sum of maximum latency of all its immediate
successors (AIS) and total number of instructions inside the
subblock SB𝑖B𝑝 or total cycle time of 𝑖th subblock SB𝑖B𝑝:

𝐿 𝑖 = Maximum (𝐿 (AIS) +𝐶𝑖) . (4)

The total scheduled time of a core 𝑘 (TSct) is given in

TSct𝑘 = TSct𝑘−1 +𝐶𝑖, (5)

where TSct𝑘−1 is a current schedule time of the core and 𝐶𝑖 is
the total cycle time required by SB𝑖B𝑝.

4.1. Height-Instruction Count Based (HIB). The HIB sched-
uler uses the subblock dependency graph represented in the
form of the adjacency matrix (subblock dependency matrix)
to take scheduling decisions.

Algorithm 1 (Height-Instruction Count Based scheduler).

(1) Calculate height of each subblock
Height of subblock 𝑖 = Maximum ((height of all
immediate successors) + 1).

(2) Initialize a priority queue
Q = {All head nodes, that is, nodes having only out-
going edges}.



6 Scientific Programming

(3) Schedule:

(a) If single core

(i) Remove highest priority node from queue.
(ii) Insert those nodes which are ready to

schedule after scheduling the highest node
in the ready queue.

(iii) Schedule the node on core.
(iv) Repeat the same process until queue gets

empty.

(b) If multiple cores

(i) Repeat steps (ii) to (v) until queue gets
empty.

(ii) Select a core with minimum TSct.
(iii) Select a node with the highest priority.

If TRdy of all nodes present in the queue is
greater than the current TSct, then insert 1
free cycle.
Go to step (ii).

(iv) Schedule node on core and increment cur-
rent core time.

(v) Update TFns of this node and TRdy of all
its immediate successors.

(vi) Place its immediate successors in the queue
if they are ready to schedule and revise
the priorities of old nodes according to the
priorities for new nodes.
Go to step (i).

(vii) END.

The scheduler creates a priority queue using SDG and
schedules the subblocks onto multiple cores. The scheduler
will schedule the subblock with the highest priority in the
priority queue on the core withminimumTsct.The scheduler
updates the priority queue with new subblocks and removes
their entry in subblock dependency matrix. A subblock can
be added to priority queue if the dependency list of that
subblock is NULL. The priority of the node is computed
based on height and instruction count. The node at the
highest level and having more instruction count is given the
highest priority. The information required by HIB scheduler
is computed using (1), (2), (3), and (5).

4.2. Dependent Subblock Based (DSB). The DSB scheduler
collects all the subblocks and stores them in nonincreasing
order of their latency. Initially the scheduler picks the sub-
block with the highest schedule latency and schedules it onto
any one of the cores. Later scheduler picks the immediate
ready successor of the previously scheduled subblock in the
SDG. The successor subblock is scheduled onto the same
core if the TSct of core is less than other core; otherwise it
will switch to core with lowest TSct. After scheduling each
subblock, the TSct of the core is updated. The advantage of
scheduling dependent subblocks onto the same core is the
reduced communication between the core.

The information required by DSB scheduler is computed
in (2), (3), (4), and (5).

Algorithm 2 (Dependent Subblock Based scheduler).

(1) Find latency.
(2) Sort subblocks by descending latency.
(3) Schedule:

(a) Single core—in order of sorted list.
(b) Multicore:

(i) Repeat steps (ii) to (viii) until list gets
empty.

(ii) temp = top (list) (ready subblock).
(iii) Schedule temp and increment TSct of this

core.
(iv) Update TFns of temp and TRdy for all

immediate successors.
(v) If any immediate successor of temp is ready

(check in order of list) and list is nonempty.
temp = immediate successor.
Go to step (iii).

(vi) If TSct of current core is less than max
schedule time and list is nonempty.
Go to step (ii).

(vii) Max schedule time = TSct of current core.
(viii) If list is nonempty switch core.

Go to step (ii).
(ix) END.

4.3. Maximum Dependent Subblock First (MDS). The sched-
uling decision ofMDS algorithm is purely based on the struc-
ture of the SDG. The subblock having maximum successors
is given higher priority and is picked by the scheduler first to
schedule it onto the core with less TSct. The MDS scheduler
maintains the ready list. Priority of subblock SB𝑖B𝑝 in ready
list is computed based on TRdy, TFns and its dependencies.

A subblock SB𝑖B𝑝 can be inserted into the ready list if its
dependency list is empty; that is, all the subblocks on which
SB𝑖B𝑝 was dependent have finished their execution.

Algorithm 3 (Maximum Dependent Subblock scheduler).

(1) Repeat until all the subblocks are scheduled.
(2) Collect all the subblocks which are ready for execu-

tion.
(3) Find out the priorities for all the subblocks in the

ready list.
(4) Schedule:

(4.1) Single core:

(i) Schedule the subblockwith highest priority
onto the core.

(ii) Update the adjacency matrix.

(4.2) Multicore:

(i) Find the core with less TSct.



Scientific Programming 7

(ii) Schedule the subblockwith highest priority
to the core which is selected.

(iii) Update TFns of the subblock and TRdy of
all its immediate successors.

(iv) Update the adjacency matrix.

(5) Go to step (1).
(6) END.

4.4. Longest Latency Subblock First (LLSF). LLSF scheduler is
alike the DSB scheduler except the choice made to schedule
the successor subblock onto the same core.The only choice of
selecting subblock is its schedule latency; the scheduler picks
the subblock with the highest schedule latency and schedules
it onto the core with lowest TSct. The scheduler uses the
sorted list of subblocks. Sorting is based on descending order
of scheduling latency. Each node in the list contains subblock
and its respective latency.

The LLSF takes scheduling decision based on the infor-
mation computed in (2), (3), (4), and (5).

Algorithm 4 (Longest Latency Subblock First scheduler).

(1) Find latency.
(2) Sort subblocks by descending latency.
(3) Schedule:

(a) Single core—in order of sorted list.
(b) Multicore:

(i) Repeat steps (ii) to (vii) until list gets empty.
(ii) temp = top (list) (ready subblock).
(iii) Schedule temp and increment TSct of the

core.
(iv) Update TFns of temp and TRdy for all

immediate successors.
(v) If TSct of current core is less than max

schedule time and list is nonempty.
Go to step (ii).

(vi) Max schedule time = TSct of current core.
(vii) If list is non-empty switch core.

Go to step (ii).
(viii) END.

5. Experimental Framework

Considering a sample multicore architecture, a generic com-
piler framework has been proposed for exploiting the fine
grained parallelism and multiplicity of the component. A
sample benchmark program is used for analysis of the per-
formance of the proposed framework. The speed-up, power
consumption, performance per power, and communication
cost are used as a performance metric. The proposed frame-
work is generic and is independent of the compiler used and
architecture.

The experimental setup uses Jackcc, an optimizing 𝐶
compiler that generates assembly language program using

jackal ISA. Without loss of generality, for the ease of compu-
tation, it is assumed that each core of the multicore processor
takes on an average one cycle for executing an instruction as
each of the cores of multiple core processor is considered to
be equivalent to the unicore processor.

5.1. Compiler. The proposed work uses Jackcc compiler [27].
This is an open source compiler developed at the University
of Virginia. The basic block in the CFG of Jackcc is called
Arena, and instruction in the block is called Quad.The DAG
generated by the front end of the compiler is converted
into quad intermediate representation, and then these quads
are used to construct the basic blocks of CFG. Instructions
are in SSA form. The original Jackcc compiler used SAME
instruction instead of implementing Φ functions, which
instructs the register allocator to place the two live ranges into
the samephysical register. A SSA conversionmodule has been
integrated in the version of Jackcc which is used in this work
[28].

5.2. Architecture. The target architecture model used is a fine
grained architecture. This architecture exposes the low level
details of hardware to compiler. They implement a minimal
set of mechanisms in the hardware and these mechanisms
are fully exposed to the software, where software includes
both runtime system and compiler. Here the runtime system
manages mechanisms historically managed by hardware,
and the compiler has the responsibility of managing issues
like resource allocation, extracting parallel constructs for
different cores, and scheduling. These types of architectures
can be seen in some Power4 [29], Cyclops [30], and RAW
[31, 32] architecture.Themulticore environment has multiple
interconnected tiles and on each tile there can be one RISC
processor or core. Each core has instruction memory, data
memory, PC, functional units, register files, and source clock.
FIFO is used for communication. Here the register files
are distributed, eliminating the small register name space
problem. The core is an example of the grid processor family
of designs which are typically composed of an array of
homogeneous execution nodes. Gem5 simulator is used to
simulate the multicore architecture [33].

5.3. Benchmarks. The test cases that are used to evaluate the
proposed work are taken from the Raw benchmark suite
[34, 35] and are modified to make it compatible with Jackcc
compiler. The raw benchmark suite was designed as part
of a RAW project at MIT and is maintained under CVS
(Concurrent Versions Systems) to facilitate benchmarking of
reconfigurable computing systems.

6. Analysis

The result discussed in this section is based on the simulated
model of the target architecture, with dual core and quad core.
The results with three active cores on a quad coremachine are
presented to illustrate the power optimization possibility.

Amdahl’s law formulticore architecture proposed byHill-
Marty [36] is used to analyze the performance in terms of



8 Scientific Programming

0
0.5

1
1.5

2
2.5

3
3.5

4

D
CT

1

D
CT

2

D
CT

3

D
CT

4

Q
CT

1

Q
CT

2

Q
CT

3

Q
CT

4

3A
CT

1

3A
CT

2

3A
CT

3

3A
CT

4

Sp
ee

d-
up

IBS
HIB
DSB

MDS
LLSF

DCTi: dual core test case (1, 2, 3, and 4)
QCTi: quad core test case (1, 2, 3, and 4)
3ACTi: 3 active cores test case (1, 2, 3, and 4) 

Figure 3: Speed-up analysis.

speed-up.The result is normalized to the performancemetric
to that of a basic “unit core,” which is equivalent to the Base
Core Equivalents (BCE) in the Hill-Marty model.

Woo-Lee model [37] is used for checking the energy
efficiency of the proposed approach and performance per
power. The model for power consumption with 𝑛-cores
considers the fraction of power 𝑘 that a core consumes in
idle state (0 ≤ 𝑘 ≤ 1). It is assumed that a core in active
state consumes a power of 1 unit, that is, the amount of power
consumed by one core during the sequential computation
phase is 1 unit, while the remaining (𝑛 − 1) cores consume

(𝑛−1)𝑘 units.Thus, during the sequential computation phase,
the 𝑛-core processor consumes 1 + (𝑛 − 1)𝑘 units of power. In
the parallel computation phase, 𝑛 core processor consumes
𝑛 unit of power. Because it takes (1 − 𝑓) and 𝑓/𝑛 to execute
the sequential and parallel program, respectively, the formula
for average power consumption𝑊 in watt given as follows,
where𝑓 is the fraction of computation that can be parallelized
(0 ≤ 𝑓 ≤ 1):

𝑊 =

1 + (𝑛 − 1) 𝑘 (1 − 𝑓)
(1 − 𝑓) + 𝑓/𝑛

. (6)

The model for performance per watt (Perf/𝑊), which
represents the performance achievable at the same cooling
capacity is based on the average power (𝑊). This metric is
essentially the reciprocal of energy because the definition of
performance is the reciprocal of execution time. The Perf/𝑊
of single-core execution is 1. The Perf/𝑊 for multicore is
given in

Perf
𝑊

=

1
1 + (𝑛 − 1) 𝑘 (1 − 𝑓)

. (7)

The communication cost is calculated if the dependent
subblocks are executed on different cores. The cost of
communication depends upon total number of variables a
subblock depending on (Nv), total number of times a core
communicates with a different core (Ntc), and architecture
dependent communication latency (cf). The communication
cost is formalized as follows:

Communication cost is
{

{

{

Zero: if all dependent subblocks are scheduled onto the same core,

Nv ∗Ntc ∗ cf: otherwise.
(8)

7. Results

The main aim of the proposed work was to equally utilize
all the available cores. The result in Figure 3 shows that
the speed-up increases as the number of cores increases,
which makes it evident that all the cores are utilized towards
achieving maximum gain. All the proposed four schedulers
contribute to reduced execution time and increase in speed-
up. The scheduler with more gain in performance per power
is desired during compiling the applications that are used
in power critical environment such as mobile embedded
devices.

The speed-up decreases when the same program runs on
3 active cores, and at the same time per power performance
improves as shown in Figure 5. The power consumed to
execute the test cases is captured and performance per power
of each test case is calculated as shown in Figures 4 and 5,
respectively. It is observed that power increases as the number
of cores increases. The power consumption is lower when
3 cores are used instead of 4 cores. Thus, the performance
per power of quad core machine is higher when 3 cores

are used instead of 4 cores. The effect of using 3 cores by
slightly compromising with speed-up is shown in Figure 5.
This power optimization can be used in an environment
where power is critical. The communication costs of the
proposed algorithms are shown in Figure 6 and are compared
with the communication cost of the intra block scheduler.

The general observations are as follows.
(i) Speed-up increases as number of cores increase.
(ii) Power consumption increases as the number of cores

increases.
(iii) Performance per power decreases when more cores

are used.
(iv) Performance per power increases with 3 active cores

compared to 4 active cores in a quad core machine
with slight compromise on speed-up.

(v) Power increases and speed-up decreases when com-
munication between cores increases.

(vi) Performance per power increases when communica-
tion decreases.



Scientific Programming 9

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Po
w

er
 co

ns
um

ed

D
CT

1

D
CT

2

D
CT

3

D
CT

4

Q
CT

1

Q
CT

2

Q
CT

3

Q
CT

4

3A
CT

1

3A
CT

2

3A
CT

3

3A
CT

4

IBS
HIB
DSB

MDS
LLSF

DCTi: dual core test case (1, 2, 3, and 4)
QCTi: quad core test case (1, 2, 3, and 4)
3ACTi: 3 active cores test case (1, 2, 3, and 4) 

Figure 4: Power analysis.

0
0.2
0.4
0.6
0.8

1
1.2

Pe
rf 

(W
)

D
CT

1

D
CT

2

D
CT

3

D
CT

4

Q
CT

1

Q
CT

2

Q
CT

3

Q
CT

4

3A
CT

1

3A
CT

2

3A
CT

3

3A
CT

4

IBS
HIB
DSB

MDS
LLSF

DCTi: dual core test case (1, 2, 3, and 4)
QCTi: quad core test case (1, 2, 3, and 4)
3ACTi: 3 active cores test case (1, 2, 3, and 4) 

Figure 5: Performance per power analysis.

Intrablock scheduler (IBS) was designed for locally schedul-
ing the disjoint subblocks within the basic block. But when
whole program (CFG) is to be scheduled, subblocks in other
basic blocks may communicate with subblocks scheduled on
a different core.Thus, the communication cost is higher when
the intrablock scheduler is used.

8. Discussion

This section discusses various results obtained using test
case 1. In Figure 7, the speed-up and power consumed are
compared. Power and performance per power are compared
in Figure 8, and the speed-up and communication cost are
compared in Figure 9.

The SDG of test case 1 is less dense; that is, the degree
of dependency between the subblocks is less. The speed-up
gain of HIB scheduler is slightly high compared to other
schedulers on all the machines. The communication cost of
HIB scheduler is high which influence increases in power
consumption and decreases the performance per power.

0
5

10
15
20
25
30

C
om

m
un

ic
at

io
n 

co
st

D
CT

1

D
CT

2

D
CT

3

D
CT

4

Q
CT

1

Q
CT

2

Q
CT

3

Q
CT

4

3A
CT

1

3A
CT

2

3A
CT

3

3A
CT

4

IBS
HIB
DSB

MDS
LLSF

DCTi: dual core test case (1, 2, 3, and 4)
QCTi: quad core test case (1, 2, 3, and 4)
3ACTi: 3 active cores test case (1, 2, 3, and 4) 

Figure 6: Communication cost.

0

0.5

1

1.5

2

2.5

3

3.5

4

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Speed-up
Power consumed

Dual core Quad core 3 active cores

Figure 7: Speed-up versus power consumed.

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Performance per power

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF

Power consumed

Dual core Quad core 3 active cores

Figure 8: Power versus performance per power.



10 Scientific Programming

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Communication cost

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF
Speed-up

Dual core Quad core 3 active cores

Figure 9: Speed-up versus communication cost.

The dependent subblock based (DSB) scheduler is made
memory efficient by scheduling connected subgraphs in SDG,
that is, dependent subblocks onto same core. Thus, the DSB
scheduler reduces the communication between the cores. But
as the number of cores increases this heuristic suffers. This
scheduler will not schedule the ready subblock on the other
idle cores but would wait to schedule the ready subblock onto
the core on which its ancestor subblock in SDG executed.
This may lead to unbalanced scheduling. The DSB scheduler
is suitable when SDG is dense and benefits only when less
cores are used by applying power optimization technique.

Maximum dependent subblock first (MDS) scheduler
tries to balance the communication cost, power consump-
tion, and speed-up.The values of speed-up, power consump-
tion, and the communication cost lie between the values
achieved using HIB and DSB schedulers. Similar to DSB
scheduler, MDS will suffer when SDG is dense and the
scheduler does not apply power optimization.

The longest latency subblock first (LLSF) will overcome
the limitations of DSB and MDS schedulers. LLSF scheduler
picks the subblock with the longest latency and schedules it
onto the core with less execution time. The communication
cost is less when compared to HIB scheduler but slightly
higher than DSB and MDS schedulers. Thus, the values
for LLSF scheduler in terms of speed-up and performance
per power gain lie between the HIB and DSB/MDS. This
scheduler is scalable in terms of number of cores. LLSF
when compared with HIB may not be compiler efficient as it
performs linear search to find the subblock with the longest
latency.

Similar kind of discussion on relative performance for
other three test cases is shown in Figures 10, 11, and 12 and
is applicable to other benchmark programs that are used to
evaluate the proposed work.

The SDG of test cases 2 and 3 is more dense when
comparedwith SDGof test case 1.Theperformance per power

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Performance per power

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF

Speed-up
Power consumed

Dual core Quad core 3 active cores

Figure 10: Test case 2.

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Performance per power

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF

Speed-up
Power consumed

Dual core Quad core 3 active cores

Figure 11: Test case 3.

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Performance per power

IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF IB
S

H
IB

D
SB

M
D

S
LL

SF

Speed-up
Power consumed

Dual core Quad core 3 active cores

Figure 12: Test case 4.

is better for MDS and LLSF scheduler for test case 2 and
test case 3. The HIB scheduler has higher speed-up on these
two test cases, but because of more communication among
the subblocks scheduled on different cores, the performance
per power is reduced when compared with MDS and LLSF
scheduler.



Scientific Programming 11

The test case 4 is less dense when compared to test
case 2 and test case 3. The HIB scheduler is anticipated to
outperform, but it induces interleaving in the schedules due
to nonavailability of ready subblocks, that is, when TSch of
all the subblocks in dependency matrix is greater than TStc
of all the cores.

9. Conclusion

The work proposes various compiler level global scheduling
techniques for multicore processors. The goal underlying
these techniques is to promote the extraction of ILP without
explicitly specifying parallelizable fraction of the program
by the programmer. To achieve this, the basic blocks of
the control flow graph of a program are subdivided into
the multiple subblocks and thereby a subblock dependency
graph is constructed.The proposed schedulers, depending on
subblock dependency and their order of execution, allocate
the subblocks in the dependency graph to multiple cores
selectively. These schedulers also carry out locality optimiza-
tion to minimize communication latency among the cores
and to minimize the overhead of hardware based instruction
reordering. A comparative analysis of performance and the
intercore communication latency has been presented. The
results obtained thereof also indicate how these schedulers
perform in terms of power consumption and the speed-
up achieved when the number of active cores varies. From
the results it can be observed that a better and balanced
speed-up per watt consumption can be obtained.Though the
results are shown for dual core, quad core, and active 3 core
processors, the proposed scheduler theoretically can scale
to handle larger number of cores as the subblock formation
technique is independent of the number of cores andmemory
access. Memory contention can have an impact on scalability
which would need to be further investigated.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors thank Nick Johnson of University of Virginia for
providing the compiler and its assembler.

References

[1] A. Vajda, Programming Many-Core Chips, Springer, New York,
NY, USA, 2011.

[2] V. S. Pai, P. Ranganathan, and S. V. Adve, “Impact of instruction-
level parallelism on multiprocessor performance and simula-
tion methodology,” in Proceedings of the 3rd International Sym-
posium on High-Performance Computer Architecture (HPCA
’97), pp. 72–83, February 1997.

[3] S. William, Computer Organisation and Architecture, Pearson
Education, 8th edition, 2010.

[4] V. S. Pai, P. Ranganathan, H. Abdel-Shafi, and S. Adve, “The
impact of exploiting instruction-level parallelism on shared-
memory multiprocessors,” IEEE Transactions on Computers,
vol. 48, no. 2, pp. 218–226, 1999.

[5] Y. Sazeides, S. Vassiliadis, and J. E. Smith, “The performance
potential of data dependence speculation & collapsing,” in Pro-
ceedings of the 29thAnnual IEEE/ACM International Symposium
onMicroarchitecture (MICRO-29 ’96), pp. 238–247, IEEE, Paris,
France, December 1996.

[6] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the fill unit to
work: dynamic optimizations for trace cache microprocessors,”
in Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 173–181, December 1998.

[7] D. A. Patterson, “Reduced instruction set computers,” Commu-
nications of the ACM, vol. 28, no. 1, pp. 8–21, 1985.

[8] J. B. Dennis and G. R. Gao, “An efficient pipelined dataflow
processor architecture,” in Proceedings of the ACM/IEEE Con-
ference on Supercomputing (Supercomputing ’88), pp. 368–373,
November 1988.

[9] J. A. Fisher, “The VLIW machine: a multiprocessor for compil-
ing scientific code,” Computer, vol. 17, no. 7, pp. 45–52, 1984.

[10] J. E. Smith andG. S. Sohi, “Themicroarchitecture of superscalar
processors,” Proceedings of the IEEE, vol. 83, no. 12, pp. 1609–
1624, 1995.

[11] P. Faraboschi, J. A. Fisher, and C. Young, “Instruction schedul-
ing for instruction level parallel processors,” Proceedings of the
IEEE, vol. 89, no. 11, pp. 1638–1658, 2001.

[12] D. Bernstein and M. Rodeh, “Global instruction scheduling for
superscalar machines,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion, pp. 241–255, Toronto, Canada, June 1991.

[13] P. B.Gibbons and S. S.Muchnick, “Efficient instruction schedul-
ing for a pipelined architecture,” SIGPLAN Notices, vol. 21, no.
7, pp. 11–16, 1986.

[14] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of
list schedules for parallel processing systems,” Communications
of the ACM, vol. 17, no. 12, pp. 685–690, 1974.

[15] M.C.Golumbic andV.Rainish, “Instruction scheduling beyond
basic blocks,” IBM Journal of Research andDevelopment, vol. 34,
no. 1, pp. 93–97, 1990.

[16] P. Robert, P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth,
and P. K. Rodman, “A VLIW architecture for a trace scheduling
computer,” in Proceedings of the 2nd International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-II ’87), IEEE Computer Society Press, Los
Alamitos, Calif, USA, 1987.

[17] M. Lee, P. Tirumalai, and T. Ngai, “Software pipelining
and superblock scheduling: compilation techniques for VLIW
machines,” in Proceedings of the 26th Hawaii International
Conference on System Sciences, vol. 1, pp. 202–213, Wailea,
Hawaii, USA, January 1993.

[18] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann, “Effective compiler support for predicated
execution using the hyperblock,” in Proceedings of the 25th
Annual International Symposium on Microarchitecture, pp. 45–
54, December 1992.

[19] C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic processor
allocation policy for multiprogrammed shared-memory multi-
processors,”ACMTransactions on Computer Systems, vol. 11, no.
2, pp. 146–178, 1993.



12 Scientific Programming

[20] C. Chekuri, R. Motwani, R. Johnson, B. Ramakrishna Rau, and
B. Natarajan, “Profile-driven instruction level parallel schedul-
ing,” HP Laboratories Technical Report HPL-96-16, 1996.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 2011.

[22] D. C. Kiran, S. Gurunarayanan, and J. P. Misra, “Taming compi-
ler to work with multicore processors,” in Proceedings of the
International Conference on Process Automation, Control and
Computing (PACC ’11), pp. 1–6, IEEE, Coimbatore, India, July
2011.

[23] D. C. Kiran, S. Gurunarayanan, F. Khaliq, and A. Nawal,
“Compiler efficient and power aware instruction level paral-
lelism for multicore architecture,” in Eco-Friendly Computing
and Communication Systems: Proceedings of the International
Conference, ICECCS 2012, Kochi, India, August 9–11, 2012, vol.
305 of Communications in Computer and Information Science,
pp. 9–17, Springer, Berlin, Germany, 2012.

[24] D. C. Kiran, S. Gurunaraynan, J. P. Misra, and F. Khaliq, “An
efficient method to compute static single assignment form
for multicore architecture,” in Proceedings of the 1st IEEE
International Conference on Recent Advances in Information
Technology, pp. 776–781, March 2012.

[25] D. C. Kiran, B. Radheshyam, S. Gurunarayanan, and J. P.
Misra, “Compiler assisted dynamic scheduling for multicore
processors,” in Proceedings of the IEEE International Conference
on Process Automation, Control and Computing (PACC ’11), pp.
1–6, IEEE, Coimbatore, India, July 2011.

[26] D. C. Kiran, S. Gurunarayanan, and J. P. Misra, “Compiler
driven inter block parallelism for multicore processors,” in
Wireless Networks and Computational Intelligence: 6th Inter-
national Conference on Information Processing, ICIP 2012,
Bangalore, India, August 10–12, 2012. Proceedings, vol. 292 of
Communications inComputer and Information Science, pp. 426–
435, Springer, Berlin, Germany, 2012.

[27] The Jackcc Compiler, http://jackcc.sourceforge.net.
[28] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Transactions on
Programming Languages and Systems, vol. 13, no. 4, pp. 461–490,
1991.

[29] J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sinharoy,
“POWER4 system microarchitecture,” IBM Journal of Research
and Development, vol. 46, no. 1, pp. 5–25, 2002.

[30] C. Cascaval, J. Castanos, M. Denneau et al., “Evaluation of a
multithreaded architecture for cellular computing,” in Proceed-
ings of the 8th International Symposium on High Performance
Computer Architecture, pp. 311–322, January 2002.

[31] E. Waingold, M. Taylor, D. Srikrishna et al., “Baring it all to
software: raw machines,” Computer, vol. 30, no. 9, pp. 86–93,
1997.

[32] W. Lee, R. Barua, M. Frank et al., “Space-time scheduling of
instruction-level parallelism on a raw machine,” in Proceedings
of the 8th ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 46–57, 1998.

[33] The gem5 Simulator System, http://www.gem5.org/.
[34] J. Babb, M. Frank, V. Lee et al., “RAW benchmark suite: compu-

tation structures for general purpose computing,” inProceedings
of the 5th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 134–143, April 1997.

[35] The Raw Benchmark Suit, http://groups.csail.mit.edu/cag/raw/
benchmark/.

[36] M. D. Hill andM. R. Marty, “Amdahl’s law in the multicore era,”
IEEE Computer, vol. 41, no. 7, pp. 33–38, 2008.

[37] D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s law for
energy-efficient computing in the many-core era,” Computer,
vol. 41, no. 12, pp. 24–31, 2008.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


