
Research Article
Cloud for Distributed Data Analysis Based on the Actor Model

Ivan Kholod, Ilya Petukhov, and Andrey Shorov

Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University (LETI), Professora Popova Street 5,
Saint Petersburg 197376, Russia

Correspondence should be addressed to Andrey Shorov; ashxz@mail.ru

Received 29 April 2016; Accepted 29 June 2016

Academic Editor: Fabrizio Messina

Copyright © 2016 Ivan Kholod et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes the construction of a Cloud for Distributed Data Analysis (CDDA) based on the actor model. The design
uses an approach to map the data mining algorithms on decomposed functional blocks, which are assigned to actors. Using actors
allows users to move the computation closely towards the stored data.The process does not require loading data sets into the cloud
and allows users to analyze confidential information locally. The results of experiments show that the efficiency of the proposed
approach outperforms established solutions.

1. Introduction

Presently the terms “cloud computing,” “Internet ofThings,”
and “Big Data” have become quite popular. They refer
to technologies for collecting, storing, and handling large
volumes of data, with a variety of types and a high rate
of generation (Big Data). Modern data warehouses provide
storage for large amounts of different data. However, all these
are worthless if it is not possible to apply analysis and obtain
new knowledge from the data.

The technologies machine learning, data mining, and
knowledge discovery are used for the aforementioned used
tasks. They use complex mathematical methods and algo-
rithms that need powerful computing resources to analyze
vast amounts of data. Cloud and cluster technologies provide
scalable resources for those tasks.

During the last year, solutions in this area developed
from research to product level. The leaders in cloud services
are Amazon, Microsoft, IBM, and Google. They all recently
launched their public Clouds for Data Analysis (CDA). They
provide services for different user requirements and solve
different tasks. However, they suffer from a restricted set
of analysis tasks and do not extend. Also all of them are
paid services and allow only to analyze data that have been
uploaded into the cloud. Therefore these services can hardly
be used to analyze confidential information.

We suggest to build a Cloud forDistributedData Analysis
(CDDA) that uses the approach decomposition of data mining

algorithms into sets of functional blocks [1, 2]. It allows us to
extend cloud services with new algorithms andmodifications
of existing algorithms. The mapping of functional blocks on
distributed environments (in particular on actor environ-
ments) allows us to distribute calculations among different
clouds. Moving the data mining algorithm closely to the data
removes the restriction and keeps the data in the cloud.

In contrast to existing approaches, CDDA has the follow-
ing key characteristics:

(i) implementation of both SaaS and PaaS cloud comput-
ing service models;

(ii) extension list of data mining algorithms in the cloud
by adding new or modifying their functional blocks;

(iii) processing of data sets stored outside the cloud;
(iv) ability to analyze confidential information;
(v) execution of distributed data analysis among several

clouds.

The paper is organized as follows. Section 2 is a review of
similar cloud-based systems. Section 3 contains the descrip-
tion of a general approach that allows the decomposition
of an algorithm into blocks on actor-model systems. Sec-
tion 4 describes the CDDA architecture. Section 5 discusses
experiments and compares the performance of the developed
prototype with similar solutions. Finally, Section 6 presents
the main conclusions and future work directions.

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 1050293, 11 pages
http://dx.doi.org/10.1155/2016/1050293



2 Scientific Programming

2. Related Work

Nowadays, a series of cloud computing service platforms have
beendeveloped to provide data analysis services for the public
sector.

The Chinese Mobile Institute was one of the first who
beganworking in this field. In 2007 they started their research
in cloud computing. Later, in 2009, a platform for cloud
computing, BigCloud, has been officially announced: Data
Mining Big Cloud-Parallel Data Mining (BC-PDM) [3]. It is
a collection of tools for the parallel execution of algorithms.

BC-PDM is a SaaS platform based on Apache Hadoop.
Users can upload data to a repository (hosted in the cloud)
from different sources and apply a variety of applications for
data management, data analysis, and business applications.
Those include the analysis of the performance of parallel
operating applications: ETLprocessing, social network analy-
sis, analysis of texts (textmining), data analysis (datamining),
and statistical analysis.

It includes about ten algorithms and cannot be extended
by the user.This cloud is only used for research in the Chinese
Mobile Institute. Therefore it is not available for public use.

Azure Machine Learning (Azure ML) [4] is a SaaS cloud-
based predictive analytics service from Microsoft Inc. It
has been launched in February 2015. Azure ML provides
paid services, which allow users to execute the full cycle of
datamining: data collection, preprocessing, defining features,
choosing and applying an algorithm, evaluating a model,
and publication. The service is for experienced users with
knowledge in machine learning algorithms.

The analysis process is designed as a workflow. Each step
of the workflow is a module, designed to execute a single
subtask of the analysis (data reader, data transformation, an
algorithm, or other). A module can be executed on a single
cluster node. Thus, a number of modules can be executed in
parallel if the workflow allows it.

AzureML can import data from local files, online sources,
and other cloud projects (experiments). The reader module
allows us to load data from external sources on the Internet
or other file storages.

The user can only apply the proprietary machine learning
algorithms of Azure ML: classification (Boosted Decision
Trees, Random Forests, Logistic Regression, SVM, Averaged
Perceptron, and neural networks), regression (Linear Regres-
sion, Boosted Decision Trees, and neural networks), anomaly
detection (SVM, PCA), and clustering (𝐾-Means). Addi-
tional algorithms are available for purchase at the Machine
Learning Marketplace.

In April 2015 Amazon has launched their Amazon
Machine Learning service that allows users to train predictive
models in the cloud [5]. This service provides all required
stages of data analysis: data preparation, construction of
a machine learning model, its settings, and eventually the
prediction. The user can build and fine-tune predictive
models using large amounts of data.

Special knowledge in the field of machine learning is
not required. Amazon Machine Learning solves only clas-
sification and regression tasks. It supports three distinct
types of tools: binary classification, multiclass classification,

and regression. New algorithms and machine learning tasks
cannot be implemented into the service.

It allows users to analyze data stored in others Amazon
services (Amazon Simple Storage Service, Amazon Redshift,
or Amazon Relational Database Service). To scale computa-
tions, the service uses Apache Hadoop.

Google made its Cloud Machine Learning platform [6],
which is used by Google Photos, Translate, and Inbox, avail-
able to developers in March 2016. It is a managed platform
that empowers users to build machine learning models. The
platform provides pretrained models and helps to generate
customized models. It allows users to apply neural network
based machine learning methods, which are used by other
Google services including Photos (image search), the Google
app (voice search), Translate, and Inbox (Smart Reply).

The Google services will provide application program-
ming interfaces (APIs) for automatic image recognition,
speech recognition, language translation, and more. The
cloud provides four basic machine learning services:

(i) Vision API enables developers to recognize the con-
tent of an image by encapsulating powerful machine
learning models.

(ii) Speech API enables developers to convert audio to
text by applying powerful neural network models.

(iii) Translate API provides a simple programmatic inter-
face to translate arbitrary strings into any supported
language.

(iv) Prediction API can help to analyze users’ data to
add applicable features (customers sentiment anal-
ysis, message routing decisions, churn analysis, and
others) to a user’s application.

All of these services are provided by REST API for
client applications. Users can only analyze data stored in
Google storage. Also user cannot add new machine learning
algorithms.

In the beginning of 2016, IBM presented their analytic
service—Watson Analytics [7]. It is a smart data discovery
service, available on the IBM cloud. The service solves high-
level analytic tasks. Users are able to deploy queries in natural
language. Watson Analytics’ three main areas are Explore,
Predict, and Assemble:

(i) Explore allows users to create queries to data. Users
can use existing templates or enter text based queries.

(ii) Predict allows predicting one or more variables based
on other variables.Therefore classification and regres-
sions methods are used.

(iii) Assemble allows users to create analytic reports,
presentations, and data visualization.

Watson Analytics handles data sets that have been
uploaded into the cloud in .csv or MS Excel (.xls) formats.
Users can only use methods, provided by Watson Analytics.

There are also some data mining algorithm libraries for
distributed environments. They can be used to create a CDA.
The most famous are the following.



Scientific Programming 3

Data Mining Cloud Framework (DMCF) [8] is designed
for developing and running distributed data analytics appli-
cations as a collection of services. The first implementation
of the framework has been carried out on the Windows
Azure cloud platform and has been evaluated through a set
of data analysis applications executed on a Microsoft Cloud
data center. The framework treats the data sets, data mining
algorithms, and mining models as services, which can be
combined through a visual interface to produce distributed
workflows executed on a cloud platform. DMCF supports
JavaScript for Clouds (JS4Cloud) as an additional and more
flexible programming interface.

Apache Spark Machine Learning Library (MLlib) [9] is
a scalable machine learning library for the Apache Spark
platform. It consists of common learning algorithms and
utilities, including classification, regression, clustering, col-
laborative filtering, dimensionality reduction, and lower-level
optimization primitives and higher-level pipeline APIs. It has
an own implementation of MapReduce, which uses memory
for data storage (versus Apache Hadoop that uses disk stor-
age). It allows us to increase the efficiency of the algorithm’s
performance.The user can extend the set ofmachine learning
algorithms by own implementations. However, users must
decompose their algorithms according to MapReduce and
other Spark’s specific functions. It strongly limits the abilities
for parallelization of data mining algorithms.

ApacheMahout [10] is also a datamining library concern-
ing the MapReduce paradigm. It can be executed on Apache
Hadoop or Spark based platforms. It contains only a few data
mining algorithms for distributed execution: collaborative
filtering (User-Based, Item-Based, and Matrix Factorization
with ALS), classification (Naive Bayes/ComplementaryNaive
Bayes, Random Forests), clustering (𝐾-Means, Fuzzy 𝐾-
Means, Streaming 𝐾-Means, and Spectral Clustering), and
dimensionality reduction (Stochastic SVD, PCA, and QR
Decomposition). Users can extend the library by adding new
data mining algorithms. The core libraries are highly opti-
mized and also show good performance for nondistributed
execution.

Weka4WS [11] is an extension of the famous open-
source data mining library Weka (TheWaikato Environment
for Knowledge Analysis) [12]. The extension implements a
framework to support the execution in WSRF [13] enabled
grids. Weka4WS allows the distribution and execution of all
its data mining algorithms on remote grid nodes. To enable
remote invocation, the data mining algorithms provided by
theWeka library are extended to aWeb Service, which can be
easily deployed on the available Grid nodes. Weka4WS can
only handle a data set contained in a single storage node.This
data set is then transferred to computing nodes to be mined.
Unfortunately, this library is not supported now. The latest
version is from July 2008.

Table 1 summarizes some features of the above-men-
tioned systems. They also show the following disadvantages:

(i) the fact that data sets must be stored inside a cloud,
which does not allow users to analyze confidential
information;

(ii) a restricted number of analysis tasks in public clouds
and no full analysis tool chain in the frameworks;

(iii) using basically MapReduce paradigm (in particular
the Apache Hadoop) for distributed analysis.

The MapReduce paradigm is adapted only for data
processing functions, which are list homomorphisms [14].
Therefore, not all datamining algorithms can be decomposed
into map and reduce functions.

We suggest the architecture of a cloud, based on the actor
model, that allows users to execute data mining algorithms
on a hybrid cloud (public and private cloud). The proposed
cloud uses an approach to map an algorithm, decomposed
into functional blocks, on a set of actors. Using actors allows
users to move handling data sets towards the stored data.The
process does not request uploading data sets into the cloud
and allows users to analyze confidential information locally.

3. Mapping Data Mining Algorithms in
Distributed Environments

3.1. Common Approach. According to [15], a data mining
algorithm can be written as a sequence of functional blocks
(based on functional language principles). Classical functions
in functional languages are pure functions. A data mining
algorithm can be written as a function (with two input
arguments: data set 𝑑 and mining model 𝑚) that can be
decomposed into a number of nested functions:

dma (𝑑,𝑚) = 𝑓
𝑛
∘ 𝑓
𝑛−1

∘ ⋅ ⋅ ⋅ ∘ 𝑓
𝑖
∘ ⋅ ⋅ ⋅ ∘ 𝑓

1
(𝑑,𝑚)

= 𝑓
𝑛
(𝑑, 𝑓
𝑛−1

(𝑑, . . . , 𝑓
𝑖
(𝑑, . . . , 𝑓

1
(𝑑,𝑚) , . . .) , . . .)) ,

(1)

where 𝑓
𝑖
is pure function of the type FB:: 𝐷 → 𝑀 → 𝑀, in

which

(i) 𝐷 is the input data set that is analyzed by function 𝑓
𝑖

and
(ii) 𝑀 is the mining model that is built by function 𝑓

𝑖
.

We called this function functional block.
For example, we decomposed the 𝐾-Means algorithm

into a set of functional blocks, ready for distributed execution.
Therefore it can be represented as a chain of functional
expressions:

𝐾-Means = findClusters ∘ initClusters, (2)

in which

(i) initClusters creates a set of centroids in a randomway;
(ii) findClusters finds centroids of clusters.

The findClusters block is the cycle which calls the next
functional block while the cluster’s centroids are changed:

(i) distributeVectors computes the distances between vec-
tors (from data set𝐷) and centroids of the clusters to
distribute the vectors between the clusters;

(ii) updateCentroids updates centroids of clusters with
new sets of vectors.

According to the Church-Rosser theorem [16] the reduc-
tion (execution) of such functional expressions (algorithm)
can be done concurrently.



4 Scientific Programming

Ta
bl
e
1:
Th

es
ol
ut
io
ns

fo
rb

ui
ld
in
g
da
ta
an
al
ys
is
clo

ud
se
rv
ic
es
.

Ca
pa
bi
lit
ie
s

BC
-P
D
M

A
zu
re

M
L

A
m
az
on

m
ac
hi
ne

le
ar
ni
ng

G
oo

gl
eC

lo
ud

m
ac
hi
ne

le
ar
ni
ng

W
at
so
n
A
na
ly
tic

s
D
M
CF

Ap
ac
he

Sp
ar
k

M
Ll
ib

Ap
ac
he

M
ah
ou

t
W
ek
a4

W
S

Cl
ou

d
se
rv
ic
e

m
od

el
Sa
aS

Sa
aS

Sa
aS

Sa
aS

Sa
aS

Sa
aS

—
—

—

U
se
ri
nt
er
fa
ce

W
eb

W
eb

W
eb

A
PI

W
eb

W
eb

—
—

D
es
kt
op

U
se
r’s

le
ve
l

D
ev
el
op

er
Kn

ow
le
dg
eM

L
al
go
rit
hm

s
A
na
ly
tic

D
ev
elo

pe
r

A
na
ly
tic

/m
an
ag
er

D
ev
elo

pe
r

D
ev
elo

pe
r

D
ev
elo

pe
r

D
ev
elo

pe
r

A
PI

In
te
rfa

ce
N
o

RE
ST

RE
ST

RE
ST

RE
ST

JS
4C

lo
ud

Ye
s

Ye
s

Ye
s

Sc
al
ab
le
co
m
pu

tin
g

Ye
s

Fo
rs
in
gl
e

m
od

ul
es

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

D
at
as

ou
rc
e

lo
ca
tio

n
In
sid

ec
lo
ud

In
sid

ec
lo
ud

In
sid

ec
lo
ud

In
sid

ec
lo
ud

In
sid

ec
lo
ud

In
sid

ec
lo
ud

O
ut
sid

e
O
ut
sid

e
A
ny

D
ist
rib

ut
ed

co
m
pu

tin
g

pl
at
fo
rm

Ap
ac
he

H
ad
oo

p
—

Ap
ac
he

H
ad
oo

p
Ap

ac
he

H
ad
oo

p
—

SO
A

Ap
ac
he

Sp
ar
k

Ap
ac
he

H
ad
oo

p
W
SR

F

Fu
ll
an
al
ys
is
cy
cle

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

N
o

N
o

In
clu

de
d
da
ta

m
in
in
g
al
go
rit
hm

s

Cl
as
sifi

ca
tio

n,
clu

ste
rin

g,
an
d

as
so
ci
at
io
n

Cl
as
sifi

ca
tio

n,
an
om

al
y

de
te
ct
io
n,

re
gr
es
sio

n,
an
d

clu
ste

rin
g

Cl
as
sifi

ca
tio

n,
re
gr
es
sio

n
Cl
as
sifi

ca
tio

n,
re
gr
es
sio

n
Cl
as
sifi

ca
tio

n,
re
gr
es
sio

n

Cl
as
sifi

ca
tio

n,
re
gr
es
sio

n,
an
d

clu
ste

rin
g

Cl
as
sifi

ca
tio

n,
re
gr
es
sio

n,
Cl
us
te
rin

g,
di
m
en
sio

na
lit
y

re
du

ct
io
n,

an
d

fe
at
ur
e

ex
tr
ac
tio

n

C
ol
la
bo

ra
tiv

e
fil
te
rin

g,
cla

ss
ifi
ca
tio

n,
clu

ste
rin

g,
an
d

di
m
en
sio

na
lit
y

re
du

ct
io
n

Cl
as
sifi

ca
tio

n,
as
so
ci
at
io
n,

re
gr
es
sio

n,
an
d

clu
ste

rin
g

Ad
di
ng

ne
w

al
go
rit
hm

s
N
o

Fr
om

M
ac
hi
ne

Le
ar
ni
ng

M
ar
ke
tp
la
ce

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

U
sin

g
N
o

Pa
id

Pa
id

Pa
id

Pa
id

N
o

O
pe
n
So
ur
ce

O
pe
n
So
ur
ce

O
pe
n
So
ur
ce



Scientific Programming 5

3.2.The Function for Parallel Execution of a DataMining Algo-
rithm. One of the main advantages of building algorithms
from functional blocks is the possibility of parallel execution.
For this task we need to transform the sequential expression
(1) into a form, in which the functional blocks will be invoked
as arguments. For this the high-order map function can be

used. It allows us to apply some functions to elements of lists.
The function can be executed parallel for different elements.
The map function returns the list of results. To reduce the
list into a single result the high-order fold function can be
used. Thus, the function for the transformation of sequential
expressions into a parallel form can be presented as follows:

parallel: FB 󳨀→ 𝐷 󳨀→ 𝑀 󳨀→ ([𝑀] 󳨀→ 𝑀) 󳨀→ (FB 󳨀→ [FB]) 󳨀→ (𝐷 󳨀→ [𝐷]) 󳨀→ (𝑀 󳨀→ [𝑀]) 󳨀→ (FB 󳨀→ 𝐷 󳨀→ 𝑀 󳨀→ 𝐻) 󳨀→ (𝐻 󳨀→ 𝑀) 󳨀→ 𝑀,

parallel (𝑓, 𝑑,𝑚, 𝑗𝑜𝑖𝑛, distr𝐹, distr𝐷, distr𝑀, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑒𝑡) = fold (𝑗𝑜𝑖𝑛, 𝑚, 𝑔𝑒𝑡, (𝑚𝑎𝑝 (𝑠𝑡𝑎𝑟𝑡, distr𝐹 (𝑓) , distr𝐷(𝑑,𝑚) , distr𝑀(𝑑,𝑚)))) ,

(3)

in which

(i) 𝑓 (1st argument of the parallel function) is a func-
tional block that is executed concurrently;

(ii) distrF, distrD, and distrM functions divide the the
functional block 𝑓, the input data set 𝑑, and the
mining model𝑚 into the lists:

distr𝐹: (𝐷 󳨀→ 𝑀 󳨀→ 𝑀) 󳨀→ [(𝐷 󳨀→ 𝑀 󳨀→ 𝑀)]

distr𝐷: 𝐷 󳨀→ [𝐷]

distr𝑀: 𝑀 󳨀→ [𝑀] ;

(4)

(iii) start function applies each functional block 𝑓 from
the list [𝐹] to the elements of the lists [𝐷] and [𝑀]

and returns a handler ℎ for the parallel execution of
the parallel functional block 𝑓:

𝑠𝑡𝑎𝑟𝑡: FB 󳨀→ 𝐷 󳨀→ 𝑀 󳨀→ 𝐻; (5)

(iv) 𝑔𝑒𝑡 function reads the mining model from the han-
dler ℎ:

𝑔𝑒𝑡: 𝐻 󳨀→ 𝑀; (6)

(v) join function joins the mining models from the list
[𝑀] and returns the merged mining model𝑀:

𝑗𝑜𝑖𝑛: [𝑀] 󳨀→ 𝑀; (7)

(vi) map function applies function start to elements of the
lists [𝐹], [𝐷], and [𝑀]:

𝑚𝑎𝑝: (FB 󳨀→ 𝐷 󳨀→ 𝑀 󳨀→ 𝐻) 󳨀→ [FB] 󳨀→ [𝐷] 󳨀→ [𝑀] 󳨀→ [𝐻]

𝑚𝑎𝑝 (𝑠𝑡𝑎𝑟𝑡, {𝑓
0
, 𝑓
1
, . . . , 𝑓

𝑘
} , {𝑑
0
, 𝑑
1
, . . . , 𝑑

𝑘
} , {𝑚
0
, 𝑚
1
, . . . , 𝑚

𝑘
}) = list ((𝑠𝑡𝑎𝑟𝑡 (𝑓

0
, 𝑑
0
, 𝑚
0
)) , . . . , (𝑠𝑡𝑎𝑟𝑡 (𝑓

𝑘
, 𝑑
𝑘
, 𝑚
𝑘
))) ;

(8)

(vii) fold function reduces the list of mining models to a
single result:

𝑓𝑜𝑙𝑑: ([𝑀] 󳨀→ 𝑀) 󳨀→ 𝑀 󳨀→ (𝐻 󳨀→ 𝑀) 󳨀→ [𝐻] 󳨀→ 𝑀

𝑓𝑜𝑙𝑑 (𝑗𝑜𝑖𝑛,𝑚, 𝑔𝑒𝑡, {ℎ
0
, ℎ
1
, . . . , ℎ

𝑘
})

= 𝑗𝑜𝑖𝑛 (𝑚, 𝑔𝑒𝑡 (ℎ
0
) , 𝑔𝑒𝑡 (ℎ

1
) , . . . , 𝑔𝑒𝑡 (ℎ

𝑘
)) .

(9)

3.3. Mapping the Parallel Function on Actor Model. A list
of handlers parsing between the map and fold functions is
part of some distributed execution environments. In general,
an execution environment can be represented as a set of
handlers:

𝐸 = {ℎ
0
, ℎ
1
, . . . , ℎ

𝑗
, . . . , ℎ

𝑛
} , (10)

in which

(i) ℎ
0
is handler to execute sequential functional blocks

of an algorithm;
(ii) ℎ
1
–ℎ
𝑛
are handlers to execute parallel functional

blocks in the distributed environment.

Each handler must implement the start and 𝑔𝑒𝑡 functions
to use them in the parallel function. The implementation
of the start and 𝑔𝑒𝑡 functions is specified by the execution
environment which includes these handlers. Examples of
these handlers are threads, actors, web services, and others.

The execution environment, which is implemented on
the basis of the actor model [17, 18], uses actors as handlers.
Actors interact with each other through the exchange of
messages.

In order to send and receive a message, actors implement
two functions:

(i) send (msg, a): to send the messagemsg to the actor a;
(ii) receive(a): to receive the message msg from the actor

a.

One of the popular implementations of the actor model
is the AKKA system, which uses the following actors to route
messages:

(i) 𝑥 is the inbox, which receives messages from actors,
stores them in the memory, and sends them to other
actors;



6 Scientific Programming

(ii) 𝑟 is the router, which obtainsmessages from the inbox
and distributes them among actors, depending on
their type and load.

Thus, the actors environment can be written as

𝐸 = {𝑟, 𝑥, 𝑎
0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑗
, . . . , 𝑎

𝑛
} , (11)

in which

(i) 𝑥 is the inbox, which stores messages;
(ii) 𝑟 is the router, which distributes messages among

actors;
(iii) 𝑎

0
is the actor, which carries out the main algorithm

sequence;
(iv) 𝑎
1
–𝑎
𝑛
are the actors, which carry out the parallel

function of the algorithm.

The functions of the handlers start and 𝑔𝑒𝑡 can be
presented in the following way:

𝑠𝑡𝑎𝑟𝑡 (𝑓, 𝑑,𝑚) = 𝑠𝑒𝑛𝑑 (⟨𝑓, 𝑑,𝑚⟩ , 𝑥) ;

𝑔𝑒𝑡 (𝑥) = 𝑟𝑒𝑐𝑒𝑖V𝑒 (𝑥) .
(12)

Thus, actors can execute functional blocks and therefore
carry out a distributed implementation of the data mining
algorithm.

The described approach was implemented as the data
mining algorithm library DXelopes [19]. The library has
adapters for the integration in different distributed environ-
ments. We used the actor model environment to create the
prototype of a cloud for distributed data mining.

4. Architecture of the Cloud for
Distributed Data Analysis

4.1. Levels of the Cloud for Distributed Data Analysis. The
architecture of CDDA can be divided into several levels
(Figure 1):

(i) Hardware;
(ii) virtual distributed environment;
(iii) analysis services.

The hardware level includes the pool of computers,
storage, and networking resources, available in the cloud. We
distinguish the following nodes:

(i) control nodes that run services to manage computa-
tion nodes and virtual networks between them;

(ii) computation nodes that run the hypervisor portion
of computation, operating tenant virtual machines or
instances;

(iii) storage nodes that contain the disks that provide space
for tenant virtual machine instances.

The virtual distributed environment level provides con-
trols for the virtual machines, the network connections

between them, the disk spaces, and the user authorization.
Therefore, we use a stack of cloud technologies: hypervisors,
networkmanagers, file storages, and so forth.TheOpenStack
software [20] integrates these technologies and allows us to
control all the resources.

This level keeps previously prepared images of the virtual
machines (VMs). Each VM has preinstalled software to
execute the functional blocks of data mining algorithms:
OS, AKKA, and DXelopes libraries (Figure 2). The VMs are
united in a virtual network.Thus it forms the environment for
distributed execution of a datamining algorithms.OpenStack
balances VMs loads and provides optimal execution of the
data mining algorithm in the cloud.

The analysis services level includes modules to work with
the CDDA. They are installed on the control nodes and the
VMs. The following units are deployed on the control nodes:
Web interface, API CDDA, user control module, project
control module, and analysis control module.

Each VM includes the following modules: analysis
control module, data mining algorithms library, that is,
DXelopes, ETL tools, and distributed system.

The user interface is implemented as a Web interface and
users can do the full cycle of the analysis: data preprocessing,
setting and execution of data mining algorithms, selecting
and setting of the execution environment, estimation of the
created mining model, and visualization and application of
the created mining model.

The CDDA provides an API interface. It is REST API
according to JSR 73 JDM API [21]. It allows developers to
integrate other third-party systems with the CDDA.

Thus the users canmanage work with the CDDA through
theWeb and the API interfaces with the help of the following
modules:

(i) user control module provides the user authorization,
verification of user permissions, and user registration;

(ii) project control module provides the user’s projects
management: creating, editing, and removing;

(iii) analysis control module provides the execution of full
analysis cycle.

The data mining library DXelopes is the engine of the
CDDA. It can be extended by

(i) data mining algorithms;

(ii) adapters for different ETL tools;

(iii) adapters for different execution environments.

The DXelopes library allows us to add algorithms as
well as to construct new algorithms from existing functional
blocks or the restructuring of the existing algorithms. The
adapters for the ETL tools allow us to integrate the library
within different systems, which implement data extraction,
data transformation, and data loading. Thus, the integration
of the DXelopes library and the ETL tools enables analysis of
Big Data in the CDDA.



Scientific Programming 7

Cloud for distributed data analysis

Hardware
Compute nodes

Data sourceData source

Storage nodesNetwork
node

Controller
 node

AnalystData mining 
developer

Third-party 
systems

Distributed environments (VMs) 

Cloud control unit 
(open stack)

Data source

Data source

VM

Data mining library 
(DXelopes)

ETL tools
(CloverETL, etc.)

A
na

ly
sis

 co
nt

ro
l u

ni
t

 Repository 

Projects DB

Users DBUser 
control unit

Project 
control unit

API CDDA

Web interface

Actors model 
environment (AKKA) 

Figure 1: The architecture of Cloud for Distributed Data Analysis based on the actor model.

4.2. Using the Actor Model for the Cloud for Distributed
Data Analysis. The adapters for the execution environment
allow us to integrate the library within different distributed
systems. So far the library has been integrated with the
actor model environment (the actor model environment is
presented by AKKA framework [22]). Thus, all data mining
algorithms implemented in the library can be executed in
these environments.

For each environment the CDDA contains sets of VMs
with installed software (Figure 2):

(i) analysis control module;
(ii) DXelopes library;
(iii) configured actor system from the AKKA framework.

Such an approach to CDDA architecture allows us to
transfer VMs to other clouds, hence distributing the analysis

among them. This property is important when working
with “private” clouds; the data of the latter must not be
transferred to public clouds (e.g., CDDA). In order to fulfill
this requirement using an image of a VM, which is stored
in the CDDA repository, a VM must be designed with an
installed actors environment and executed in a private cloud
(Figure 3). A part of the data mining algorithm will be
executed in this VM. This part will directly process data.
The results of data processing will be sent to the CDDA as
a knowledge model, which will actually not contain the data.

For example, concerning the 𝐾-Means algorithm, the
actor with the distributeVectors functional block can handle
all the vectors on the VM in a private cloud and then the actor
with the updateCentroids functional block will recalculate the
centroids of the clusters in the CDDA (Figure 3). The dis-
tributeVectors functional block receives the clusters centroids,
determinates a vector belonging to the cluster, and sends



8 Scientific Programming

Distributed environment

Virtual machine (VM) 

DXelopes

Actors model environment

A
PI

 D
Xe

lo
pe

s

Алгоритм Data 
Mining

Алгоритм Data 
Mining

Data mining 
algorithms

Distributed environments 
adapters

ETL tools adapters

CloverETL

Analysis control 
module

A
PI

 R
ES

T

C
on

tro
l m

od
ul

e

VM

VM

VM

Figure 2: The configuration of the VM for data mining.

Cloud for distributed data analysis

Hardware

AnalystData mining
developer

Cloud control unit
(open stack)

VM

DXelopes

A
na

ly
sis

 co
nt

ro
l u

ni
t

API CDM

Web interface

Actors model environment
(AKKA)

Private cloud

Hardware

Compute nodesCompute nodes Storage nodes

Data source

Data source

Data source

Data source

Data source

VM

DXelopes

CloverETL

Actors model environment
(AKKA)Mining

model M

Distributed environments (VMs)

Migrate VM

distributeVectorsupdateCentroids

findClusters

initClusters
Data set D

Network
node

Controller
node

Figure 3: The configuration of the VM for data mining.



Scientific Programming 9

Table 2: Cloud computing infrastructure.

Characteristics IBM FlexSystem X240 IBM FlexSystem P260 Huawei FusionServer RH2288 V3
CPU Intel Xeon 2.9GHz (2 CPU on 6 cores) Power 7 3.3 GHz (2 CPU on 4 cores) Intel� Xeon� E5-2600 (2 CPU on 4 cores)
RAM 128GB 128GB 128GB

OS 3 win 2012/Hyper-V systems, 5
rhel/kvm systems 2 AIX/PowerVM systems 3 win 2012/ Hyper-V systems, 5 rhel/kvm

systems
Performance 200 GFlops 400 GFlops 200 GFlops

Table 3: Experimental data sets.

Input data set Number of rows Number of attributes Size of file (Kb)
Iris two-class data (ITCD) 100 4 2
Telescope data (TD) 19020 10 1 499
Breast cancer info (BCI) 102294 5 4 832
Movie ratings (MR) 227472 4 6 055
Flight on-time performance (FOTP) (raw) 504397 5 39 555
Flight delays data (FDD) 2719418 5 136 380

the accumulated distances of each vector for each cluster
to the cloud. The updateCentroids functional block receives
the accumulated distances, updates the centroids, and sends
them to the VM in the private cloud. Thus the information
is not transferred from the private cloud in the public the
CDDA.

5. Experiments

A series of the experiments were done to verify the effec-
tiveness of the described the CDDA implementation. We
compared the performance of CDDA with Azure ML and
the Spark MLlib’s performance. The CDDA and Spark MLlib
had been executed on high-performance servers, supporting
hardware virtualization and providing high-performance
cloud computing systems. The computing cluster infrastruc-
ture for the experiments is shown in Table 2.

We checked availability of distributed analysis for private
and public clouds. Therefore we deployed VMs with actor
environments into the second cloud based onHuawei Fusion-
Server.

The data sets from Azure ML (you can download these
data sets from https://studio.azureml.net/Home/Anonymous
as Guest) were used for the experiments. The parameters of
the data sets are presented in Table 3.

For these data sets we solved clustering task with the 𝐾-
Means algorithm that is implemented in Azure ML, Spark
MLlib, and CDDA. To compare acceleration for centralized
systems we performed experiments for 1 and for 4 handlers

The experiments for Azure ML and Spark MLlib are
executed with centralized data sets. Hence we loaded all data
sets into the clouds. The data sets loading time and the time
for data analysis were measured separately.

The experiments with CDDA were executed with local
and with distributed data sets. In the second case all data sets
were stored in the second cloud. We transferred the VMwith
the actor system (AKKA) into this cloud (see Figure 3). As

CDDA
Azure ML
Spark MLlib

2 1,499 6,055 136,38039,555
Size of data sets (Kb)

0
0.5

1
1.5

2
2.5

3
3.5

4
Ac

ce
le

ra
tio

n

Figure 4: The acceleration of the parallel execution.

a result the data sets were processed locally without upload
into the CDDA.

The experimental results are provided in Table 4.
The execution time of the algorithm for centralized

analysis in all systems is almost the same. The CDDA is a
little bit faster than Apache Spark MLlib and Azure ML. The
acceleration (as time for 1 handler/time for 4 handlers) and
efficiency of parallel algorithmexecution (see Figures 4 and 5)
in the CDDA are better than in the AzureML and the Apache
Spark because the DXelopes library allows to distribute the
algorithm’s blocks between the handlers more flexibly.

The Apache Spark is restricted by MapReduce paradigm
and can parallely execute only the map and reduce functions.
The Azure ML can only execute whole algorithms on single
nodes.

The centralized analysis of local data sets is executed faster
than the analysis of distributed data sets. However, if we
summarize the time of analysis and the data loading time, the
accumulated time of centralized data analysis is bigger than
that in distributed data analysis (Figure 6).

This effect is achieved by reduction of data transferred
within a network. In case of distributed data analysis,



10 Scientific Programming

Table 4: Experimental results (s).

Cloud Action ITCD TD MR FOTP FDD
— Data set loading time 1 1 2 5 15

Azure ML
Local data centralized analysis (1 handler) 4 5 13 26 132
Local data centralized analysis (4 handlers) 4 4 11 17 63
Data set loading and centralized analysis 5 7 20 43 83

Spark MLlib
Local data centralized analysis (1 handler) 3 4 6 11 157
Local data centralized analysis (4 handlers) 2 3 5 6 59
Data set loading and centralized analysis 3 6 10 16 76

CDDA
Local data centralized analysis (1 handler) 0.4 1 9 12 121
Local data centralized analysis (4 handlers) 0.5 1 3 4 37
Data set loading and centralized analysis 1.5 2.8 8 15 74

CDDA Distributed data analysis (4 handlers) 1 2 4 6 41

2 4 8
Number of handlers

CDDA
Azure ML
Spark MLlib

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Effi
ci

en
cy

Figure 5: The efficiency of the parallel execution.

2 1,499 6,055 39,555 136,380
Size of data sets (Kb)

Centralized data analysis with Azure ML
Centralized data analysis with Spark MLlib
Centralized data analysis with CDDA
Distributed data analysis with CDDA

0
10
20
30
40
50
60
70
80
90

Ti
m

e (
s)

Figure 6: Comparison of the experimental results.

a mining model is transferred between the clouds instead of
the data sets.

By increasing the amount of data being analyzed the
difference between distributed and centralized analyses is
increasing. This is due to the difference between the transfer
time of the data and time to transfer the model. When a
substantial increase in the size of data occurs the size of the
model increases slightly. Therefore, the time to transfer the
model also increases slightly.

6. Conclusion

The representation of a data mining algorithm as functional
expression makes it possible to divide the algorithm into
blocks. Such a splitting helps to map it to an actor envi-
ronment. We implemented this approach as the DXelopes
library. It contains different algorithms and allows us to add
new algorithms. The library has adapters to support the
integrationwithin actor-model system—AKKA. It allowed us
to create a prototype of the cloud for distributed data analysis.

The cloud uses clusters of VMs. Each VM contains the
DXelopes library and an AKKA system. A user can deploy
VMs in other clouds and execute distributed data analysis.

Thus the created CDDA has the following key character-
istics, which distinguish it from other similar solutions:

(i) implementation of both SaaS and PaaS cloud comput-
ing service models;

(ii) extension list of data mining algorithms in the cloud
by adding new functional blocks or modifying their
functional blocks;

(iii) processing of data sets stored outside the cloud;
(iv) ability to analyze confidential information;
(v) execution of distributed data analysis among several

clouds.

The last property allows us

(i) to increase data security and to do so without the
storage of data in a public cloud;

(ii) to reduce network traffic due to the prevention of data
transfer between the clouds;

(iii) to enhance the efficiency due to the “localization” of
calculations.

Available solutions do not have the above-mentioned
features and limit the advantages of cloud technologies and
data analysis technologies integration significantly.

In the future we plan to extend the supported distributed
platforms and ETL tools and develop a release version of the
CDDA.



Scientific Programming 11

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been performed in Saint Petersburg Elec-
trotechnical University (LETI) within the scope of the con-
tract Board of Education of Russia and Science of the Russian
Federation under the Contract no. 02.G25.31.0058 from
12.02.2013. The paper has been prepared within the scope
of the state project “Organization of Scientific Research” of
the main part of the state plan of the Board of Education
of Russia, the project part of the state plan of the Board of
Education of Russia (Task 2.136.2014/K) as well as supported
by grant of RFBR 16-07-00625, supported by the Russian
President’s fellowship.

References

[1] I. Kholod, M. Kupriyanov, and A. Shorov, “Decomposition
of data mining algorithms into unified functional blocks,”
Mathematical Problems in Engineering, vol. 2016, Article ID
8197349, 11 pages, 2016.

[2] I. Kholod and I. Petukhov, “Creation of data mining algorithms
as functional expression for parallel and distributed execution,”
in Parallel Computing Technologies, V. Malyshkin, Ed., vol. 9251
of Lecture Notes in Computer Science, pp. 62–67, Springer, New
York, NY, USA, 2015.

[3] L. Yu, J. Zheng, W. C. Shen et al., “BC-PDM: data mining,
social network analysis and text mining system based on
cloud computing,” in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD ’12), pp. 1496–1499, ACM, Beijing, China, August
2012.

[4] C. J. Gronlund, “Introduction to machine learning on Micros-
oft Azure,” https://azure.microsoft.com/en-gb/documentation/
articles/machine-learning-what-is-machine-learning/.

[5] J. Barr, “Amazon Machine Learning-Make Data-Driven
Decisions at Scale,” Amazon Machine Learning, 2016, https://
aws.amazon.com/ru/blogs/aws/amazon-machine-learning-
make-data-driven-decisions-at-scale/.

[6] Google Cloud Machine Learning at Scale, https://cloud.google
.com/products/machine-learning/.

[7] A. Lally, J. M. Prager, M. C. McCord et al., “Question analysis:
how Watson reads a clue,” IBM Journal of Research and Devel-
opment, vol. 56, no. 3-4, pp. 2:1–2:14, 2012.

[8] F. Marozzo, D. Talia, and P. Trunfio, “A workflow-oriented
language for scalable data analytics,” in Proceedings of the 1st
International Workshop on Sustainable Ultrascale Computing
Systems (NESUS ’14), Porto, Portugal, August 2014.

[9] X. Meng, J. Bradley, B. Yavuz et al., “MLlib: machine learning in
apache spark,” Journal of Machine Learning Research, vol. 17, pp.
1–7, 2016.

[10] G. Ingersoll, Introducing ApacheMahout. Scalable, Commercial-
friendly Machine Learning for Building Intelligent Applications,
IBM, 2009.

[11] D. Talia, P. Trunfio, andO.Verta, “TheWeka4WS framework for
distributed datamining in service-orientedGrids,”Concurrency

Computation: Practice and Experience, vol. 20, no. 16, pp. 1933–
1951, 2008.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18,
2009.

[13] K. Czajkowski, D. Ferguson, I. Foster et al., “From open grid
services infrastructure to ws-resource framework: refactoring
& evolution,” 2004.

[14] S. Gorlatch, “Extracting and implementing list homomor-
phisms in parallel program development,” Science of Computer
Programming, vol. 33, no. 1, pp. 1–27, 1999.

[15] I. Kholod and I. Petukhov, “Creation of data mining algorithms
as functional expression for parallel and distributed execution,”
in Parallel Computing Technologies, pp. 62–67, Springer, 2015.

[16] A. Church and J. B. Rosser, “Some properties of conversion,”
Transactions of the American Mathematical Society, vol. 39, no.
3, pp. 472–482, 1936.

[17] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
actor formalism for artificial intelligence,” in Proceedings of the
3rd International Joint Conference on Artificial Intelligence, pp.
235–245, Morgan Kaufmann Publishers, Stanford, Calif, USA,
August 1973.

[18] W. D. Clinger, Foundations of Actor Semantics, 1981.
[19] I. Kholod, “Framework for multi threads execution of data

mining algorithms,” in Proceedings of the 2015 IEEE North West
Russia Section Young Researchers in Electrical and Electronic
Engineering Conference (ElConRusNW ’15), pp. 82–88, IEEE, St.
Petersburg, Russia, February 2015.

[20] K. Jackson, C. Bunch, andE. Sigler,OpenStackCloudComputing
Cookbook, Packt Publishing, 2015.

[21] JSR-000073 Data Mining API. (Maintenance Release), https://
jcp.org/aboutJava/communityprocess/mrel/jsr073/index.html.

[22] D. Wyatt, Akka Concurrency, Artima Incorporation, 2013.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


