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Optimized control of the drug extraction production process (DEPP) aims to reduce production costs and improve economic
benefit while meeting quality requirements. However, optimization of DEPP is hampered by model uncertainty. Thus, in this
paper, a strategy that considers model uncertainty is proposed. Mechanistic modeling of DEPP is first discussed in the context
of previous work. The predictive model used for optimization is then developed by simplifying the mechanism. Optimization for
a single extraction process is first implemented, but this is found to lead to serious wastage of herbs. Hence, the optimization of a
multiextraction process is then conducted. Tomanage the uncertainty in themodel, a data-driven iterative learning control method
is introduced to improve the economic benefit by adjusting the operating variables. Finally, fuzzy parameter adjustment is adopted
to enhance the convergence rate of the algorithm.The effectiveness of the proposedmodeling and optimization strategy is validated
through a series of simulations.

1. Introduction

Drug extraction, or drug leaching, is one of the most
significant operations in the pharmaceutical industry. As the
basic and primary process of drug production, it has been
widely applied to many medicinal plants [1–7]. In the drug
extraction production process (DEPP), a solvent or chemical
reagent that offers high solubility for the effective constituent
(EC) in the herbs and poor solubility for constituents that
need not be extracted is applied to solid herbs. The EC then
dissolves out of the herb organization and into the solvent
or chemical reagent [8]. The extracted EC is finally used in
various types of drugs, such as granules, tablets, and capsules,
in subsequent pharmaceutical processes.

The disadvantages of this production process include
low extraction yield, wastage of materials, and high energy
consumption.Modeling andprocess optimization,which aim
to increase the extraction yield and minimize production
costs while meeting specific quality requirements, are there-
fore particularly significant in both theoretical research and
practical applications.

The optimization of drug extraction process has received
increasing attention. For example, Alam et al. [9] studied
the optimization of the extraction parameters of embelin
from Embelia ribes through ultrasound-assisted extraction
with a Box–Behnken design. Bochi et al. [10] optimized the
extraction conditions and anthocyanin yields in experiments
with high proportions of water. Chen et al. [11] applied an
orthogonal experiment to optimize the extraction conditions
of polysaccharides from Ornithogalum caudatum Ait. Chen
et al. [12] used the response surface methodology to optimize
the experimental conditions for ultrasonic-assisted extrac-
tion of functional components from sugar beet molasses.
Bae et al. [13] successfully developed and validated a simple
qualitative and quantitative method for the simultaneous
determination of 15 phenolic compounds and caffeine from
teas and then optimized the extraction process using the
response surface methodology based on a central composite
design. In addition to these innovations, many other scholars
have made tremendous contributions to the theoretical and
practical optimization of DEPP [3, 14–16]. However, many of
these reports focus on optimizing the extraction conditions
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using experimental design or simulation techniques. To the
best of the authors’ knowledge, the optimization of DEPP in
terms of improving the economic benefit of the whole pro-
duction process has rarely been reported in the literature.The
present work develops a mechanism model for DEPP based
on some previous efforts and then proposes an optimization
strategy to resolve practical problems such as the production
efficiency and production costs.

To implement this optimization, a mechanism model of
DEPP should be developed. Suchmechanisticmodeling plays
several significant roles: first, the modeling process will ana-
lyze the mechanism of the drug extraction process, confirm
its operating variables and quality indicators, and analyze the
relationship between them; second, an appropriatemodel can
be used to simulate the actual production process to generate
the required data and analyze the optimization results. As
an actual simulator, the mechanism model should be able
to link the extraction efficiency of the EC and volatile oil—
the quality indicators—with the operating variables (steam
flow at the bottom and side of the extraction tank and the
extraction time).

The mechanistic modeling of DEPP mainly consists of
modeling the following components: extraction tank, mass
transfer process of EC, volatile oil recycling, and efficiency
of the oil-water separator. A mathematical model of the
extraction tank that describes the changes in temperature
and liquid level over time has been developed [17]. As the
principle and mechanism of the mass transfer process in
drug extraction are very similar to those of metal leaching,
mechanistic models of metal leaching [3, 18–22] can be used
as references in developing a mass transfer model for the
EC. Additionally, Han et al. derived a diffusion rate equation
for volatile oils, allowing a mechanistic model of volatile oil
recovery to be developed [23]. Finally, the efficiency of the
oil-water separator is introduced to describe the separation
efficiency of oil droplets with a certain diameter [24]. The
above mechanistic models are combined to simulate the
whole DEPP, and the rationality and validity of this approach
are verified through a series of simulations. The innovation
and contribution of the DEPP model presented in this paper
can be summarized as follows. First, we extend a modeling
approach for the leaching process to model the mass transfer
process of ECs. Second, we present a combined mechanistic
modeling framework for the overall DEPP by integrating four
discrete components described in previous studies.

In addition to a mechanistic model, a predictive model
is also necessary for such optimization. In this work, the
established mechanism is simplified to serve as a predictive
model. The economic benefit per unit time is considered
as the optimization objective, while the steam flow at the
bottom and side of the extraction tank and the extraction
time are treated as decision variables.Theoptimizationmodel
is then established under certain quality constraints. Several
classical optimization algorithms, such as particle swarm
optimization (PSO) [25, 26], differential evolution (DE) [27],
and artificial bee colony (ABC) [28], are adopted to solve
this optimization problem. Comparing these algorithms, it
is concluded that PSO achieves the best performance in
determining the optimal solution. Thus, a PSO algorithm

is used to solve this optimization problem and obtain the
optimal economic benefit and corresponding parameters,
including optimal quality indicators and operating variables.
The present work first considers the optimization of a single
extraction process. However, the extraction efficiency of the
EC in this case is very low, leading to serious wastage of
herb materials. The optimization control for multiextraction
is therefore investigated. In the multiextraction process, the
extraction frequency is defined as the number of times that
the herbs are subjected to the extraction process. However,
the optimal extraction frequency in terms of economic
benefit is unknown.Thus, the extraction frequency is treated
as one of the decision variables when establishing the opti-
mization problem. Note that the extraction frequency is an
integer in this problem.

The optimal economic benefit of the multiextraction
process is based on the predictive model, whereas the actual
optimal economic benefit can be calculated by plugging the
best operating variables into themechanismmodel.There are
some discrepancies between the predicted and actual values
of the optimal economic benefit. In practice, however, it is
unlikely that the actual production process can be modeled
accurately (or even approximately) with a process model
[29, 30]. Process optimization is hampered by such model
uncertainty, and so the “optimal” value given by the model
may not necessarily mean “optimal for the process” [31].

Iterative learning control (ILC) is highly effective in
controlling systems with repetitive operations that precisely
follow a desired target trajectory. It has beenwidely applied in
repetitive industrial processes because of its perfect learning
ability from the repetitive tracking task [32–34]. Recently,
data-driven ILC methods have been proposed to deal with
complicated practical systems [35–37]. The control scheme is
data-driven because there is no explicit model information
or training process, and only the measured input and output
data are used for the controller design, analysis, and imple-
mentation [36]. As one such method, data-driven optimal
terminal ILC (DDOTILC) works under the principle that
the control law is only updated using the terminal output
tracking error [35]. In this work, DDOTILC is applied to
implement iterative optimization control for DEPP in order
to overcome themodel uncertainty via the online adjustment
of the operating variables. The fuzzy adaptive adjustment of
parameters inDDOTILC is then implemented to enhance the
convergence rate. Using this approach, themodel uncertainty
can be reduced and the economic benefit improved by
adjusting the operating variables.

2. Principle and Production Technology of the
Drug Extraction Process

2.1. Principle of the Drug Extraction Process

2.1.1. Mass Transfer Theory of Effective Constituent. Drug
extraction is one kind of solid-liquid extraction. Thus, the
mass transfer principle and computing method follow the
solid-liquid extraction system model shown in Figure 1. It
is assumed that the herb particles are composed of solute
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(EC) and inert carriers (herb residues), so the solid-liquid
extraction system is composed of solute, solvent, and inert
solid. Additionally, there will be a gas-liquid film at the
interface between the solid particles and liquid phase. It is
generally acknowledged that this mass transfer process can
be divided into the five steps described in Figure 1 [3, 8]:

(1) The diffusion of solvent into the herb particle surface
(2) The permeation of solvent from the herb surface to

the interior
(3) The dissolution of the EC inside the herb particles
(4) The diffusion of EC from inside the herb particles to

the surface (internal diffusion)
(5) The diffusion of EC from the herb particle surface

to the solvent across the gas-liquid film (external
diffusion).

2.1.2. Recycling Theory of Volatile Oil. Volatile oil (VO), also
named essential oil, is a generic term for the volatile and oily
components in plants. VOs are insoluble in water and can be
distilled out alongwith thewater vapor.During the extraction
process, the recycling of VO is divided into the following
three steps (see Figure 2):

(1) Internal diffusion: with increasing temperature, VOs
diffuse into the outer surface of the solid herb particle
from the interior

(2) External diffusion: VOs diffuse into the water vapor
from the surface of the solid particle by threading the
gas-liquid film

(3) Gas-liquid transition: VOs and water vapor enter the
condenser and are condensed into the liquid phase,
after which the VOs are separated from water though
the oil-water separator.

2.2. Production Technology of the Drug Extraction Process.
Generally, DEPP includes the following three procedures.
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Figure 2: Schematic diagram of volatile oil recycling.
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Figure 3: Diagram of equipment used in the extraction procedure.

(1) Preprocessing of HerbMaterials. In this procedure, the herb
materials are smashed and soaked in water for some time to
inflate the herb organization. This preprocessing accelerates
the dissolution and diffusion of EC during extraction.

(2) Extraction. As the most important process of DEPP, this
procedure involves various pieces of equipment including
the extraction tank, condenser, gas-liquid separator, oil-water
separator, and filter (see Figure 3). In this process, the prepro-
cessed herb materials are placed into the extraction tank, and
steam is added through both the bottom and side of the tank.
As the temperature increases, the valuable components of the
herb particles, such as EC and VO, will continually diffuse
into the extraction solution and water vapor, respectively. For
a batch of herb materials, it is extremely difficult to achieve
acceptable yields of EC and VO with a single extraction pro-
cess. Therefore, multiple extractions are required to prevent
the wastage of raw materials.

(3) Separation. In this procedure, the feed liquid containing
EC and VO are separated from the herb residues and steam,
respectively, using the filter and oil-water separator. The feed
liquid and VO are then sent to the next phase for further
processing.
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The extraction efficiencies of EC and VO are the main
quality indicators of DEPP. There are numerous factors
influencing these indicators, such as the radius of the herb
material particles, extraction temperature, extraction time,
concentration difference, and solid-liquid contact condition.
For the purpose of DEPP optimization, the present study
explores the impact on the extraction efficiency of the steam
flow at both the bottom and side of the extraction tank and
the extraction time.

3. Mechanistic Modeling of Drug Extraction
Production Process

DEPP is a complex heat and mass transfer process, and
its mechanistic model mainly consists of the following
components: mathematical model of drug extraction tank,
mass transfer model of EC, mechanistic modeling of VO
recycling, and an efficiency model of the oil-water separator.
The mechanistic modeling work for DEPP is implemented
based on the following assumptions:

(1) The herb particle has a spherical shape after crushing.
(2) The EC of herb materials in the solvent is distributed

uniformly under the condition of full stirring.
(3) The EC in the outer layer of the herb particles is first

spread to the solvent, after which the EC in the inner
layer spreads to the outer layer and then to the solvent.

3.1. Mathematical Modeling of Drug Extraction Tank. A
mechanistic model of the extraction tank has been developed
according to the principles of mass and energy conservation
[17]. In this model, the liquid level 𝐻 and feed liquid
temperature 𝑇 in the extraction tank can be calculated using
the steam flow at the bottom and side of the tank, 𝑄1, 𝑄2,
and the extraction time 𝑡. The variation of liquid level and
temperature with extraction time 𝑡 can be expressed as

𝑑𝐻𝑑𝑡 = (𝑄1 − 𝑄3) 𝑃1𝐴 , (1)

𝑑𝑇𝑑𝑡 = 1𝐴𝑆1𝐻 [(𝑃2 − 𝑆1𝑇𝑃1 + 𝑆2𝑇1 − 𝑆2𝑇)𝑄1
+ 𝑆2𝑄2 (𝑇1 − 𝑇) + (𝑆1𝑇𝑃1 − 𝑃2) 𝑄3] .

(2)

The mixture flow of VO and steam𝑄3 is assumed to have
a nonlinear relationship with 𝑇:

𝑄3 = 𝐾1𝑒𝐾2𝑇. (3)

The symbols used in this model are as follows: 𝑄1, 𝑄2:
the steam flow at the bottom and side of the extraction
tank, respectively; 𝑄3: mixture flow of VO and steam; 𝑇1:
steam temperature before entering the extraction tank; 𝑆1:
specific heat capacity of feed liquid; 𝑆2: specific heat capacity
of water; 𝑃1: volume ratio of water (liquefied from steam)
and steam; 𝑃2: standard heat of liquefaction of vapor under
standard atmospheric pressure; 𝐴: cross-sectional area of the
extraction tank.

3.2. Mathematical Modeling of the Mass Transfer Process
of Effective Constituent. The mass transfer process for EC
was described in detail in Section 2, where it was noted
that the transfer could be divided into five steps. In the
usual extraction process, the penetration of solvent and
dissolution of solute are not the controlling factors and can
thus be neglected. The diffusion processes undoubtedly have
a decisive effect on the speed ofmass transfer. Hence, external
diffusion and internal diffusion are primarily considered in
the modeling of the mass transfer process.

External diffusion, also called liquid film diffusion, is
the main resistance to mass transfer. The gas film will not
hamper the mass transfer process, so it is neglected in
the modeling process, as illustrated by the dashed line in
Figure 1. Internal diffusion is the shrinking core process of
particles containing EC, as shown in Figure 1. In this study,
using the unreacted shrinking core theory from the metal
ore leaching process, the drug extraction process can be
approximately regarded as the leaching of metallic minerals,
albeit under different reactions. When the EC in the outer
layer has diffused into the extraction solvent, the insoluble
components are left on the surface of the solid particles.Thus,
the solid particles are surrounded by a grey layer composed
of insoluble components, as shown in Figure 1. The inner EC
then diffuses into the surface of the solid particles through
internal diffusion, after which this part of the EC in the solid
particle surface diffuses into the solvent once again. This
procedure is repeated, and the unextracted corewill gradually
shrink.

The diffusion rate of the extraction process can be
expressed as [3, 18–20]

𝑑𝐺𝑑𝑡 = 𝐽𝑆, (4)

where𝐺 is themass of EC extracted from solid herb particles,𝐽 is the mass of EC diffused from solid herb particles to
solvent per unit time, 𝑆 expresses the area of the interface
between the solid and liquid phase, and 𝑡 is the extraction
time.

It is assumed that internal diffusion and external diffusion
occur in series, so the law of additive resistance can be applied
as follows [3, 21, 22]:

𝐽 = 𝐶0 − 𝐶1/𝛽1 + 1/𝛽2 =
𝐶0 − 𝐶(𝑅 − 𝑟) /𝐷𝑠 + 𝑟0/𝐷, (5)

where 𝐶0 is the solubility of EC in the liquid film on the
surface of solid particles;𝐶 is the instantaneous concentration
of EC in extraction solvent; 𝐷 and 𝐷𝑠 express the diffusion
coefficients of EC passing through the liquid film and the
inside of solid particles, respectively; 𝑅 and 𝑟 denote the
radius of the original solid particle and the solid particle as
the core gradually shrinks, respectively; and 𝑟0 expresses the
thickness of the liquid film (see Figure 1). In addition,𝛽1 is the
coefficient of internal diffusion (1/𝛽1 is the internal diffusion
resistance) and 𝛽2 is the coefficient of external diffusion (1/𝛽2
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is the external diffusion resistance).The parameters 𝛽1 and𝛽2
are given by

𝛽1 = 𝐷𝑠𝑅 − 𝑟 ,
𝛽2 = 𝐷𝑟0 .

(6)

Combined with the model of the extraction tank, it can
be concluded that𝑑𝐺𝑑𝑡 = 𝑑 (𝑉𝐶)𝑑𝑡 = 𝑑 (𝐴𝐻𝐶)𝑑𝑡 = 𝐴𝐻𝑑𝐶𝑑𝑡 + 𝐴𝐶𝑑𝐻𝑑𝑡 . (7)

Based on (1), (4), (5), and (7), we have that

𝑑𝐶𝑑𝑡 = 1𝐴𝐻 [ (𝐶0 − 𝐶) 𝑆(𝑅 − 𝑟) /𝐷𝑠 + 𝑟0/𝐷 − 𝐶𝑃1 (𝑄1 − 𝑄3)] . (8)

The diffusion coefficients can then be determined as
follows.

(1) For the solution with macromolecules of EC, the
external diffusion coefficient is obtained by

𝐷 = 𝐵𝑇 V𝐴𝑓𝐴 . (9)

The resistance of EC sustained in solution 𝑓𝐴 can be
calculated by Stokes’ equation:

𝑓𝐴 = 6𝜋𝑅𝜇𝐵V𝐴. (10)

Combining (9) and (10), we obtain

𝐷 = 𝐵𝑇6𝜋𝑅𝜇𝐵 , (11)

where 𝐵 is the Boltzmann constant, V𝐴 is the kinematic
velocity of ECmolecules, and𝜇𝐵 is the viscosity of the solvent.

(2) For the dilute solutionwithmicromolecules of EC, the
external diffusion coefficient is generally expressed byWilke’s
equation [38]:

𝐷 = 7.4 × 10−12 (𝜓𝑀𝐵)0.5 𝑇𝜇𝐵𝑉0.6𝐴 , (12)

where 𝜓 is the associating parameter of the solvent, 𝑀𝐵 is
the molecular weight of the solvent, and 𝑉𝐴 is the molecular
volume of EC. In this work, (12) is used to calculate the
diffusion coefficient 𝐷.

(3)The internal diffusion coefficient of EC inside the solid
particle 𝐷𝑠 is calculated by [39]

𝐷𝑠 = 𝜀𝐷𝜏 , (13)

where 𝜀 and 𝜏 are the porosity and sinuosity of holes inside
the solid particles, respectively.

Another equation connects the radius of solid particles
containing EC with the internal diffusion coefficient 𝐷𝑠,
the concentration of EC in the liquid film 𝐶0, and the
instantaneous concentration of EC in extraction solvent 𝐶
[39]:

𝑟 = 𝑅 − (𝑘𝐷𝑠𝐶𝑡𝐶0 )1/2 . (14)

3.3. Mechanistic Modeling of Volatile Oil Recycling. The recy-
cling principle of VO was described in Section 2. Because
the internal diffusion occurs in the same phase, it can be
neglected. However, the external diffusion process, in which
VO diffuses into the gas phase (water vapor) from the surface
of the solid phase (solid particle) across the gas-liquid film,
is interphase diffusion. This external diffusion is the main
factor controlling the diffusion velocity. Because the VO is
insoluble in water, its explicit diffusion in the liquid phase
can be ignored, as denoted by the dashed line in Figure 2.
Consequently, the resistance to external diffusion mainly
occurs in the gas film [40].The diffusion velocity is expressed
as [40]

𝑑𝑞𝑑𝑡 = 𝐾𝐺𝑆 (𝐶𝑙 − 𝐶𝑖) , (15)

where 𝑞 is the concentration of VO in the solid herb
particles, 𝐾𝐺 is the gas phase mass transfer film coefficient,𝐶𝑙 is the concentration of VO in the gas phase, and 𝐶𝑖
is the concentration of VO in the gas film. The following
assumptions are made:

(1) Because the VO in the gas phase will constantly enter
the condenser with water vapor, 𝐶𝑙 ≈ 0.

(2) There is a linear counterbalance between the concen-
trations of VO in the solid phase and gas film; that is,𝐶𝑖 = 𝐾𝑞
[23], where𝐾 is a constant coefficient.

Equation (15) can then be expressed as

𝑑𝑞𝑑𝑡 = −𝐾𝐺𝑆𝐾𝑞 = −𝑒𝑘0𝐷𝑆𝐾𝑑1 𝑞, (16)

where

𝐾𝐺 = 𝑒𝑘0𝐷𝑑1 , (17)

in which 𝑘0 is a constant coefficient and 𝑑1 is the thickness of
the gas film.

As for the liquid density, the density of VO will decrease
as the feed liquid temperature 𝑇 increases. The VO density
can be calculated as

𝜌0 = 𝐴1 + 𝐴2𝑇 + 𝐴3𝑇2 + 𝐴4𝑇3 + 𝐴5𝑇4, (18)

where 𝜌0 is the density of VO and 𝐴1–𝐴5 are constant
coefficients.

3.4. Mechanistic Modeling of the Efficiency of the Oil-Water
Separator. Under the effect of gravity, the oil-water separator
achieves the separation of oil andwater in the static or flowing
state by taking advantage of the density difference between oil
and water. The kinetic state of a droplet in the disperse phase
can be described by Stokes’ law [24]:

V𝑜𝑤 = (𝜌𝑤 − 𝜌0) 𝑔𝑑2218𝜇0 , (19)

where V𝑜𝑤 is the lifting velocity of the oil droplet, 𝜌𝑤 is the
density of water, 𝑔 is acceleration due to gravity, 𝑑2 is the
diameter of the oil droplet, and 𝜇0 is the viscosity of water.
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The separation efficiency of oil droplets of a certain diam-
eter can be determined according to shallow pool theory [41]
as

𝜂0 = 𝑆0V𝑜𝑤𝑄0 = 𝑆0𝑔18𝜇0𝑄0 (𝜌𝑤 − 𝜌0) 𝑑22, (20)

where 𝜂0 is the lifting efficiency of oil droplets of diameter 𝑑2,𝑆0 is the lifting area of the oil layer, and 𝑄0 is the flow of the
oil-water mixture.

The separation efficiency 𝜂𝑠 is a key performance indica-
tor in any oil-water separator and can be expressed as follows:

𝜂𝑠 = 1 − 𝐶𝑑𝐶𝑏 , (21)

where 𝐶𝑑 and 𝐶𝑏 denote the oil content at the exit and
entrance of the separator, respectively.

3.5. Processing the Mechanistic Model of the Drug Extraction
Production Process. For the convenience of calculations,
differential equations in the models are discretized to give
a set of algebraic equations. Taking the model for the liquid
level in the extraction tank, we have

𝐻(𝑘 + 1) − 𝐻 (𝑘)𝑇𝑆 = (𝑄1 (𝑘) − 𝑄3 (𝑘)) 𝑃1𝐴 , (22)

where 𝑇𝑆 is the sampling period.
Thus, the liquid level at sampling time 𝑘 + 1 is

𝐻(𝑘 + 1) = (𝑄1 (𝑘) − 𝑄3 (𝑘)) 𝑃1𝐴 𝑇𝑆 + 𝐻 (𝑘) , (23)

where 𝑄3(𝑘) = 𝐾1𝑒𝐾2𝑇(𝑘).
Similarly, the discretized model for the feed liquid tem-

perature is

𝑇 (𝑘 + 1)
= 𝑇𝑆𝐴𝑆1𝐻(𝑘) [(𝑃2 − 𝑆1𝑇 (𝑘) 𝑃1 + 𝑆2𝑇1 − 𝑆2𝑇 (𝑘))
⋅ 𝑄1 (𝑘) + 𝑆2𝑄2 (𝑘) (𝑇1 − 𝑇 (𝑘))
+ (𝑆1𝑇 (𝑘) 𝑃1 − 𝑃2) 𝑄3 (𝑘)] + 𝑇 (𝑘) .

(24)

The discretized model for the concentration of EC is

𝐶 (𝑘 + 1) = 𝑇𝑆𝐴𝐻(𝑘) [ (𝐶0 − 𝐶 (𝑘)) 𝑆(𝑅 − 𝑟 (𝑘)) /𝐷𝑆 (𝑘) + 𝑟0/𝐷 (𝑘)
− 𝐶 (𝑘) 𝑃1 (𝑄1 (𝑘) − 𝑄3 (𝑘))] + 𝐶 (𝑘) ,

(25)

where

𝐷 (𝑘) = 7.4 × 10−12 (Φ𝑀𝐵)0.5 𝑇 (𝑘)𝜇𝐵 (𝑘) 𝑉0.6𝐴 ,
𝐷𝑆 (𝑘) = 𝜀𝐷 (𝑘)𝜏 ,
𝑟 (𝑘) = 𝑅 − (𝑘𝐷𝑆 (𝑘) 𝐶 (𝑘) 𝑡 (𝑘)𝐶0 )1/2 ,

(26)

and the discretized model for the concentration of VO is

𝑞 (𝑘 + 1) = (1 − 𝑒𝑘0𝐷(𝑘)𝑆𝐾𝑇𝑆𝑑1 )𝑞 (𝑘) . (27)

It is assumed that the extraction time can be divided into
six equal intervals, so the entire drug extraction process has 13
input variables: six steamflows at the bottomof the extraction
tank (𝑄11, 𝑄12, 𝑄13, 𝑄14, 𝑄15, 𝑄16), six steam flows at the side
of the extraction tank (𝑄21, 𝑄22, 𝑄23, 𝑄24, 𝑄25, 𝑄26), and the
extraction time 𝑡. The output variables are the extraction
yields of EC and VO (𝐹1, 𝐹2, resp.), their extraction efficien-
cies (𝜂1, 𝜂2), and the total consumption of steam 𝐹3.

The extraction yield of EC 𝐹1 and its extraction efficiency𝜂1 can be expressed as

𝐹1 = 𝑓1 (𝑘) = 𝑉 (𝑘) 𝐶 (𝑘) = 𝐴𝐻 (𝑘) 𝐶 (𝑘) ,
𝜂1 = 𝐹1𝐹1 total ,

(28)

where 𝐹1 total is the total mass of EC in a batch of herbs, which
we consider to be 25 kg in this study.

The decrement of VO in the extraction tank between
adjacent sampling periods is

Δ𝑚 (𝑘) = 𝑚 (𝑘 − 1) − 𝑚 (𝑘)
= (𝑞 (𝑘 − 1) − 𝑞 (𝑘)) 𝐹2 total. (29)

Thus, the recycle yield of VO 𝐹2 and its extraction
efficiency 𝜂2 are computed by the following equations:

𝐹2 = 𝑓2 (𝑘) = 𝑓2 (𝑘 − 1) + Δ𝑚 (𝑘) 𝜂𝑠 (𝑘) ,
𝜂2 = 𝐹2𝐹2 total ,

(30)

where 𝐹2 total is the total mass of VO in a batch of herbs,
assumed to be 36 kg, and

𝜂𝑠 (𝑘) = 1 − 𝐶𝑑 (𝑘)𝐶𝑏 (𝑘) = (𝑇𝑆𝑃1𝑄3 (𝑘) − Δ𝑚 (𝑘)) 𝜂0 (𝑘)𝑇𝑆𝑃1𝑄3 (𝑘) − Δ𝑚 (𝑘) 𝜂0 (𝑘) ,
𝜂0 (𝑘) = 𝑆0𝑔18𝜇0𝑄0 (𝑘) (𝜌𝑤 − 𝜌0) 𝑑22

= 𝑆0𝑔18𝜇0𝑃1𝑄3 (𝑘) (𝜌𝑤 − 𝜌0) 𝑑22.
(31)

The total consumption of steam 𝐹3 is given by

𝐹3 = 6∑
𝑖=1

(𝑄1𝑖 + 𝑄2𝑖) 𝑡6 . (32)

In conclusion, the input and output variables of the
mechanistic model for DEPP can be expressed as

𝑢 = (𝑄11, 𝑄12, 𝑄13, 𝑄14, 𝑄15, 𝑄16, 𝑄21, 𝑄22, 𝑄23, 𝑄24, 𝑄25,
𝑄26, 𝑡) ,

𝑦 = (𝐹1, 𝐹2, 𝐹3, 𝜂1, 𝜂2) .
(33)
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Figure 4: Relationship between model outputs and steam flow in
the extraction process.

To verify the rationality and effectiveness of the estab-
lished mechanistic model, a number of simulations were
conducted. Figure 4 shows the effect of steam flows on
the model outputs. In this simulation, all the steam flows
were identical and the other operating or state conditions
remained unaltered. For example, 𝑡 = 3 h. The parameters
used in the mechanistic model are listed in Table 1.

From Figure 4, it is clear that the extraction yields of EC
and VO increase with the steam flow until reaching their
respective equilibrium states, and the consumption of steam
exhibits a gradual, linear rise. First, with other parameters
fixed, the increased steam flow causes the feed liquid tem-
perature to rise, and this rising temperature results in an
increment in the diffusion coefficients, which will accelerate
the extraction of EC. However, when the temperature reaches
a stable value, owing to the characteristics of the feed liquid,
the extraction of EC will gradually slow down and eventually
stop once the concentration of EC in the solvent is equal to
its solubility at this temperature. The recycling of VO has the
similar tendency to that of EC, but the reason for such an
equilibrium state is that the VO has been fully extracted at
this temperature.

The effect of the extraction time on the model outputs is
plotted in Figure 5. In this simulation, it was assumed that
all other operating or state conditions remained unaltered
and the steam flows were set as 𝑄𝑖𝑗 = 2.5, 𝑖 = 1, 2 and𝑗 = 1, 2, . . . , 6. It can be seen that the extraction yields of EC
and VO increase with the extraction time until they reach the
equilibrium state. As the extraction time increases, the heat
absorbed by the feed liquid will continue to rise, which leads
to the increment in the feed liquid temperature. The analysis
is then similar to that for the effect of the various steam flows.
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Figure 5: Relationship between model outputs and extraction time
in the extraction process.

4. Optimization of the Drug Extraction
Production Process

4.1. Identification of Predictive Model Parameters. To carry
out such optimization, a predictive model of DEPP has been
developed. This model links the operating variables (steam
flow at both the bottom and side of the extraction tank and
the extraction time) with the extraction efficiencies of EC and
VO. In the present work, the established mechanistic model
was simplified to give a predictive model. The following
simplifications were made.

(1) In modeling the extraction tank, the nonlinear rela-
tionship between the mixed steam flow 𝑄3 and temperature𝑇 was linearized; that is, 𝑄3 = 𝑘1𝑇 + 𝑘2, where 𝑘1, 𝑘2 are the
parameters to be identified.

(2) As internal diffusion has less effect on the mass
transfer than external diffusion, the internal diffusion was
neglected to simplify the mechanistic model.

Hence, the differences between the predictive model 𝑓𝑚
and mechanistic model 𝑓𝑝 can be described as

𝑄3 = 𝑘1𝑇 + 𝑘2, (34)

𝑑𝐶𝑑𝑡 = 1𝐴𝐻 [𝑆𝐷𝑟0 (𝐶0 − 𝐶) − 𝐶𝑃1 (𝑄1 − 𝑄3)] , (35)

and the other parts of the mechanistic model were retained
in the predictive model.

To predict the extraction efficiencies under different oper-
ating conditions, the parameters 𝑘1, 𝑘2 must be identified.
A best fit approach was adopted in which 𝑘1, 𝑘2 in (34) are
the values that best predict the actual DEPP data [42]. The
extraction efficiencies of EC and VO were used as criteria
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Table 1: Parameters used in mechanistic model.

Parameter Description Value𝐴 Cross-sectional area of extraction tank (m2) 3𝑇1 Steam temperature before entering extraction tank (∘C) 125𝑃1 Volume ratio of water and steam 1/80𝑃2 Standard heat of liquefaction of vapor (kJ/mol) 40.68𝑆1 Specific heat capacity of feed liquid (kJ/(kg × ∘C)) 4𝑆2 Specific heat capacity of water (kJ/(kg × ∘C)) 4.2𝐾1 Coefficient in 𝑄3 4.4𝐾2 Coefficient in 𝑄3 0.001𝑆0 Lifting area of oil layer (m2) 2.8𝜌𝑤 Density of water (g/cm3) 1𝜌0 Density of volatile oil (g/cm3) 0.72𝑔 Acceleration of gravity (m/s2) 9.8𝑑2 Diameter of oil droplet (m) 0.3912𝐸 − 5𝑞0 Initial concentration of volatile oil in herbs 0.3𝑅 Radius of solid herb particle (m) 0.8202𝐸 − 3𝑟0 Thickness of liquid film (m) 0.222𝐸 − 3𝑑1 Thickness of gas film (m) 0.6302𝐸 − 3𝜏 Sinuosity of holes inside gray layer in solid particle 1.2𝜀 Porosity of gray layer in solid particle 0.98𝐶0 Solubility of EC in liquid film 0.85𝜓 Associating parameter of solvent 2.65𝑀𝐵 Molecular weight of solvent (D) 100𝑉𝐴 Molecular volume of EC (m3) 30.62 ∗ 10(−8)𝐾 Linear equilibrium proportional constant 0.15𝐻0 Initial liquid level in extraction tank (m) 3.5𝑇0 Initial temperature of feed liquid in extraction tank (∘C) 20𝐶in Initial concentration of EC in solvent 0𝑇𝑆 Sampling period (s) 0.05

for the parameter identification.The identification algorithm
used for the predictive model is as follows.

Step 1. 𝑛 sets of process data (𝑢𝑖, 𝜂𝑖) are produced by mecha-
nistic model 𝑓𝑝, in which 𝑢𝑖 denotes the vector of operating
variables and 𝜂𝑖 is the vector of extraction efficiencies of EC
and VO; that is, 𝜂𝑖 = (𝜂1𝑖, 𝜂2𝑖), 𝑖 = 1, 2, . . . , 𝑛.
Step 2. Insert 𝑢𝑖 into predictive model 𝑓𝑚 to obtain the
predicted extraction efficiencies as follows:

𝜂̂𝑖 = (𝜂̂1𝑖, 𝜂̂2𝑖) = 𝑓𝑚 (𝑢𝑖) . (36)

Step 3. Parameters 𝑘1, 𝑘2 are determined by minimizing the
following objective function of the sum of square errors
(SSE) of the extraction efficiencies through an optimization
algorithm:

min
𝑘1 ,𝑘2

{SSE = 𝑛∑
𝑖=1

(𝜂1𝑖 − 𝜂̂1𝑖)2 + 𝑛∑
𝑖=1

(𝜂2𝑖 − 𝜂̂2𝑖)2} . (37)

Table 2: Parameter values and optimization results of each algo-
rithm.

𝑛 𝑤 Algorithm 𝑘1 𝑘2 SSE

30 10
PSO 0.0044 4.4223 4.646𝐸 − 4
DE 0.0049 4.3734 4.971𝐸 − 4
ABC 0.0023 4.6205 6.532𝐸 − 4

We solved (37) using PSO, DE, and ABC and compared
the performances of the algorithms with one another. The
algorithms were executed 𝑤 times and the results averaged.
The optimization results are summarized in Table 2, from
which we can see that PSO achieved the best performance in
solving the optimization problem.

4.2. Optimization of Single Extraction. The economic benefit
per unit time is considered as the optimization objective,
and the operating variables are treated as decision variables.
Taking economic income and production consumption into
consideration (including the economic income of EC andVO
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Table 3: Parameter values in optimization model.

Parameters 𝑎 (USD/Kg) 𝑏 (USD/Kg) 𝑐 (USD/m3) 𝑑 (USD/Kg) 𝐹4 (Kg)
Value 152.7 122.17 0.031 1.53 120

Table 4: Constraints in optimization model.

Constrained
variables

Quality indexes Operating variables𝜂1 𝜂2 𝑄𝑖𝑗 (m3/h) 𝑡 (h)
Range [0.8, 1] [0.8, 1] [0, 5] [1, 4]
Table 5: Optimal economic benefits obtained by each algorithm.

Algorithm PSO DE ABC
Economic benefit (USD/h) 2293 2240 2252

and the consumption cost of herb materials and steam), the
following optimization model was established based on the
predictive model:

max 𝐽 = 𝑎 × 𝐹1 + 𝑏 × 𝐹2 − 𝑐 × 𝐹3 − 𝑑 × 𝐹4𝑡
s.t. (𝐹1, 𝐹2, 𝐹3, 𝜂1, 𝜂2) = 𝑓 (𝑢) ;

𝜂1min ≤ 𝜂1 ≤ 𝜂1max;
𝜂2min ≤ 𝜂2 ≤ 𝜂2max;
𝑄min ≤ 𝑄𝑖𝑗 ≤ 𝑄max;
𝑡min ≤ 𝑡 ≤ 𝑡max;
𝑖 = 1, 2;
𝑗 = 1, 2, . . . , 6,

(38)

where 𝑎, 𝑏, 𝑐, and 𝑑 are the prices of EC, VO, steam, and herb
materials and𝐹4 is the weight of a batch of herbmaterials.The
parameters and constraints in this model are listed in Tables
3 and 4, respectively.The PSO, DE, and ABC algorithms were
executed 10 times to determine the optimal solution to (38),
and the results are presented in Table 5. The optimization
results once again validate the superiority of PSO for the
problem considered in this study.

The optimal values obtained by PSO for the operating
variables are listed in Table 6. The optimal operating condi-
tions were applied to the single extraction process, and the
output indexes are given inTable 7. Additionally, the variation
in the extraction yield of EC and VO and the consumption of
steam are plotted in Figure 6.

From this figure, we can see that the mass of EC increases
with extraction time in the initial stage of the single extrac-
tion, but the rate of increase gradually slows as we reach the
equilibrium state.The reason for this is that the concentration
of EC in the extracted solution reaches its saturated solubility,
and so no more EC will be extracted from the herb materials,
even if we continue the extraction process.

There is also a comparatively small recycle yield of VO in
the initial 0.75 h, because the temperature in the extraction
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Figure 6: Variation trend of various output indexes in single
extraction.

tank is too low to boil VO and little of it can be volatilized
and brought out together with vapor in the initial stages of
extraction. When the temperature reaches the boiling point
of VO, its recycle yield grows exponentially. As the extraction
progresses, there is less VO remaining in the herbs, and the
increasing tendency of the recycle yield becomes slower until
all VO has been extracted.

The actual results in Table 7, however, suggest that the
extraction efficiency of EC is only 35.28%, and so most of
the EC has not been extracted. Thus, the quality constraints
cannot be satisfied, although there is a significant economic
benefit. According to national production management reg-
ulations, such a huge wastage of herb materials is forbidden,
and a multiextraction process is needed to avoid wasting raw
materials.

4.3. Optimization of Multiextraction. As the extraction pro-
cess progresses, the extraction temperature does not always
risewith an increase in the operating variables.This is because
of the self-regulating characteristics of the feed liquid. As
described above, the concentration of EC in the feed liquid
will reach a maximum, and only VO will be recycled along
with the extraction. This causes the low extraction efficiency
of EC in the single extraction case. Therefore, to avoid such
a situation, the first extraction should be terminated and the
feed liquid containing EC should be separated from the solid
herb via a filter. After this, a certain amount of new solvent
can be added to the extraction tank and a second extraction
can be performed. Depending on the total content of EC
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Table 6: Best settings of operating variables produced by PSO.

Steam flow Q1 (m3/h) Steam flow Q2 (m3/h) Extraction time (h)
Q11 4.9554 Q21 4.9545 𝑡 2.3Q12 4.7633 Q22 4.3348
Q13 4.5968 Q23 4.8391
Q14 3.6422 Q24 4.3850 Optimal economic benefit (USD/h)
Q15 3.5999 Q25 2.3083 𝐽 2293
Q16 3.1419 Q26 4.2665

Table 7: Actual optimal output indexes and economic benefit in single extraction.

Single extraction F1 (Kg) F2 (Kg) F3 (m3) 𝜂1 𝜂2 𝐽 (USD/h)
Actual value 8.82 32.24 19.51 35.28% 89.56% 2218
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Figure 7: Schematic diagram of multiextraction.

in the herb and its solubility in the solvent, at least three
extractions are needed to remove all of the EC. A schematic
diagram of the multiextraction process is shown in Figure 7,
where each extraction represents a single extraction. Based
on the principle of multiextraction, any surplus in the quality
indexes after the (𝑖−1)th extraction, such as the total residual
mass of VO and radius of unextracted core of EC, is regarded
as the initial input conditions of the 𝑖th extraction, where𝑖 = 2, 3, . . . , 𝑘. According to this principle, a predictive model
for the multiextraction process can be developed.

In developing a predictive model for the multiextraction
scenario, the extraction frequency 𝑘 is treated as one of the
operating variables (𝑘 = 3, 4, 5). In this study, predictivemod-
els were established for three, four, and five extractions. We
now describe the three-time extraction model; the modeling
approach for four and five extractions is similar. The three-
extraction case is composed of three single extractions, each
of which has the 13 input variables described previously.Thus,
there are 39 input variables in the three-extraction predictive
model:

𝑈 = (𝑢1, 𝑢2, 𝑢3) , (39)

where 𝑢𝑖 is the vector of operating variables in the 𝑖th single
extraction and

𝑢𝑖 = (𝑄11,𝑖, 𝑄12,𝑖, 𝑄13,𝑖, 𝑄14,𝑖, 𝑄15,𝑖, 𝑄16,𝑖, 𝑄21,𝑖, 𝑄22,𝑖, 𝑄23,𝑖,
𝑄24,𝑖, 𝑄25,𝑖, 𝑄26,𝑖, 𝑡𝑖) , 𝑖 = 1, 2, 3. (40)

The predictive outputs for the three extractions, including
the total extraction yield of EC and VO, consumption of
steam, and extraction efficiencies, can be calculated as

𝐹1 = 3∑
𝑖=1

𝐹1,𝑖,
𝐹2 = 3∑
𝑖=1

𝐹2,𝑖,

𝐹3 = 3∑
𝑖=1

( 6∑
𝑗=1

((𝑄1𝑗,𝑖 + 𝑄2𝑗,𝑖) 𝑡𝑖6 )) ,
𝜂1 = 𝐹1𝐹1 total ,
𝜂2 = 𝐹2𝐹2 total .

(41)

Therefore, the predictive model of three-time extraction
can be summarized as

(𝐹1, 𝐹2, 𝐹3, 𝜂1, 𝜂2) = 𝐹𝑚,3 (𝑈) . (42)

After developing predictive models for 𝑘 = 3, 4, and
5, the optimization model for multiextraction was derived
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by treating the extraction frequency as one of the decision
variables:

max 𝐽 = 𝑎 × 𝐹1 + 𝑏 × 𝐹2 − 𝑐 × 𝐹3 − 𝑑 × 𝐹4∑𝑘𝑖=1 𝑡𝑖
s.t. (𝐹1, 𝐹2, 𝐹3, 𝜂1, 𝜂2) = 𝐹𝑚,𝑘 (𝑈) ;

𝜂1min ≤ 𝜂1 ≤ 𝜂1max;
𝜂2min ≤ 𝜂2 ≤ 𝜂2max;
𝑄min ≤ 𝑄1𝑗,𝑘 ≤ 𝑄max;
𝑄min ≤ 𝑄2𝑗,𝑘 ≤ 𝑄max;
𝑡min ≤ 𝑡𝑖 ≤ 𝑡max;
𝑘 = 3, 4, 5;
𝑗 = 1, 2, . . . , 6.

(43)

In this optimization model, the extraction frequency 𝑘
is treated as one of the decision variables (𝑘 = 3, 4, 5). The
decision variables must be carefully handled in solving this
optimization problem. For example, when 𝑘 = 3, the decision
variable vector 𝑈𝑑 can be expressed as

𝑈𝑑 = (𝑘, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5) , (44)

where 𝑢4 = 𝑢5 = 0. Similarly, 𝑢5 = 0 when 𝑘 = 4.
The advantages of PSO in solving such optimization

problems have been verified many times and are not covered
here.Theparameters used in the PSOalgorithmare presented
in Table 8, and the optimal multiextraction solution obtained
by the PSO method with 10 runs is given in Table 9.

From Table 9, it is clear that the optimal extraction
frequency is 3, so the operating variables in the fourth
and fifth extractions are all zero. These optimal operating
variables were used in the mechanistic model of the multi-
extraction process to calculate the actual output indexes and
economic benefit. The results, together with their predicted
values, are given in Table 10. However, owing to the inherent
errors of predictive models, it is difficult to achieve the
optimized economic benefit in an actual process. The results
in Table 10 indicate that a discrepancy of 6.4% exists between
the predicted and actual economic benefit, which means that
“optimal in the model” may not translate to “optimal for
the process,” as mentioned before. This model uncertainty
hampers the optimization of the multiextraction process.
Hence, as discussed in Section 5, the ILCmethodwas adopted
to overcome the problem of model uncertainty.

5. Use of Iterative Learning Control to
Overcome Model Uncertainty

To eliminate the impact of themodel uncertainty, the iterative
nature of numerical optimization and certain repetitive prop-
erties can be utilized.The idea of ILC is introduced to improve

Table 8: Parameter settings of PSO.

Swarm size Iterations Inertia
weight

Learning
factor

100 100
Linear

decrease:
0.9∼0.2

𝑐1: 2.5∼1.0𝑐2: 1.0∼2.5

the economic benefit. In this study, we used DDOTILC with
the control law (see [35] for details):

𝜑̂𝑘 = 𝜑̂𝑘−1 + 𝜉 (Δ𝑦𝑘−1 (𝑁) − 𝜑̂𝑘−1Δ𝑢𝑘−1) Δ𝑢𝑇𝑘−1𝜇 + 󵄩󵄩󵄩󵄩Δ𝑢𝑘−1󵄩󵄩󵄩󵄩2
𝑢𝑘 = 𝑢𝑘−1 + 𝜌𝜑̂𝑇𝑘𝜆 + 󵄩󵄩󵄩󵄩𝜑̂𝑘󵄩󵄩󵄩󵄩2 𝑒𝑘−1 (𝑁) ,

(45)

where 𝜌, 𝜆, 𝜉, and 𝜇 are positive constants; 𝑘 is the iteration
number of the batch process and𝑁 is their terminalmoment;𝜑̂𝑘 is the estimated pseudo-partial-derivative of the 𝑘th batch
process; and 𝑒𝑘−1(𝑁) is the terminal tracking error of the
output.

In the application of this approach, the economic benefit
is treated as the terminal output and the operating variables
are adjusted online to improve the economic benefit. The
desired economic benefit 𝐽𝑑 is set as the predicted value
obtained by solving (43). The parameters used in (45) are
listed in Table 11. The blue curves in Figure 8 describe the
evolution of the economic benefit under DDOTILC. The
results indicate that the actual economic benefit achieves an
increment of 1.5% after six batches, which partly improves the
economic benefit, although this is still short of the desired
economic benefit. In addition, the extraction efficiencies
decrease with the increase in economic benefit, as shown in
Figure 8. When the extraction efficiencies reach a threshold,
the economic benefit will be inversely proportional to the
extraction yields of EC and VO, because the costs of extract-
ing the remaining EC and VO will be much greater than
the additional income. Thus, the optimal economic benefit
may not correspond to adjusting the operating variables to
maximize the extraction of EC and VO.

The parameter settings will affect the convergence rate of
ILC, and the best parameter settings should have the ability
to change adaptively with the tracking error and variations
in system output. In this study, the parameter 𝜌 in (45)
was varied though fuzzy adaptive adjustment over the range
[0, 𝛼]. The convergence rate of economic benefit can be
changed by adjusting 𝜌. When the absolute values of the
tracking error of economic benefit and its variation are high,
the value of 𝜌 should also be high. Moreover, the value of 𝜌
should decrease as the absolute values of tracking error and
its variation decrease. According to this principle, the fuzzy
adjustment rule was formulated as shown in Table 12, where𝐸𝐽 andΔ𝐸𝐽 represent the absolute values of the tracking error
of economic benefit and its variation, respectively. The mem-
bership functions of𝐸𝐽, Δ𝐸𝐽, and 𝜌 are shown in Figure 9.The
first red curve in Figure 8 shows the trajectory of economic
benefit based on the fuzzy adjustment of parameter 𝜌,
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Table 9: Best settings of operating variables.

1st extraction 2nd extraction 3rd extraction 4th extraction 5th extraction

Steam flow 𝑄1 (m3/h)
Q11 4.5538 3.6784 4.2887 0.0000 0.0000
Q12 4.6789 2.7554 0.9895 0.0000 0.0000
Q13 4.4342 3.2861 4.1627 0.0000 0.0000
Q14 1.5664 4.9991 2.2495 0.0000 0.0000
Q15 3.7135 4.9160 0.9995 0.0000 0.0000
Q16 0.0477 1.6587 4.2214 0.0000 0.0000

Steam flow 𝑄2 (m3/h)
Q21 4.9544 0.5090 3.6287 0.0000 0.0000
Q22 4.3760 3.2264 3.4749 0.0000 0.0000
Q23 3.7216 4.4979 3.2713 0.0000 0.0000
Q24 0.2749 1.1098 3.9415 0.0000 0.0000
Q25 4.0857 3.6746 4.5692 0.0000 0.0000
Q26 1.0008 2.8459 4.1023 0.0000 0.0000

Extraction time (h) 𝑡 1.6628 1.0992 3.0475 0.0000 0.0000

Table 10: Output indexes and economic benefit in multiextraction.

Multiextraction F1 (Kg) F2 (Kg) F3 (m3) 𝜂1 𝜂2 J (USD/h)
Predicted value 24.39 34.46 37.59 97.57% 95.73% 1333
Actual value 21.09 34.40 37.59 84.36% 95.50% 1247.3

Table 11: Parameters of DDOTILC.

Parameter 𝜌 𝜇 𝜉 𝜆
Value 0.003 1 0.1 0.01

Table 12: Fuzzy adjustment rule.

𝜌 Δ𝐸𝐽𝐸𝐽 NB NM NS Z PS PM PB
NB Z Z Z PS PS PM PM
NM Z Z Z PS PM PM PM
NS Z PS PS PM PM PM PM
Z Z PS PM PM PM PM PM
PS PS PS PM PM PM PM PM
PM PS PM PM PM PM PM PM
PB PM PM PM PM PM PM PM

with which the advantage of the fuzzy-adjusted DDOTILC
method is validated. In this simulation, 𝛼 = 0.005.
6. Conclusion

This paper proposed a mechanistic modeling and optimiza-
tion control strategy for DEPP. First, a mechanistic model
of the drug extraction process was developed based on
previous efforts to simulate the actual production process and
produce process data. A simulation was conducted to verify
the rationality and effectiveness of this mechanistic model.
A predictive model was then developed by simplifying some
of the processes in the mechanistic model. Simulation results
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Figure 8: Comparison of economic benefit between original
DDOTILC and DDOTILC with fuzzy adjustment.

demonstrated the effectiveness of this predictive model. Pro-
cess optimization was first implemented for single extraction,
and the results indicated an extremely low extraction yield
of EC, which indicates serious wastage of herbs, although
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Figure 9: Membership functions of 𝐸𝐽, Δ𝐸𝐽, and 𝜌.

this gave a preferable economic benefit. Such wastage of raw
materials is forbidden according to national productionman-
agement regulations. A multiextraction DEPP is therefore
necessary, and so process optimization for multiextraction
was investigated. However, such optimization is hampered
by model uncertainty. Therefore, the DDOTILC method
was applied to partly overcome this model uncertainty. The
simulation results indicate that the economic benefit can
be improved by 1.5%. Finally, the idea of fuzzy adjust-
ment was introduced to adaptively adjust the parameter𝜌 in DDOTILC, which increases the convergence rate of
economic benefit. The simulation results indicate that the
proposed modeling and optimization control method can
effectively solve the practical problems encountered in DEPP.

The proposed modeling and optimization control strat-
egy is easy to implement in practical applications because it
requires lesser accuracy of predictive models. The research
in this paper is based on a mechanistic model developed
to simulate actual DEPP and produce process data. How-
ever, there is no empirical research from pharmaceutical
enterprises to test the validity of the model and method.
All parameters used for the mechanistic modeling, such
as the device parameters for the extraction tank and state
parameters of DEPP, correspond to the actual production
situation, so the model proposed in this work has the ability
to simulate the actual DEPP, and it is reasonable to test the
validity of the proposed method through simulations. The
second limitation of this study is that the fuzzy rules should
be based on the actual situation. For example, the initial range
of 𝜌must be set according to the actual DEPP scenario when
applying DDOTILC.
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