
Research Article
Distributed Parallel Endmember Extraction of
Hyperspectral Data Based on Spark

Zebin Wu,1,2 Jinping Gu,1 Yonglong Li,1 Fu Xiao,2 Jin Sun,1 and Zhihui Wei1

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China

Correspondence should be addressed to Zebin Wu; zebin.wu@gmail.com

Received 24 February 2016; Revised 6 May 2016; Accepted 22 May 2016

Academic Editor: Laurence T. Yang

Copyright © 2016 Zebin Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the increasing dimensionality and volume of remotely sensed hyperspectral data, the development of acceleration techniques
for massive hyperspectral image analysis approaches is a very important challenge. Cloud computing offers many possibilities
of distributed processing of hyperspectral datasets. This paper proposes a novel distributed parallel endmember extraction
method based on iterative error analysis that utilizes cloud computing principles to efficiently process massive hyperspectral
data. The proposed method takes advantage of technologies including MapReduce programming model, Hadoop Distributed File
System (HDFS), and Apache Spark to realize distributed parallel implementation for hyperspectral endmember extraction, which
significantly accelerates the computation of hyperspectral processing and provides high throughput access to large hyperspectral
data. The experimental results, which are obtained by extracting endmembers of hyperspectral datasets on a cloud computing
platform built on a cluster, demonstrate the effectiveness and computational efficiency of the proposed method.

1. Introduction

Hyperspectral remote sensing images are characterized by
their large dimensionalities and volumes, with hundreds of
nearly contiguous spectral channels.The hyperspectral image
obtained from the earth’s surface contains abundant infor-
mation of space, radiation, and spectrum, which provides
great help to the researchers for analyzing, processing, and
monitoring the earth’s surface information. However, due
to the limitation of the sensor in spatial resolution and the
diversity of the ground cover, the pixels of the image are
generallymixed pixels. One of themost important techniques
for hyperspectral data exploitation is endmember extraction
[1], which characterizes mixed pixels as a combination of
spectrally pure components (i.e., endmembers). Under the
assumption of minimal secondary reflections and multiple
scattering effects in data collection procedure, a number of
techniques have been developed under the linear unmixing
model in recent years [2], such as iterative error analysis (IEA)
[3], independent component analysis (ICA) [4], dependent
component analysis (DECA) [5], vertex component analysis
(VCA) [6], simplex growing algorithm (SGA) [7], and mini-
mum volume simplex analysis (MVSA) [8].

The abovementioned works have improved accuracy of
hyperspectral endmember extraction enormously. However,
most of them are very computationally intensive and there-
fore compromise their applicability in time-critical scenarios
including military reconnaissance, environmental quality
surveillance, monitoring of chemical contamination, wildfire
tracking, and biological threat detection. As a result, in recent
years, many techniques have been developed towards the
improvement of these algorithms in high-performance com-
puting architectures [9, 10]. For instance, low-weight inte-
grated components such as field programmable gate arrays
(FPGAs) [11], multicore central processing units (CPUs) [12,
13], and commodity graphics processing units (GPUs) [14,
15] have been successfully applied to accelerate computa-
tions. Nevertheless, with the development of hyperspectral
imaging technology and the volume of the hyperspectral
image growing, the traditional mechanism of allocating
computational resources to a single machine is insufficient to
meet the requirements of efficient hyperspectral processing.
Accordingly, the fast endmember extraction of large hyper-
spectral dataset has been an important issue in the field of
hyperspectral remote sensing. Fortunately, cloud computing
has recently become more and more popular in the research

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 3252148, 9 pages
http://dx.doi.org/10.1155/2016/3252148

2 Scientific Programming

Input: Hyperspectral data X𝑁×𝐿, the number of endmembersm.
(1) Initialization: Threshold of 𝜃 (spectral angle), the number R for averaging the vectors

with the largest error, and endmember matrix U.
(2) Calculate the mean vector mean1×𝐿 of the hyperspectral data X𝑁×𝐿.
(3) Perform the constrained unmixing on X𝑁×𝐿 using mean1×𝐿 as endmember matrix, and

get the image of the errors (named “error image”) remaining after the unmixing.
repeat
(4) Find R pixel vectors with the largest error in the error image, and extract the subset of

the set of R vectors, consisting of all those vectors which fall within the angle 𝜃 of the
maximum error vector.

(5) Average the vectors in the subset to decrease the effects of outliers and noise, denoted
as p𝑖, and update endmember matrix U = [U; p1].

until m endmembers are extracted.

Algorithm 1: Endmember extraction based on IEA.

and commercial fields due to its homogeneous operating
environment and full control over dedicated resources (e.g.,
networks, servers, storage, applications, and services) [16,
17]. Cloud computing can be considered as the improved
processing for distributed processing, parallel processing,
and grid computing [18]. However, to the best of our knowl-
edge, despite the potential of large-scale distributed parallel
computing in cloud computing and the demands of massive
data processing in hyperspectral imaging, there are few cloud
computing implementations of this category of algorithms
in the literatures. In order to efficiently extract endmembers
from massive hyperspectral data, a novel distributed parallel
endmember extraction method based on iterative error
analysis (IEA DP) is proposed by utilizing cloud computing
principles to efficiently processmassive hyperspectral data. In
particular, the storage of hyperspectral data is well organized
to reduce the correlation among data partitions as well as
to avoid data skew. The processing logic of IEA algorithm
is optimized by reducing the intermediate data generated
by each execution node and avoiding transitional large data.
The newly developed method is implemented and evaluated
on Spark and MapReduce model. Its efficiency is evaluated
in terms of accuracy and parallel execution performance
through the comparison with a serial IEA implementation on
a single CPU.

2. Endmember Extraction Based on IEA

Let X𝑁×𝐿 = [x1, x2, . . . , x𝑁]𝑇 ∈ R𝑁×𝐿 denote a hyperspectral
image with N pixels, where x𝑖 ∈ R𝐿 is an 𝐿-dimensional
hyperspectral pixel observation. The linear mixture model
identifies a collection of spectrally pure constituent spectra
(endmembers) and expresses the measured spectrum of a
mixed pixel as a linear combination of the endmembers,
weighted by fractional abundances that indicate the pro-
portion of each endmember contained by the pixel [1].
This procedure can be described in mathematical terms as
follows:

x𝑖 = Uf𝑖 + n, (1)

where U = [u1, u2, . . . , u𝑚] denotes an L-by-m mixing
matrix in which the endmembers correspond to the columns.
This matrix is in general of full column rank. Here, 𝑚
denotes the number of endmembers, f𝑖 = [𝑓𝑖1, 𝑓𝑖2, . . . , 𝑓𝑖𝑚]𝑇
denotes anm-by-1 vector containing the respective fractional
abundances of the endmembers,𝑓𝑖𝑘 is the abundance fraction
of the 𝑘th endmember, with 𝑘 = 1, 2, . . . , 𝑚, and the notation(⋅)𝑇 stands for vector transpose operation; n denotes an addi-
tive L-by-1 noise vector representing the errors that affect the
measurement of the pixel at each spectral band. Endmember
extraction of hyperspectral data aims at obtaining a good
estimation of the mixing matrix U. Several methods have
been used to perform endmember extraction, including geo-
metrical, statistical, and sparse regression-based approaches
[1]. Among these methods, the IEA algorithm is one of the
most successful algorithms of the first category and therefore
has been widely used.

Assuming the existence of relatively pure pixels, the IEA
algorithm performs a series of linear constrained unmixing
[19] and chooses endmembers by minimizing the remaining
error in the unmixed image [3]. This procedure is executed
directly on the spectral data, without the requirement of
transformation into Principal Components (PCs) or any
other elimination of redundancy. A step-by-step description
of the IEA algorithm is given as shown in Algorithm 1.

3. Processing Framework Based on
Cloud Computing

In general, cloud computing uses MapReduce programming
model, which is essentially a coarse granularity parallel
programming model. MapReduce model can automatically
parallelize the large-scale computing tasks.More importantly,
the implementation details are transparent to the users. Users
define the computation of map and reduce functions, and
the underlying operating system automatically performs the
parallel computation across large-scale clusters of machines
and makes efficient use of network and disks by scheduling
intermachine communication [20]. Hadoop, a cloud comput-
ing framework that uses MapReduce model, is well known
for its fault tolerance and scalability [21]. However, Hadoop

Scientific Programming 3
H

ar
dw

ar
e

Cl
us

te
r

Pl
at

fo
rm

Virtualization

Vmware machines

Master

HDFS Spark

Slaves

· · ·

· · ·

Figure 1: The processing framework based on cloud computing.

solutions rely on writing and reading data from HDFS and
therefore are of slow speed.

Fortunately, Apache Spark, a novel high-performance
framework capable of tacklingmassive data processing work-
loads while coping with larger and larger scales, has been
proposed in [22]. This framework enables streaming and
interactive queries and demonstrates its scalability, fault
tolerance, and the ability of handling batch processing.
Apache Spark is a cluster-computing platform, which is open
source, Hadoop-compatible, fast, and expressive. In terms of
data storage, Spark abstracts out of the distributed memory
storage structure by Resilient Distributed Dataset (RDD)
[23]. The RDD can control the data in the partition of
different nodes and is compatible withHDFS. A large amount
of existing data in HDFS can be loaded into RDD for being
processed as a data source. Spark runs on top of existing
HDFS infrastructures to provide enhanced and additional
functionality. Moreover, Spark is based on memory comput-
ing, which holds intermediate results in memory rather than
writing them to HDFS.

To be specific, the processing framework for distributed
parallel endmember extraction of hyperspectral data based
on cloud computing can be summarized graphically as shown
in Figure 1.

4. Distributed Parallel Optimization for
IEA Based on Spark

Spark is an extensible platform for data analysis that inte-
grates the calculation of primitive memory. Therefore, Spark
achieves better performance compared with Hadoop cluster
storage methods. With the development of remote sensing
technology, the data quantity of hyperspectral remote sensing
data is increasing. Even a single pixel may contain hundreds
of spectral information types, leading to more difficulty in
the calculation of hyperspectral data processing. On the

other hand, accelerating the processing of large amounts of
data in hyperspectral imagery is of great importance. In this
work, we present a distributed parallel implementation of IEA
algorithm (IEA DP) for endmember extraction of massive
hyperspectral image based on Spark.

It can be observed that the most time-consuming parts
of Algorithm 1 are the procedure of constrained unmixing,
the calculation of error image, and the selection of the
vectors with the largest error. Therefore, we concentrate on
the parallel optimization of these parts. In what follows,
we describe the distributed implementation of the different
phases of Algorithm 1 and describe the architecture-level
optimizations performed during the development of the
parallel implementation.

Storage is a critical issue of our distributed parallel imple-
mentation. In hyperspectral remote sensing, with increas-
ingly growing data volumes, it is important to efficiently store
and utilize potentially unlimited amounts of hyperspectral
datasets. HDFS represents a perfect choice for the reliability
and elasticity of the task of storing very large files on
different resources on large clusters. As a result, we store the
original hyperspectral datasets on HDFS, taking advantage
of its capabilities for distributed storage, fault tolerance, and
flexibility in a transparent way.

A class (named HSIInputFormat) is defined to
read original hyperspectral datasets from HDFS to
NewHadoopRDD instances ByteRDD. In HDFS, the original
hyperspectral image is divided into many spatial-domain
partitions [16]. In order to reduce the I/O (input/output)
overhead to the most extent, we read every data partition
on HDFS as a key-value pair, in which the key (named
Offset) is the offset of this partition in the original dataset
and the value (named Pixels) is the hyperspectral data
partition of byte type. Subsequently, ByteRDD is mapped
onto a MapPartitionsRDD (which consists of formatted
pixel vectors data, denoted as DataRDD). Finally, we cache
DataRDD in RAM for fast access. The flowchart of the
procedure for reading hyperspectral datasets is graphically
illustrated in Figure 2.

Firstly, the DataRDD is mapped onto partitions Pixel𝑝×𝐿,
which are accumulated to Sum1×𝐿 by column. The reduce
operation is then performed to aggregate theses Sum1×𝐿, and
the mean vector mean1×𝐿 of the hyperspectral data X𝑁×𝐿 is
calculated on driver.

Secondly, the constrained unmixing is performed on
X𝑁×𝐿 using mean1×𝐿, as follows:

abu𝑇1×𝐿 = (I − (EE𝑇)−1 aa𝑇

a𝑇 (EE𝑇)−1 a
)(EE𝑇)−1 E⏟⏟⏟

ta

x𝑇1×𝐿

+ (EE𝑇)−1 a

a𝑇 (EE𝑇)−1 a⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
tb

,
(2)

where I is an𝑁-order identity matrix, a is an N-dimensional
column vector with all 1 entries, E = mean1×𝐿, and x is a pixel
vector.

4 Scientific Programming

ByteRDD : NewHadoopRDD

Partition 1 Partition SPartition 2

Block 1 Block 2 Block S

HDFS

DataRDD : MapPartitionsRDD

MapMap Map

· · ·

· · ·

· · ·

Partition 1 Partition SPartition 2

(Offset: T, Pixels: Array[Array[T]]) (Offset: T, Pixels: Array[Array[T]])(Offset: T, Pixels: Array[Array[T]])

(Offset: T, Pixels: Array[Byte]) (Offset: T, Pixels: Array[Byte]) (Offset: T, Pixels: Array[Byte])

Figure 2: Graphical illustration of the procedure used for reading hyperspectral datasets.

When computing (2), ta and tb parts are calculated,
respectively, on driver. After that, ta, tb, and E are broad-
casted to all workers. To avoid frequent garbage collection
of Java virtual machine, pixels in the partition are processed
successively by map operation. Take the pixel vector Pixel𝑖
for example; its abundance coefficients are estimated by (2)
and stored in vector abu1×𝑁. Then, its reconstruction error
can be computed. When all the pixels in the partition have
been processed, the maximum error 𝑚𝑎𝑥, as well as the
corresponding position 𝑝𝑜𝑠max, is selected. A tuple (𝑝𝑜𝑠max +
offset, 𝑚𝑎𝑥, pmax) is obtained as the output of map operation,
where offset is the key of the certain partition that denotes
the position of its first pixel in the whole hyperspectral image.
The tuple with maximum max is afterwards selected by the
reduce operation and is returned to driver.

In the next procedure, ta, tb,E, pos, and𝑅 are transmitted
to everyworker as broadcast variables.Themap operations are
performed on DataRDD to find the 𝑅 pixels with the largest
errors, and the subset of the set of 𝑅 vectors is extracted,
which consists of all those vectors which fall within the
spectral angle 𝜃 of the maximum error vector. After the
reduce operation is performed to merge sort, the vectors in
the subset is averaged as p𝑖 to decrease the effects of outliers
and noise, and endmember matrix is updated (U = [U; p1])
on driver side.

The algorithmic details of IEA DP are graphically illus-
trated in Figure 3. The storage of hyperspectral data is well
organized to reduce the correlation among partitions as well
as to avoid the data skew. Moreover, the logical procedure of
IEA algorithm is optimized by reducing the intermediate data

generated by every execution node and avoiding transitional
large data. Accordingly, the computation of the IEAalgorithm
can be greatly accelerated.

5. Experimental Evaluation

To evaluate the proposed distributed parallel implementation
of IEA algorithm, experiments were performed on a Spark
equipped cluster with 1master node and 8 slave nodes.Master
is also the NameNode of HDFS and slaves are the DataNodes
of HDFS.Master is a virtual machine created on the host with
an Intel Xeon E5630 CPUs at 2.53GHz with 8 cores by the
VMware vSphere.The slave nodes are implemented by virtual
machines created based on the virtualization of a 4-blade
IBM Blade Center HX5 equipped with 2 Intel Xeon E7-4807
CPUs at 1.86GHz and connected to a 12 TB disk array by SAS
bus. Each slave is configured with 6 CPU cores. Master and
slaves are all installed with Ubuntu 12.04, Hadoop 1.2.1, Spark
1.4.1, and Java 1.6.45. In addition, all nodes are connected by
a gigabit switch. Figure 4 illustrates the architecture of the
experimental platform.

The hyperspectral dataset used in our experiments is a
subset of the well-known Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) Cuprite (http://aviris.jpl.nasa.gov/
data/free data.html) image with 224 spectral bands, which
was collected over the Cuprite mining site, Nevada, in 1995.
This scene has been widely used to validate the performance
of endmember extraction algorithms. Some bands 1–3, 107–
114, 159–169, and 221–224 have been removed prior to

Scientific Programming 5

while(cnt <

== 0if cnt

E = m

else

E = [E; m]

cnt++

}

abuT
= ta ∗ ()

T
+ tb

rec = abu
Pixel

Pixel

∗ E
err = (− rec)T

∗(− rec)
If i in Upos:

err = 0

Pixel i
i

Pixel i

i

Mean()

Reduce

Pixel

Partition S

Partition 1

Map Map

MapMap

DataRDD
Partition 1

cnt = 0

Partition SPartition 1

Partition 1

Sum by band

Sum

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

DataRDD

Reduce

D
riv

er

(Offset: T, Pixel: Array[Array[T]]) (Offset: T, Pixel: Array[Array[T]])

(Offset:T, Pixel: Array[Array[T]])

(Offset: T, Pixel: Array[Array[T]])

(Offset: T, Pixel: Array[Array[T]])

(Offset: T, Pixel: Array[Array[T]])

E = mean()/len

Upos = []

Sum1×b

Sum1

Pixel1

×b

Sum1×b

· · ·

max E

max E

){

= m

maxTopR(err, R)

maxTopR(max, R)

ta = (I −
(EET)−1aaT

aT(EET)−1a
)(EET)−1E

tb =
(EET)−1a

aT(EET)−1a

m = calcMean (PR×L, 𝜃)

iter(ta, tb, E, Upos, R)iter(ta, tb, E, Upos, R)
Upos = [Upos; pos1]

(pos1×R, max1×R, PR×L)

(pos1×R, max1×R, PR×L)

(pos1×R, max1×R, PR×L) =

(pos1×R, max1×R, PR×L)(pos1×R, max1×R, PR×L)

Figure 3: Design of IEA DP algorithm based on Spark.

the analysis due to water absorption bands and bands with
low SNR. The selected dataset consists of 350 × 350 pixels
(as shown in Figure 5), 192 bands, and a total size of about
44.86MB. In order to evaluate the algorithm’s performance
on data of different sizes, we use the Mosaicking function
of ENVI software to generate 3 datasets with different sizes
(including Dataset 1: 8400 × 350 with the size of about
1.05GB, Dataset 2: 16800 × 350 with the size of about
2.10GB, and Dataset 3: 33600 × 350 with the size of about
4.21 GB) by mosaicking the original 44.86MB dataset. Both
computational performance and unmixing accuracy have
been taken into consideration for evaluation.

At the beginning, we evaluate the accuracy of the con-
sidered endmember extraction algorithm on the AVIRIS
Cuprite image, taking advantage of the availability of
detailed laboratory measurements of endmembers con-
tained in the scene (http://speclab.cr.usgs.gov/maps.html).

According to the survey results by the US Geological
Survey (USGS), the Cuprite mining site mainly contains
five categories of minerals, that is, Alunite, Buddingtonite,
Calcite, Kaolinite, and Muscovite. Their reference ground
signatures are available in the form of a USGS library
(http://speclab.cr.usgs.gov/spectral-lib.html). The most sim-
ilar endmember signatures extracted by the IEA algorithm
are selected and compared with the available 5 reference
USGS spectral signatures in terms of spectral angle distance
(SAD), measured in radians. According to Table 1, it can be
concluded that the serial and distributed parallel versions of
IEA obtain identical results, while the extracted endmembers
are very similar, spectrally, to the reference USGS spectra.

The most important aspect in this work is to what
extent the distributed parallel implementation improves the
endmember extraction procedure in terms of computational
performance. Before reporting our performance evaluation,

6 Scientific Programming

Master

NameNode

Slave
workers

DataNode

Slave
workers

DataNode

Slave
workers

DataNode

VMware vSphere 5.1.0

H
ar

dw
ar

e

Spark cluster

· · ·

Figure 4: The architecture of the experimental platform.

it is worth emphasizing that our parallel implementation
provides identical results as the serial version in terms of
endmember spectra and fractional abundances. The key dif-
ference between the serial and parallel versions is the required
runtime for completing the calculation. In subsequent part,
we report the computational performance of the two versions
executed on the datasets with different sizes, that is, Dataset
1, Dataset 2, and Dataset 3.

The execution time and speedups spent in processing
Dataset 1 on the considered cloud computing architecture
are listed in Table 2. In the first column of Table 2, “Parallel

(𝑥)” denotes the parallel version executed on a distributed
platform consisting of 1master node and𝑥 slave nodes (where𝑥 = 1, 2, 4, 8). As can be seen from Table 2, the execution
time significantly decreases with regard to the increasing
number of nodes. In terms of speedups, Figure 6 indicates
approximately a linear growth with the number of nodes.

It is worth noting that the size of partition has great
effects on the performance of the parallel versions. In other
words, a good tuning of partition size helps improve the
computational performance. In this paper, we empirically set
the partition sizes (as Table 2 shows) to guarantee over 80%

Scientific Programming 7

Table 1: Spectral angle distance comparison between the endmem-
bers extracted by IEA from the AVIRIS Cuprite scene and the
reference USGS mineral spectral signatures.

Mineral SAD (in radians)
Serial version Parallel version

Alunite 0.0645 0.0645
Buddingtonite 0.0717 0.0717
Calcite 0.0898 0.0898
Kaolinite 0.0899 0.0899
Muscovite 0.0736 0.0736

Figure 5: A 350 × 350-pixel subset of the AVIRIS Cuprite scene.
CPU utilization for every slave while running, thus leading to
promising performance and speedup.

In a similar manner, experiments were performed on
Dataset 2 and Dataset 3, using one master node and 8 slaves,
to evaluate the efficiency of IEA DP algorithm on larger
datasets, as well as to compare IEA DP algorithm with a
Hadoop based IEA algorithm. It can be concluded from
Figure 7 that the execution time of the proposed IEA DP
algorithm scales roughly linearly with the size of the dataset.
Moreover, it is computationally efficient for large datasets
(e.g., only 8.1%, and 6.2% of the time is consumed by
initialization for the execution on Dataset 2 and Dataset 3,
resp.). This conclusion is important, as it indicates the better
scalability of the proposed IEA DP as the data size increases.
Moreover, Figure 8 demonstrates that the IEA DP algorithm
executed on the Spark platform processes the hyperspectral
data much faster than on the Hadoop platform.

To summarize, the proposed IEA DPperforms and scales
well under massive hyperspectral data. In particular, the
availability of additional computing resources leads to more
significant speedups.When using the cloud platform consist-
ing of 1 master node and 8 slave nodes, the IEA DP algorithm
achieves a speedup of 33x in the hyperspectral endmember
extraction. An endmember extraction task involving about
1 GB hyperspectral dataset, which took more than half an
hour to be completed by the serial version, can now be
completed in around 1.1 minutes by using our distributed
parallel algorithm. This achievement is very promising for

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Parallel (1) Parallel (2) Parallel (4) Parallel (8)

Speedup (x)

Figure 6: Speedup of the IEA DP with Dataset 1.

7.00 9.67 14.67

65.40

120.07

235.33

0.00

50.00

100.00

150.00

200.00

250.00

Dataset 1 Dataset 2 Dataset 3

Initialization (s)
Total (s)

Figure 7: Execution time of the IEA DP algorithm with different
datasets.

a highly complex task, such as endmember extraction of a
hyperspectral image with high volume and dimensionality.

6. Conclusions

The increased availability of high dimensional hyperspectral
datasets is becoming an important challenge for hyperspec-
tral image processing.This paper proposes a novel distributed
parallel endmember extraction method based on iterative
error analysis that utilizes advanced cloud computing tech-
nologies such as HDFS, Apache Spark, and the MapReduce
model, to efficiently process massive hyperspectral data. Our
experimental results indicate that the proposed method can
be used to effectively process distributed collections of hyper-
spectral data of large scale. This contribution leads to the
conclusion that hyperspectral image processing can greatly
benefit from the efficient utilization of cloud computing

8 Scientific Programming

Table 2: Execution time of the serial and parallel versions of the IEA method with Dataset 1.

Partition size (MB) Initialization (s) IEA (s) Total (s) Speedup (x) Percentage of initialization
Serial — 30.17 2017.68 2047.85 — 1.47%
Parallel (1) 269.17 12.33 415.80 428.13 4.78 2.88%
Parallel (2) 134.58 9.00 210.00 219.00 9.35 4.11%
Parallel (4) 67.29 8.67 106.13 114.80 17.84 7.55%
Parallel (8) 33.65 7.00 58.40 65.40 31.31 10.70%

1200.0

1000.0

800.0

600.0

400.0

200.0

0.00

Dataset 1 Dataset 2 Dataset 3

Execution time on Spark (s)
Execution time on Hadoop (s)

Figure 8: Execution time comparison between the Spark platform
and the Hadoop platform.

architectures. Future work will focus on optimizing more
complicated algorithms and applications for remotely sensed
hyperspectral images.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Financial support for this work, provided by the National
Natural Science Foundation of China (Grant nos. 61471199,
91538108, and 11431015), the Research Fund of Jiangsu High
Technology Research Key Laboratory for Wireless Sensor
Networks under Grant no. WSNLBKF201507, the Jiangsu
Province Six Top Talents Project of China under Grant no.
WLW-011, is gratefully acknowledged.

References

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon et al., “Hyperspec-
tral unmixing overview: geometrical, statistical, and sparse
regression-based approaches,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp.
354–379, 2012.

[2] Z. Wu, S. Ye, J. Liu, L. Sun, and Z. Wei, “Sparse non-negative
matrix factorization on GPUs for hyperspectral unmixing,”
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 7, no. 8, pp. 3640–3649, 2014.

[3] R. A.Neville, K. Staenz, T. Szeredi et al., “Automatic endmember
extraction from hyperspectral data for mineral exploration,” in
Proceeding of 21st Canadian Symposium Remote Sensing, pp. 21–
24, Ottawa, Canada, June 1999.

[4] J. M. P. Nascimento and J. M. B. Dias, “Does independent com-
ponent analysis play a role in unmixing hyperspectral data?”
IEEE Transactions on Geoscience and Remote Sensing, vol. 43,
no. 1, pp. 175–187, 2005.

[5] J. M. P. Nascimento and J. M. Bioucas-Dias, “Hyperspectral
unmixing algorithm via dependent component analysis,” in
Proceedings of the IEEE International Geoscience and Remote
Sensing Symposium (IGARSS ’07), pp. 4033–4036, Barcelona,
Spain, June 2007.

[6] J. M. P. Nascimento and J. M. B. Dias, “Vertex component anal-
ysis: a fast algorithm to unmix hyperspectral data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 43, no. 4,
pp. 898–910, 2005.

[7] C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, “A new
growing method for simplex-based endmember extraction
algorithm,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 44, no. 10, pp. 2804–2819, 2006.

[8] J. Li and J. B. Dias, “Minimum volume simplex analysis: a fast
algorithm to unmixhyperspectral data,” in Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium,
pp. 250–253, Boston, Mass, USA, 2008.

[9] A. Plaza,Q.Du,Y.-L. Chang, andR. L.King, “High performance
computing for hyperspectral remote sensing,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 4, no. 3, pp. 528–544, 2011.

[10] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang,
“Recent developments in high performance computing for
remote sensing: a review,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 4, no. 3,
pp. 508–527, 2011.

[11] C. González, D. Mozos, J. Resano, and A. Plaza, “FPGA
implementation of theN-FINDR algorithm for remotely sensed
hyperspectral image analysis,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 50, no. 2, pp. 374–388, 2012.

[12] A. Remón, S. Sánchez, A. Paz, E. S. Quintana-Ort́ı, andA. Plaza,
“Real-time endmember extraction on multi-core processors,”
IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 5, pp.
924–928, 2011.

[13] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson,
and R. Sarmiento, “Hyperspectral unmixing on GPUs and
multi-core processors: a comparison,” IEEE Journal of Selected

Scientific Programming 9

Topics in Applied Earth Observations and Remote Sensing, vol. 6,
no. 3, pp. 1386–1398, 2013.

[14] A. Barberis, G. Danese, F. Leporati, A. Plaza, and E. Torti,
“Real-time implementation of the vertex component analysis
algorithm on GPUs,” IEEE Geoscience and Remote Sensing
Letters, vol. 10, no. 2, pp. 251–255, 2013.

[15] J. M. P. Nascimento, J. M. Bioucas-Dias, J. M. Rodriguez Alves,
V. Silva, and A. Plaza, “Parallel hyperspectral unmixing on
GPUs,” IEEE Geoscience and Remote Sensing Letters, vol. 11, no.
3, pp. 666–670, 2014.

[16] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, “Parallel and
distributed dimensionality reduction of hyperspectral data on
cloud computing architectures,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 9, no. 6,
pp. 2270–2278, 2016.

[17] Z. Chen, N. Chen, C. Yang, and L. Di, “Cloud computing
enabled web processing service for earth observation data
processing,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 5, no. 6, pp. 1637–1649,
2012.

[18] K. Stanoevska-Slabeva, T. Wozniak, and S. Ristol, Grid and
Cloud Computing: A Business Perspective on Technology and
Applications, Springer, Heidelberg, Germany, 2010.

[19] D. C. Heinz and C.-I. Chang, “Fully constrained least squares
linear spectral mixture analysis method for material quantifica-
tion in hyperspectral imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 39, no. 3, pp. 529–545, 2001.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[21] D. Borthakur, “HDFS Architecture Guide,” 2008, https://
hadoop.apache.org/docs/r1.2.1/hdfs design.pdf.

[22] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’12), p. 2,
USENIX Association, San Jose, Calif, USA, April 2012.

[23] M.Zaharia, “An architecture for fast and general data processing
on large clusters,” Tech. Rep. UCB/EECS-2014-12, Electrical
Engineering and Computer Sciences, University of California
at Berkeley, 2014.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

