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This paper considers an EOQ inventory model with presale policy for deteriorating items, in which the demand rate depends on
both on-hand inventory and selling price. Under the assumption that all the presale orders are fully backlogged with waiting-time
dependent rebate, this study develops several propositions and derives optimal pricing and ordering policy by designing an effective
algorithm. Two numerical examples are also given to illustrate the effectiveness of the algorithm. Finally, the sensitivity analysis of

the main parameters is provided.

1. Introduction

A large number of products have deteriorating property
which manifests the decay or devaluation. This kind of
products has much shorter life cycle, for example, some
seasonal fresh products that cannot be stored for a long time
even in modern storage conditions, electronic products with
a fast updating speed, and fashion clothing. These products
should be sold in a much shorter spot-sale period to reduce
deteriorating cost and holding cost. Presale policy is an
effective marketing strategy to reduce the spot-sale period,
which is that customers are encouraged to order in advance
to get a rebate related to the preorder time. All the orders
will be satisfied when the products launch into the market. In
addition, it is crucial to find out what factors mostly impact
the demand of product, so we can decide proper ordering
quantity.

It is obvious that the price of product highly influences
the demand rate; thus the pricing for the product plays an
important role in marketing strategy. Meanwhile, the stock
level of product can also affect the demand rate. Many
researchers have focused on such topic. Hou and Lin [1]
considered an EOQ inventory model for deteriorating items
with price-and-stock dependent selling rate, in which the
proposed model allowed shortage and complete backorder

while the shortage cost is constant. You and Hsieh [2]
developed an inventory model for a seasonal item over a
finite planning time by determining the optimal ordering
quantity and price setting/changing strategy. Chang et al. 3]
studied the optimal selling price and order quantity under
EOQ model for deteriorating items, and the demand depends
on the selling price and stock on display. Dye and Hsieh
[4] developed an inventory model for deteriorating items
with demand rate depending on selling price and stock,
and shortages are allowed with the backlogging rate to be
a decreasing function of the waiting time, while Giri and
Bardhan [5] studied an integrated single-manufacturer and
single-retailer supply chain model for deteriorating items
with stock-and-price dependent demand. Relevant references
can be found in Teng and Chang [6], Panda et al. [7], and so
forth. Furthermore, more inventory models for deteriorating
items with a variety of demand rate are summarized in
Table 1. The difference between the relevant references and
our study can be found in the table.

In our study, presale rebate depending on waiting time is
given to encourage customers to order in advance. Although
presale rebate cost is similar in form to the traditional
shortage cost, it is different in meaning; moreover, the presale
rebate cost in this paper is more complex and realistic than
the traditional shortage cost which is generally considered to
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TABLE 1: Our paper versus literatures for key assumptions of inventory models with deteriorating items.

Author/authors Demand rate Deterioration rate ~ Shortage ornot  Shortage cost ~ Decision variable”

Skouri et al. [8] Time-dependent Weibull distribution Yes Constant t, T

Sicilia et al. [9] Time-dependent Constant Yes Constant t, T

Cheng et al. [10] Time-dependent Constant Yes Constant t

Zhao (11, 12] Time-dependent Weibull distribution Yes Constant t

Begum et al. [13] Price-dependent  Weibull distribution No No pT

Dye [14] Price-dependent  Time-dependent Yes Constant pt,and T

Yang et al. [15] Price-dependent No Yes Constant t, T

B. Sarkar and S. Sarkar [16] Stock-dependent ~ Time-dependent Yes Constant t, T

Padmanabhan and Vrat [17] Stock-dependent Constant Yes Constant t, T

Avinadav et al. [18] Price-and-time Constant No No p,Qand T

Maihami and Nakhai Kamalabadi [19] Price-and-time Noninstantaneous Yes Constant pT

Hou and Lin [1] Price-and-stock Constant Yes Constant t, T

Giri and Bardhan [5] Price-and-stock No No No t,n

This paper Price-and-stock Constant Presale Time-dependent pt,and T

* p = selling price, t = replenishment/out of stock time, Q = order quantity, T = inventory cycle, and n = the number of replenishment.

be constant. In addition, we assume the demand is price-and-
stock dependent according to the actual situation. Eventually,
we derive optimal pricing and ordering policy by designing
an effective algorithm and provide the sensitivity analysis of
the parameters to assess their effects on the optimal policy.

The rest of the paper is organized as follows: we introduce
some basic notations and assumptions in Section 2. Section 3
establishes an inventory model under presale policy and
provides an effective procedure to find the optimal pricing
and presale strategy. In Section 4, we use several numerical
examples to illustrate the procedure of the optimal strategies
and analyze the sensitivity of parameters involved. Finally, we
provide a summary of the paper.

2. Notation and Assumptions

The fundamental notation and assumptions used in this
paper are given as below.

2.1. Notation

c,: the purchase price of unit item;

A,: the fixed cost per order;

S: the maximum inventory level;

Q: the ordering quantity;

p: the selling price of unit item

0: the constant deteriorating rate, 0 < 0 < 1;

t,: presale period;

t,: spot-sale period;

I(t): the level of inventory at time ¢, 0 < ¢t < T, where
T =t +ty

¢;: the cost of each deteriorated item;

¢,: the inventory holding cost per unit per time;
D(t, p): the demand rate;

¢,(x): the presale rebate cost;

[1(t,, 5, p): the average total profit per unit time.

2.2. Assumptions

(i) The replenishment rate is infinite; that is, replenish-
ment is instantaneous.

(ii) Assume the customers are loyal, and all the presale
orders will not be canceled until the products are
launched into the market.

(iii) The demand rate, D(¢, p): we assumed it to be

g(p) 0<ts<t,
D(t.p) =

@
g(p)+al(t), t,<t<T,

where g(p) is a function of p, g'(p) < 0,and g"(p) >
0, where « denotes the stock-dependent consumption
rate.

(iv) ¢,(x) is the presale rebate determined by the waiting
time x; that is, ¢,(x) = ¢,(e"* — 1), where ¢, is positive
constant and A € (0, 1).

(v) The marginal gross profit with respect to price is
decreasing; that is, (p — ¢,)g(p) is a strictly concave
function of p.

3. Inventory Model with Presale Policy

In this section, we consider an inventory model with presale
policy for deteriorating items, and the behavior of the system
is depicted in Figurel. From t = 0 to t;, the total presale
quantity accumulates on account of demand which is fully
backlogged and achieves its maximum at time ¢ = f,. During
the time interval [¢,,¢, + t,), due to customers’ demand and
deterioration, on-hand inventory level gradually decreases to
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FIGURE 1: Graphical representation of inventory level over the cycle.

zero. According to the above notations and assumptions, such
inventory system can be described by following differential
equations:

Mz_g(p) 0<t<t;
dt
dl (t @
di ) =-0I(t)—g(p)—al(t) t <t<t +t,.
With boundary condition I(0) = 0, I(t; +t,) = 0.
The solution of (2) can be obtained as
It)=-g(p)t 0<t<t,
3)
9(P) [ @ .
1) = ==5 (&7 1) <<t rh,
The maximum inventory level per cycle is
I(t;r) g(P) ( (ax+0)t, 1)‘ (4)

a+0

The presale quantity per cycle is

1) =-g(p)t:. ©)
The ordering quantity over the inventory cycle is
Q=1I(t)- I(t)—g(p)((a+9)t2—1)+g(p)t1. (6)

Based on (3), the total cost per cycle consists of the following
elements:

(i) Ordering cost A,,.

(ii) Purchase cost

%>[g(p)( o )*'Q(P)h]- ?)

ax+0

(iii) Sales revenue

pP@M+EmwwHmeﬂ. (8)

(iv) Deteriorating cost

(1) - [ ) rar @) | ©)

(v) Holding cost

%9 (P) J htte (@Ot _ 1) gy (10)
a+0 ), ‘

(vi) Presale rebate cost

t
! (e/\(tl—l)

o9 (p) J

0

- 1) tdt. (11)

Therefore, the total profit per unit time of the model can be
obtained as follows:

1
ti, 1, =
l_[(l »P) P

[sales revenue — holding cost

— ordering cost — presale rebate cost

— deteriorated items cost — purchase cost]

_ 9 (P){ B (o ) (12)
L+t ((a+0)
1
+%(e’“1—5/\2f—)»tl—l)—(p—cp)tl
1 A
- 0 0)t,p — —2,
oc+9(p +Ch+cd)2} t, +t,

where A = ¢, + (a + 0)c, +¢;0 — pax.
Taking the first-order partial derivative of [](¢,,t,, p)
with respect to t,, t,, and p, respectively, we have

aH(;lt’pr) _ _Hgtl;_t;’p) . tggpt) (p-c,)
1 1+ 1+
_%(ektl _Atl_l)]’
O[T (ti>t p) _ _H(tl’tz’P)
ot, t+1,
9(p) [PG +tog gl A (a+6)t2]
+t1+t2 a+0 at0° ’ (13)

o[l (t1,t, p) _ 1 { g(p)a—-g (p)A [e(a+9)t2
op titi (a +6)*

] g (p) (e

—(a+ 0t - 1] - =55 —%/\ztf—)ttl

o)+ (0)(0-6).



For any given selling price p, the optimal solution (¢;,¢;) is
determined by the following equations:

o[ (t>t2 p) -0
ot, ’
(14)
o[1(t;, 12, p) -0
ot, '
By simplifying (14), we have
— _e ) Qo (M -
[TCotnp) =g @) [(p-) - 2 (™ =26, -1)] 0
= 0)
~ p9+ch+cd6_ A (“+9)t2:|
[t - [FL550 - e
=0.

From the analysis of (15) and (16), we have the following
propositions.

Proposition 1. For any given price p, (i) if A < 0, then there
does not exist any optimal solution (t,,t,) so as to maximize
the profit [ [(t,,t,, p); (il) if A > 0, then the optimal solution
(t],t5) which solves (15) and (16) simultaneously not only exists
but also is unique.

Proof. (i) From (15) and (16), we have

S (o) = 2 (M -1). @)

If A < 0, it is obvious that there does not exist any nonzero
feasible solution to satisfy (17), which means that the optimal
solution of the maximum profit [[(t;,¢, | p) does not exist.
If A = 0, by solving (17), we have t; = 0. Substituting
it into (16), we have [](0,%,, p) = ((pO + ¢, + ¢;0)/(« +
0))g(p). Thus, from (12), we obtain A, = 0, which means
a contradictory. Therefore, if A < 0, there does not exist any
optimal solution (t;, ¢,) to minimize the profit [[(t;,¢, | p).
(ii) Let

f(x) = A (e - 1) - % (M -at,-1).  (8)

a+0
Taking the first-order derivative of (18) with respect to x, it
yields

(%) = A" > 0 (19)

which means that f(x) is a nondecreasing function in
[0, +00).

Similarly, we know that the right hand-side of (17) is a
strictly increasing function of t; and goes to infinite as t; —
0.

On the other hand, from (17), we have Ae(”g)tz(dtz/

dt,) = ¢,(e* — 1) > 0, which means dt,/dt, > 0, and

1

SN (20

AA

— (e’“l—/\tl—l)ﬂ]. (20)
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Therefore, for any given f,, there exists a unique 7, such that
T, = (1/(a + O)In[((ex + O)cy/AA) (€M = AF, — 1) + 1].

To prove the uniqueness of the solution, substitute (12)
into (15), and let

F(t) = -g(p) [(L €0 1)+ (p-c,)ts

+6)2(

t g (P) [ i,
—aje(p0+ch+cd9)]—AO—T[eM (21)

1
—5/\2 ToA -1 (M —Atl—l)(t1+t2)].

Taking the first-order derivative of F(t,) with respect to t,, we
have

dF (tl) _ _Ag (P) (e(“+9)t2 _ 1) &
dt, (a+0) dt,

w9 (P) [/ dt,
+ 200 [(e - -1) -
A -1) (6 )| = 00 () (- 1)

+1,) >0

which means that F(¢,) is an increasing function in [0, +00).
Using (17), it deduces t, = 0 as t; = 0; then we have F(0) =
-A, < 0andlim, _,,F(t;) = +oo. With the Intermediate
Value Theorem, we can find a unique root ¢; € [0, +00) such
that F(¢;) = 0.

From the above analysis, it is concluded that if A >
0, the optimal solution (t7,t;) which solves (15) and (16)
simultaneously not only exists but also is unique. O

Proposition 2. For any given p, the solution (t],t5) of (15) and
(16) simultaneously is the global maximum of the profit per unit

time.

Proof. Taking the second-order partial derivative of [ [(¢;, ¢, |
p) with respect to t, and t,, respectively, we have

O’ T1(ty,t, | p)

%9 (p) (¢4 -1)

2 - T s *
oty U=y 1 Th (23)
<0,
2
0 H (tl;tz | P) _Ag (P) e((x+9)t; <0 (24)
2 - * * >
ot; t)=ey bt
2
*[1(tyt5 | p) ~0 (25)
ot ot, (tta)=(t3£3)
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Then, the Hessian matrix satisfies

o’ T1(t,1, | p)

H:
IH] ot

(tptz):(fl*)t;)

y O’ T1(t1st5 | p)

ot; (26)

(t1 ,t2)=(tf ,t;)

2
] > 0.
(t1:t)=(t]5t5)

Therefore, we conclude that the stationary point (¢1,¢,) is a
global optimal solution for the considered problem. O

B *TI(tuts | p)
ot 0t,

In the following, we will show that the optimal selling
price also exists and is unique for the problem.

Proposition 3. For any given (t,,t,), there exists a unique
optimal selling price such that [[(p | t;,t,) is maximized.

Proof. For any given t, and t,, the first-order derivation of
[1(p | t;,t,) with respect to p is

dll(plt,t)
dp
_ 1 {9 (p)a-g (p)A [e(oc+0)t2
t +t, (o +6)* o)
—(a+0)t, - 1] - Cog)'tz(p) <e’“1 - %/\2 2ot

—1)} +g(P)+d () (P-¢)-

Because g/(p) < 0, we have g(p)oc—g/(p)A > 0. Thus,d [[(p |
t,,t,)/dp = 0 provides a solution only ifg(p)+(p—cp)g'(p) <
0.

Let
1 a-g At oor
G(P):t - {g(p) gz(p) [e( 0)t,
1t (e +0)
!
g (P) [ a, 1
—(a+9)t2—1]—T<eM N (29

oo 0 (p-5).

Since the gross profit g(p)(p — c,) is a strictly concave

function of p, which means 2g'(p) + g" (p)(p - ) < 0, we
have

1
, —
G(p)_t1+t2

{ g (p)a-g"(p)A [e((x+9)t2
(a+0)*

"
—(a+0)t,—1] - %fp) (eM‘ - %AZ 2 ), (29)

1) 2d () 0" () (p-6) <.

Therefore, there exists a unique optimal selling price p*
which maximizes [[(p | t;,¢;) and completes the proof. []

From the above analysis, we know that the solution of
gp)+(p - p)g'(p) = 0 is the lower bound for the optimal
selling price p such that d [[(p | t;,t,)/dp = 0. Combining
Propositions 2 and 3, we establish an algorithm to obtain the
optimal policy of the considered model as follows.

Algorithm 4.

Step 1. Start with i = 0 and let p; be a solution of g(p) + (p —
cp)g'(p) =0.

Step 2. Put p; into (15) and (16) to obtain the corresponding
values of (¢],t); then substitute them into (27) and deter-
mine the optimal p; ;.

Step 3.1t | p;.1 — p;| < & where ¢ is any small positive number,
then set p* = p;,, and (¢],t;, p*) is the optimal solution to
minimize [[(¢;,,, p); otherwise, seti = i + 1 and go back to
Step 2.

4. Numerical Examples and
Sensitivity Analysis

To demonstrate our theoretical results, we study several
numerical examples to explain the algorithm proposed in the
above section.

Example 1. Consider an inventory system with the following
data: A, = 25$/order, o = 0.03$, ¢, = 10.0$/unit, ¢; = 1.2$/
unit, g, = 1.0$/unit, ¢, = 0.5%/unit, 0 = 0.2, A = 0.3, and
g(p) = 50e™%* where p € [10, +00).

For the inventory model with presale policy, by using
Algorithm 4, we have t; = 2.090, t; = 0.552, p* = 37.709$,
Q* = 32.1048, and [[(t], £}, p*) = 209.7078.

Example 2. Consider an inventory system with the following
data: A, = 25$/order, o = 0.058, ¢, = 10.0$/unit, ¢; = 1.2$/
unit, g, = 1.0$/unit, ¢, = 0.5$/unit, 0 = 0.02, A = 0.6, and
g(p) = 100 — 5p, where p € [10,20].

For the inventory model with presale policy, by using
Algorithm 4, we have t] = 1.739, t; = 0.669, p* = 15.130$,
Q" = 59.014$, and [[(t;,;, p") = 108.783$. The three-di-
mensional total profit per unit time graph for any given p
is shown in Figure 2 and the numerical results indicate that
[1(p | t],t;) is strictly concave in p, as shown in Figure 3.

In order to illustrate the effect of the parameters (A, 0, «)
on the optimal policy, that is, optimal pricing, the optimal
ordering quantity, and the optimal total profit for the inven-
tory models, the sensitivity analysis is performed on the base
of Example 2 by changing the value of only one parameter at
a time and keeping the rest of the parameters at their initial
values. The results are shown in Table 2.

From Table 2, we can observe the following:

(1) As Aincreases, t;, Q*,and [[(t],;, p*) will decrease,
while 5 and p* will increase simultaneously, which
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TABLE 2: The effect of parameters on the optimal policy for presale model.

Para. Value of para. t t, p* Q* [1(t), 85, p")
0.2 2.792 0.480 15.086 80.609 113.323
A 0.4 2.087 0.594 15.111 65.851 110.583
0.6 1.739 0.669 15.130 59.014 108.783
0.8 1.517 0.725 15.246 54.882 107.431
0.01 1.725 0.744 15.131 60.532 109.017
9 0.02 1.739 0.669 15.130 59.014 108.783
0.03 1.749 0.608 15.128 57.236 108.542
0.04 1.758 0.557 15.127 56.752 108.337
0.04 1.749 0.608 15.128 57.685 108.542
o 0.05 1.739 0.669 15.130 59.014 108.783
0.07 1.728 0.731 15.136 60.396 109.128
0.10 1.709 0.851 15.152 63.142 109.486

)

5
1>

[Tplt

F1GURE 2: Total profit per unit time [[(¢;,¢, | p*).
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F1GURE 3: Total profit per unit time [[(p | t], ;).
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means that if the presale rebate increases, the presale
period will get shorter to reduce the rebate cost.
Moreover, the optimal order quantity and profit will

decrease, while the selling price and spot-sale period
will increase.

(2) As 6 increases, t;, p*, Q", and [](t{,t;,p") will
decrease, and t; will increase. It implies that the
increase in deterioration cost can lengthen the presale
period and then shorten the spot-sale period. As
a result, the selling price will decrease for sales
promotion; moreover, the optimal order quantity and
profit will decrease.

(3) As « increases, t; will decrease, and t;, p*, Q",
and [](t,t;, p*) will increase. It means that higher
demand rate in spot-sale period will lead to short-
ening the presale period, while the selling price, the
optimal order quantity, and profit will increase.

(4) In general, the fluctuation of A has more effect
on t7, [1(t],t5, p*) than that of 6 and «, and the
fluctuation of A, 0, and « each has more effect on
t,, Q" than that of p*.

5. Conclusion

In this paper, we study an EOQ inventory model with presale
policy for deteriorating items in which the demand rate
depends on both on-hand inventory and the price of items.
By analyzing the inventory model, an optimal pricing and
inventory policy is proposed. We also use several numerical
examples to illustrate the solution procedure. Moreover, the
sensitivity analysis of the parameters is provided to assess
their effects on the optimal policy of the studied problem.
From the results of numerical experiments, we find that
A and 0 have a negative effect on the profit of inventory
system, while « has a positive effect on the profit of inventory
system. In addition, this paper provides an interesting topic
for further study of inventory models. It also can be extended
in other ways, that is, considering the nonconstant or nonin-
stantaneous deterioration rate and others.
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