
Research Article
MultiCache: Multilayered Cache Implementation for
I/O Virtualization

Jaechun No1 and Sung-soon Park2

1College of Electronics and Information Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
2Department of Computer Engineering, Anyang University and Gluesys Co. LTD, Anyang 5-dong,
Manan-gu 430-714, Republic of Korea

Correspondence should be addressed to Jaechun No; jano@sejong.edu

Received 16 February 2016; Revised 18 June 2016; Accepted 3 July 2016

Academic Editor: Zhihui Du

Copyright © 2016 J. No and S.-s. Park. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the virtual machine technology is becoming the essential component in the cloud environment, VDI is receiving explosive
attentions from IT market due to its advantages of easier software management, greater data protection, and lower expenses.
However, I/O overhead is the critical obstacle to achieve high system performance in VDI. Reducing I/O overhead in the
virtualization environment is not an easy task, because it requires scrutinizing multiple software layers of guest-to-hypervisor
and also hypervisor-to-host. In this paper, we propose multilayered cache implementation, called MultiCache, which combines
the guest-level I/O optimization with the hypervisor-level I/O optimization. The main objective of the guest-level optimization is
to mitigate the I/O latency between the back end, shared storage, and the guest VM by utilizing history logs of I/O activities in
VM. On the other hand, the hypervisor-level I/O optimization was implemented to minimize the latency caused by the “passing
I/O path to the host” and the “contenting physical I/O device among VMs” on the same host server. We executed the performance
measurement of MultiCache using the postmark benchmark to verify its effectiveness.

1. Introduction

Recently, VDI (Virtual Desktop Infrastructure) is becoming
an essential aspect of the cloud-based computing environ-
ment due to its advantages such as user customization, easy-
to-maintain software, and location-transparent accesses [1–
3]. VDI multiplexes hardware resources of the host among
VMs, which can improve server resource utilization and
density. Also, VDI is capable of isolating VMs on the same
host platform, which can offer the performance isolation
and the secure application execution in the guest. This is
performed by using the hypervisor that is responsible for
coordinating VM operations and for managing physical
resources of the host server.

While VDI offers several benefits, such as the increased
resource utilization and the private data protection, there
exist problems that can deteriorate the system performance,
including I/O virtualization overhead [4, 5]. Before I/O
requests issued in VMs are completed in VDI, they should
go through multiple software layers, such as the layer from

the back end, shared storage to the host server [6, 7], and
the layers between guest operating system, hypervisor, and
eventually host operating system.

Figure 1 shows the I/O virtualization path using KVM
hypervisor and QEMU emulator. The application I/O
requests are first handled by the guest kernel before being
passed to the virtual, emulated device executing in the user
space. After executing several modules including ones for the
image format, those requests are entered to the host kernel by
calling posix file system interface.The virtual disk is typically
a regular file from the perspective view of the host file system.
The files necessary for I/O requests can be stored either in
the local disk attached to the host or in the shared storage
connected by network.

As depicted in Figure 1, because the I/O virtualization
path is organized with multiple software layers, optimizing
I/O cost is very challenging, which requires scrutinizing
various virtualization aspects. In this paper, we are inter-
ested in mitigating such an overhead by implementing the

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 3780163, 13 pages
http://dx.doi.org/10.1155/2016/3780163

2 Scientific Programming

Application Application

VFS

Guest file system

Virtual I/O device driver

VFS

Guest file system

Virtual I/O device driver
VM #1 VM #2

G
ue

st
O

S

KV
M

QEMU I/O call

Device emulation layer

Image format layer

Raw device driver layer

POSIX system callH
os

t O
S

Q
EM

U

VFS

Host file system

Block device driver (LVM)

Network
Shared
storage

Host server

Figure 1: I/O virtualization path in KVM/QEMU.

appropriate cache mechanism in the guest and KVM using
QEMU emulator [8–10].

Due to the thick software stack of VDI, implementing
the virtualization cache method needs to take into account
several layers with each I/O request passing through. For
example, considering only the guest VM for the cache may
not be enough to achieve the desirable I/O performance,
because the latency occurring in the hypervisor, such as the
context switching between the nonroot mode and the root
mode, can substantially deteriorate application executions.
Also, the OS dependency makes it difficult to port the guest-
level cache method across VMs, especially in the case where
VMs execute different guest operation systems.

In this paper, we propose the virtualization cache mecha-
nism on top of KVM, called MultiCache (Multilevel virtual-
ization Cache implementation), which combines VM’s guest-
level component with QEMU’s hypervisor-level component.
The main goal of the guest-level component of MultiCache
is to alleviate the I/O overhead occurring in the file trans-
mission between the back end, shared storage, and the guest.
Also, caching on the guest level can give the better chance to
retain the application-specific data. This is because while the
guest needs to consider only the applications running on top
of it, the hypervisor should control all the data necessary for
VMs on the same host, which can cause the cache miss for
the desired data due to the limited cache size or the swapping

activity. Finally, by tightly coupling with the light-weight
resourcemonitoringmodule, the component canmanage the
effective cache size in the guest.

The hypervisor-level component of MultiCache attempts
to reduce I/O latency by supplying the desired data in
QEMU instead of accessing the physical device of the host.
The other contribution of the hypervisor-level component is
to provide fast responsiveness by reducing the application
process block time before I/O completion. The hypervisor
mainly uses the hypercall to transit process control from the
guest operation system to the hypervisor itself. Because such
a transition requires the mode switching between nonroot
mode and root mode, the application process on the guest
should remain blocked, lagging the I/O performance behind.
The hypervisor-level component tries to optimize such an
overhead by providing the necessary data in QEMU.

This paper is organized as follows. In Section 2, we
discuss the related studies and, in Section 3, we describe the
overall structure of MultiCache. In Section 4, we present the
performance measurement and, in Section 5, we conclude
with a summary.

2. Related Studies

Reducing I/O virtualization cost is the critical issue to
accelerate I/O bandwidth of virtual machines. There have

Scientific Programming 3

been several researches targeting I/O virtualization overhead.
First of all, most VDI schemes use the back end and shared
storage as a persistent data reservoir, such as DAS (host’s
direct attached storage), NAS (network-attached storage), or
SAN (storage area network) [6, 11]. This storage is used to
store read-only image templates or shared libraries and files
for VMs. As the virtual machine has gained a widespread
use in the cloud computing, managing the optimal cost
for transferring the image contents and files between the
storage and the host is becoming the essential research aspect.
For example, Tang [6] proposed FVD (Fast Virtual Disk)
consisting of VM image formats and the block device driver
for QEMU. FVD enables supporting the instant VM creation
and migration on the host by using copy-on-write, copy-on-
read, and adaptive fetching.

As the technology of SSD (Solid State Disk) is rapidly
growing, there have been several attempts to boost I/O
bandwidth by adopting SSD in the virtualized environment
[12–15]. For example, in vCacheShare [12], instead of propor-
tionally allocating the flash cache space on the shared storage,
vCacheShare uses the information about I/O accesses from
VMs and trace processing data to extract reuse patterns in
order to calculate the appropriate flash cache size. Mercury
[13] is the client-server, write-through based flash cache
method in the hypervisor. Byan et al. [13] argued that placing
the flash cache either in the networked storage server or in
VM may not be beneficial for speeding up I/O performance
due to the network latency or VM migration [16, 17]. Also,
utilizing flash cache with the write-back policy might not
satisfy high I/O demand, because every write should still
be written to the shared storage via a network hop for data
consistency and availability.

S-CAVE [14] is a hypervisor-level flash cache to allocate
the cache space among VMs. Similar to vCacheShare, S-
CAVE monitors I/O activities of VMs at runtime and uses
them to determine their cache space demand. Arteaga et
al. [15] proposed a flash cache on the client-side storage
system (VMhost).They used dm-cache [18] block-level cache
interface in their method and also argued that write-back
policy is beneficial in the cloud environment. Razavi and
Kielmann [19] tried to reduce the network overhead to be
occurring during VM startup time, by placing VM cache
either on the compute node or on the storage memory.
They found that when the cloud environment supports a
master image to be shared among multiple VMs, caching
VM images on the compute node would efficiently reduce
network traffics. Also, with the cloud environment, where
many compute nodes simultaneously use multiple VMs,
placing VM cache image to the storage memory can help
reduce the disk queuing delay.

Besides between the shared storage and the host, the
I/O latency taking place in the hypervisor should also be
addressed to achieve the desirable system bandwidth in the
virtualization environment. One of such overheads is VM
exit. The I/O requests issued in VMs are asynchronously
handled by the host while passing through the hypervisor
and the emulator such as QEMU. Since VMs run on the
nonroot mode and the hypervisor runs on the root mode,
servicing I/O requests causes exiting VM first to go to the

hypervisor, which incurs the context switching overhead.
Also, the replies from the hypervisor to VMs adversely affect
I/O performance. Since the application which issued those
I/O requests remains blocked on VM, such a switching
overhead can eventually slowdown the application execution.

There are several researches on this issue. For example,
SR-IOV [20, 21] was implemented to obtain the benefits
of direct I/O on physical devices, by defining extensions
to the PCIe specification. In SR-IOV, VDD running in the
guest either is connected to VF executing on the shared
sources for direct data movement or forwards the request
to dom 0 where PF driver manages and coordinates the
direct accesses to the shared resources for VFs. Yassour et
al. [22] proposed a device assignment, where VM can access
physical I/O resources directly, without passing through the
host emulation software.

However, the direct device assignment cannot work for
virtual resources such as virtual disk, losing the strength
of virtualization flexibility. To overcome such a drawback,
Har’El et al. [23] proposed a new form of paravirtual I/O,
which tried to overcome the weakness of the existing par-
avirtual I/O scheme [4, 24, 25]. Their I/O scheme attempts
to alleviate I/O overhead by providing the dedicated I/O core
controlled by a single I/O thread. Instead of mixing I/O and
guest workloads in the same core, using a dedicated I/O not
only can assign more cycles to guests but also can improve
overall system efficiency by reducing the context switching
cost.

The other issue of the I/O virtualization overhead is
that I/O requests should go through a thick I/O stack to
complete. In the case of KVM using QEMU, the typical way
of writing data in the guest is that, after passing the file
system and device driver layer of the guest kernel, the data
necessary for the write should be transferred to the emulated
device driver in the hypervisor. Also, the data enters the
host kernel that has the similar software structure to the
guest kernel (assuming the guest and host run the same OS)
and reaches the physical I/O device attached to the host.
Appropriately placing cache is a way of reducing such traffics
in the virtualization environment [26, 27].

Capo [27] uses local disks as a persistent cache. Shamma
et al. insisted that the majority of requests on VMs are
redundant and can be served by local disk. In order to
justify their argument, they first traced a production VDI
workload and found that caching below the individual VMs
is effective to improve I/O performance. Capo was integrated
with XenServer [28], by putting it into domain 0. Also.
Gupta et al. [29] studied the page sharing and memory
compression to save thememory consumption of VMs.Their
difference engine method searches for the identical pages by
using the hashing function. If pages have the same value,
then it reclaims the pages and updates the virtual memory
to point out the shared copy. Detecting the page sharing
in their method goes further by eliminating the subpage
sharing using page patching and by adapting in-corememory
compression.

Ongaro et al. [30] studied the impact of Xen scheduling
policy on I/O bandwidth with several applications showing
the different performance characteristics. They found that

4 Scientific Programming

Xen’s credit scheduler does not lower the response latency
in the situation where several domains are concurrently
performing I/O, even with BOOST state. One of the reasons
is that the event channel driver always scans the pending
vector from the beginning, instead of resuming from where
it left. Also, they found the possibility of priority inversion
of which delivering the highest-priority packet is postponed
by preemption. Lu and Shen [31] traced the page miss ratio
of VMs, by employing the hypervisor-level exclusive cache.
They captured the pages evicted from VM memory into the
hypervisor exclusive cache, while avoiding containing the
same data in VM and exclusive cache. Jones et al. [32] also
proposed a way of inferring promoting and evicting pages of
buffer cache in the virtual memory. In order to correctly infer
page cache activities, they observed some sensitive events
causing control to be transferred toVMM, such as page faults,
page table updates, and disk I/Os.

However, optimizing either in the guest or in the hyper-
visor might not be enough to produce the desirable perfor-
mance because I/O path in the virtualization involves several
software layers including the shared storage to guest and
the guest to host. In this paper we attempted to target both
layers by implementing the guest-level component and the
hypervisor-level component.

3. MultiCache

3.1. System Structure. MultiCache was implemented to
exploit I/O optimizations targeting multiple layers of I/O
virtualization stack. Figure 2 represents an overall structure
of MultiCache. As can be seen in the figure, MultiCache
is divided into three components: guest-level component,
hypervisor-level component, and resource monitoring com-
ponent. The main goal of the guest-level component is to
mitigate the I/O latency between the shared storage and
the guest, by utilizing the history information of application
I/O executions. Furthermore, by retaining the application-
specific data in the guest, it can reduce I/O accesses to the
physical device attached to the host. Finally, it tries to deter-
mine the effective cache size while taking into consideration
VM and host resource usages in real time.

The guest-level component works at VM and consists
of three tables, including hash table, history table and I/O
map, to detect application’s I/O activities and to retain the
associated metadata representing the execution history logs.
Those logs are used to predict the next I/O behaviour to
preload the preferential files from the shared storage and also
used to maintain recently referenced files in VM.

The hypervisor-level component was implemented in
QEMU. The primary objective of this component is to
minimize the I/O latency incurred in the virtual to hypervisor
transition, by using the I/O access frequency measured in
QEMU. Also, by intercepting I/O requests before they go to
the host kernel, the component tries to reduce I/O contention
among VMs. The first attribute of the component is the
module interface interacting with QEMU I/O call while
exchanging the associated I/Ometadata with it, such as sector
numbers requested. The main module of the component
receives the I/O metadata from the interface and determines

the hit or miss, while communicating with the metadata
repository that contains the history logs of hypervisor’s I/O
execution, such as I/O access frequency. The device driver of
the component is responsible for managing the hypervisor
cache memory.

The third component of MultiCache is the real-time
resource monitoring component. The monitoring module
works at the hypervisor independently of guest operating
systems, collecting the resource usage information from all
VMs and the host server.Themonitoring information is used
by both components ofMultiCache to effectively perform I/O
optimization schemes. There are two tables associated with
the monitoring component: VM resource table for storing
VM resource usages and host resource table for host resource
usages.

3.2. Differences between Two Components of MultiCache.
There are four differences between the guest-level component
and the hypervisor-level component of MultiCache. First,
the main goal of the guest-level component is to mitigate
I/O overhead between the shared storage and the guest VM,
by prefetching and retaining files that will likely be used
in the near future. On the other hand, the hypervisor-level
component is to minimize I/O overhead between the guest
VM and the host, by cutting down I/O software stack inside
QEMU.

Second, two components of MultiCache use the different
I/O unit: files in the guest-level component and sectors
in the hypervisor-level component. While the guest-level
component uses files for I/O optimization, the hypervisor-
level component uses sectors that have been divided from
files in the guest kernel before arriving at QEMU I/O
call.

Third, to mitigate I/O overhead, the guest-level com-
ponent utilizes the usage count that indicates how many
times files have been referenced after they were brought
into the guest. By caching the files that have high usage
counts, the component attempts to reduce the network and
I/O overheads between the shared storage and the guest
VM. Also, this information is used to reduce I/O accesses
from the host. The hypervisor-level component utilizes the
I/O access frequency that implies how often sectors have
been accessed from the host. Instead of forwarding sectors
having frequently been used to the host, the hypervisor-
level component caches those sectors in memory to reduce
application process block time and I/O contention on the
host.

Finally, while the guest-level component reserves the
cache memory in the guest VM, the hypervisor-level com-
ponent reserves the cache memory in the hypervisor, which
is managed independently of guest operation systems. Table 1
illustrates the brief description about the differences between
two MultiCache components.

3.3. MultiCache Guest-Level Component. The guest-level
component of MultiCache was implemented to optimize
network and I/O overheads incurring in file transmissions
between the shared storage and the guest VM. Furthermore,
by monitoring and accumulating I/O history information,

Scientific Programming 5

Hypervisor-level module interface

Hypervisor-level
main module

Hypervisor-level device driver

Guest
KV

M

Q
EM

U

Host

VM CPU usage VM memory usage VM disk usage VM network usage

Resource
monitor

V
M

 re
so

ur
ce

 ta
bl

e

H
os

t r
es

ou
rc

e t
ab

le

VM #1

QEMU I/O call

MultiCache hypervisor-level component

Metadata
repository

Hash table History table I/O map

Guest-level main module

MultiCache guest-level component

Hash table History table I/O map

Guest-level main module

MultiCache guest-level component

VM #2

Host CPU usage Host memory usage Host disk usage Host network usage

Figure 2: MultiCache structure.

Table 1: Difference between two MultiCache components.

Guest-level
component

Hypervisor-level
component

Objective
To minimize the
overhead between
the shared storage
and the guest VM

To minimize the
overhead between
the guest VM and

the host
I/O unit File Sector

Optimization hint File usage count Sector I/O access
frequency

Cache memory Placed in the guest
VM

Placed in the
hypervisor

OS dependency Yes No

MultiCache enables providing better I/O responsiveness and
data reliability.

To maintain the history information, MultiCache uses
two kinds of tables: hash table and history table. The hash
table is constructed with hash keys and is used to locate
the associated history table containing the corresponding file
metadata. There are 𝜆 history tables organized to solve the
hash collision. One of the important file metadata in the
history table is the usage count. Every time files are accessed
for read and write operations, their associated usage count is
increased by one to indicate the file access frequency. Also,

MultiCache uses two I/O maps to determine the number of
files to prefetch it from and to replace it to the shared storage.

Figure 3 shows the structure of MultiCache guest-level
component. First, with the file inode, the hash key to access
the hash table is calculated. The associated hash table entry
contains the current history table address and its entry
number where the desired file metadata can be retrieved. If
the new file is used for I/O, then the next empty place in the
current history table is provided to store its metadata.

In order to maintain the appropriate cache memory size
in the guest, only the files with each having the usage count
no less than USAGE THRESHOLD are stored in the cache
and their file metadata is inserted into the read or write map,
based on file read or write operations. Separately maintaining
read and write maps offers two benefits. First, it enables
cashing more files showing frequent read executions in order
to support the better chance for the fast read responsiveness.
Second, it can contribute to enhancing data reliability and
availability by flushing out more dirty files at the replacement
phase. Besides, the I/O map enables maintaining files in the
guest according to their frequency and recentness to reduce
I/O accesses to the host.

In Figure 3, sections 𝐴 (cache window size) and 𝐶 in
the read and write maps, respectively, illustrate the files that
should be maintained in the cache memory; sections 𝐵 and
𝐷 are the candidates to be replaced under the cache memory
pressure. MultiCache can enhance the read responsiveness

6 Scientific Programming

Shared
storage

Hash table

Guest VM

Hash key of
a file inode

Key Start history table address Current history table address Current table entry number

Hash table entry

File name File size Directory at the storage Directory at guest VMAccess time Usage count Read/write Map location

History table entry

Read map

Write map

In case of readA

C

B

D

In case of write

· · ·

History table1 History table2 History table𝜆

Figure 3: MultiCache guest-level component.

by caching more files whose most recent I/O accesses are
read operations. Such a process involves replacing less files
mapped in section 𝐵. Similarly, MultiCache can replace
more dirty files mapped to section 𝐷 for data reliability and
availability. Let𝑀𝑔 be the guest-level cache memory size and
letMEM THRESHOLD be thememory usage limitation over

which files designated at sections𝐵 and𝐷must be flushed out
to maintain the appropriate cache memory capacity. Finally,
let 𝑓𝑎, 𝑓𝑏, 𝑔𝑐, and 𝑔𝑑 be files whose metadata are mapped to
sections 𝐴, 𝐵, 𝐶, and 𝐷, respectively. At each time epoch,
MultiCache checks𝑀𝑔 by communicating with the resource
monitor to see if the following condition is satisfied:

{∑
𝑓
𝑎
∈𝐴

size (𝑓𝑎) + ∑𝑓
𝑏
∈𝐵

size (𝑓𝑏) + ∑𝑔
𝑐
∈𝐶

size (𝑔𝑐) + ∑𝑔
𝑑
∈𝐷

size (𝑔𝑑)}
𝑀𝑔

≤ 𝑀𝐸𝑀 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷. (1)

Algorithm 1 shows the steps involved in the guest-level
component of MultiCache. Let 𝑖 and 𝑘 be the most recent
positions of the read and write maps, respectively. Also, let
𝑓 be the file for read and let 𝑔 be the file for write.

In steps (1) and (2), MultiCache calculates the hash keys
of 𝑓 and 𝑔 to access their file metadata from two tables.
Also, the usage counts of two files are increased. In steps
(4) to (17), if the usage count is larger than or equal to the
threshold, then the metadata of 𝑓 and 𝑔 are inserted into the
read and write maps, respectively, to store the associated data
to MultiCache. In particular, if the last access of 𝑓 was write,
then the metadata is migrated from the write map to the read
map, while erasing its history from the write map. The same
procedure is applied for 𝑔 to save its metadata to the write
map. Steps (18) to (24) describe the procedure to maintain
the appropriate cache size by taking into account condition
(1). In the case that the condition is not satisfied, files mapped

to sections 𝐵 and 𝐷 are flushed out to eliminate the memory
pressure.

3.4. MultiCache Hypervisor-Level Component. The hypervi-
sor-level component was implemented to minimize the I/O
overhead caused by the software stack between the guest
VM and the host. Before completing I/O requests, there
are several mode transitions taking place between nonroot
mode and root mode, which incurs the application execution
being blocked. Furthermore, because those requests require
accessing the data from the physical device attached to the
host, the optimization at the hypervisor needs a way of
reducing I/O contention on the device during the service
time.

MultiCache hypervisor-level component uses several
tables, called the metadata repository, to maintain I/O-
related metadata at the hypervisor. Figure 4 shows the tables

Scientific Programming 7

(1) calculate the hash keys of 𝑓 and 𝑔 to retrieve their file metadata from the hash and history tables;
(2) if (not found) then insert their metadata to the hash table and the history table end if
(3) increase the usage counts of 𝑓 and 𝑔 by one;
(4) if (the usage count of 𝑓 ≥ USAGE THRESHOLD) then
(5) if (𝑓 ∈ read map and its position in read map is 𝑎 where 𝑎 < 𝑖) then
(6) 𝑖++; move the metadata of 𝑓 from 𝑎th position to 𝑖th position of read map;
(7) else if (𝑓 ∈ write map) then
(8) 𝑖++; move the metadata of 𝑓 to 𝑖th position of read map; delete it from write map;
(9) else 𝑖++; insert the metadata of 𝑓 to 𝑖th position of read map end if
(10) end if
(11) if (the usage count of 𝑔 ≥ USAGE THRESHOLD) then
(12) if (𝑔 ∈ write map and its position in write map is 𝑏 where 𝑏 < 𝑘) then
(13) 𝑘++; move the metadata of 𝑔 from 𝑏th position to 𝑘th position of write map;
(14) else if (𝑔 ∈ read map) then
(15) 𝑘++; move the metadata of 𝑔 to 𝑘th position of write map; delete it from read map;
(16) else 𝑘++; insert the metadata of 𝑔 to 𝑘th position of write map end if
(17) end if
(18) for each time epoch
(19) receive the current guest VMmemory size from the resource monitor;
(20) check the condition specified in (1);
(21) if (the condition is not satisfied) then
(22) flush out files depicted in the section 𝐵 or𝐷 until memory pressure is eliminated;
(23) end if
(24) end for

Algorithm 1: MultiCache guest-level component.

Write index tableRead index table

Cache memory table

Address table Read index table address Write index table address Cache memory table address

Key Start read/write metadata table address Current read/write metadata table address Current table entry number

Sector number Sector size I/O access frequency Sector weight Chunk number Segment number

Start memory address Next chunk address Next chunk number Next segment addressNext segment number

Address table entry

Read/write index table entry

Read/write metadata table entry

Cache memory table entry

Read metadata table1 Write metadata table1

Read metadata table2 Write metadata table2

Read metadata table𝜆 Write metadata table𝜆

.

.

.
.
.
.

Figure 4: Metadata repository of the hypervisor-level component.

in the metadata repository. The address table stores the
addresses of the read and write index tables containing
the hash key and the start and current addresses of the
read and write metadata tables. Similar to the history tables
of the guest-level component, 𝜆 read metadata tables and
𝜆 write metadata tables are organized to target the colli-
sion problem. The read and write metadata tables contain
the access information about the sectors transferred from
QEMU I/O calls; the cache memory table maintains the
next chunk and segment addresses of the hypervisor cache
memory.

The hypervisor-level component uses I/O access frequen-
cies of sectors to determine if those sectors should be retained
in the cachememory.The I/O access frequency indicates how
many times the associated sectors were used in I/O requests.
There are two reasons for utilizing I/O access frequency. First,
because the cache memory maintained in MultiCache is of
a restricted size, a criterion is needed to filter sectors before
storing them in the cachememory. InMultiCache, only those

sectors that have been accessed no less than a threshold
(FREQ THRESHOLD) are stored in the cache memory.

Second, besides optimizing the mode transition and I/O
contention aforementioned, MultiCache gives an opportu-
nity to prioritize I/O requests, according to the VM’s different
importance. In other words, I/O requests issued in the high-
priority guest VM can be executed first, despite their access
frequency. In MultiCache, the priority of VM is determined
by the number of CPUs and the memory capacity with which
the VM was configured: the more number of CPUs and the
largermemory size it is assigned, the higher priority the guest
is given.

Let 𝑆 be a set of sectors consisting of I/O requests in a
guest. Consider a host where𝑁 number of VMs are currently
executing. Also, each VM(𝑖) is configured with 𝑢𝑖 number of
CPUs and V𝑖 memory capacity.

Definition 1. A sector sc ∈ 𝑆 issued from VM(𝑖) is defined by
four components: 𝑝sc, 𝑤sc, 𝛿sc, and𝑚sc:

8 Scientific Programming

(1) apply the hash function to obtain a hash key using sc;
(2) access the read index table with the hash key to retrieve the metadata of sc from the read metadata table;
(3) if no metadata about sc is available in the read index table then
(4) store it in the read index table and the current read metadata table;
(5) update the read index table to point out the next entry of the current read metadata table;
(6) end if
(7) 𝑝sc++; 𝑤sc = 𝑝sc × the weight of guest VM;
(8) if (𝑤sc < FREQ THRESHOLD) then 𝛿sc = 0; exit to access sc from the host end if
(9) if sc has not been mapped to the cache memory then
(10) 𝛿sc = 0;
(11) map sc to the cache, by retrieving the chunk and segment numbers from the cache memory table;
(12) else
(13) 𝛿sc = 1;
(14) access the cache memory with the chunk and segment numbers of sc retrieved;
(15) end if

Algorithm 2: MultiCache hypervisor-level component.

(1) 𝑝sc is the I/O access frequency of sc.

(2) 𝑤sc is the weight of sc satisfying 𝑤sc = 𝑝sc × (𝑢𝑖/

∑
𝑁

𝑘=1
𝑢𝑘) × (V𝑖/∑

𝑁

𝑘=1
V𝑘), where (𝑢𝑖/∑

𝑁

𝑘=1
𝑢𝑘) × (V𝑖/

∑
𝑁

𝑘=1
V𝑘) is the weight of VM(𝑖).

(3) 𝛿sc is the mapping function, indicating either cache
hit (𝛿sc = 1) or miss (𝛿sc = 0).

(4) 𝑚sc is the position of the cache memory, where sc is
stored if 𝑤sc ≥ 𝐹𝑅𝐸𝑄 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷.

Algorithm 2 represents the steps for reading sc at the
hypervisor-level component of MultiCache.

Suppose that sc is one of the sectors consisting of a read
request in the guest. MultiCache calculates a hash key to
access the read index table containing the corresponding read
metadata table address. After retrieving the associated meta-
data from the table, the I/O access frequency is multiplied by
the VM weight to obtain the weight of sc. In the case where
the weight of sc is less than FREQ THRESHOLD, MultiCache
passes sc to the host kernel to access it from the physical
I/O device. Otherwise, from step (9) to step (15), MultiCache
checks to see if sc has been stored in the cachememory. If not,
sc is stored in the memory by using the chunk and segment
numbers retrieved from the cache memory table. In the case
where sc is found in the cache memory, it returns to the guest
without going down to the host kernel. In the write operation,
after updating the associatedmetadata to thewrite index table
and the write metadata table, the sector is mapped to the
cache table. If the associatedmetadata is available in the table,
then the sector having been mapped in the cache memory is
overwritten to update.

The cache memory handled by the hypervisor-level com-
ponent is partitioned into chunks that consisted of a number
of pages. In case of the write cachememory, the sectors stored
in the chunk are transmitted to the host kernel, either after
the chunk is filled with valid sectors or when the current
checkpoint (currently every 30 seconds) for the chunk comes.
Let 𝑀ℎ be the size of the cache memory; let 𝐶𝑖 be the 𝑖th
chunk; and let |𝐶𝑖| be the size of 𝐶𝑖. Also, let seg𝑘 be the 𝑘th

segment of𝐶𝑖 whose size, |seg𝑘|, is the same as that of a sector.
The chunk validity and segment validity are determined by
the chunk map and the segment map, respectively.

Definition 2. The allocation status of 𝐶𝑖 in the chunk map
and the one of seg

𝑘
of 𝐶𝑖 in the segment map are defined as

follows:

For any chunk 𝐶𝑖, bit: 𝐶[𝑖] → {0, 1}, 1 ≤ 𝑖 ≤ 𝑀ℎ/|𝐶𝑖|.
For any segment seg

𝑘
∈ 𝐶𝑖, bit: seg[𝑖, 𝑘] → {0, 1}, 1 ≤

𝑘 ≤ |𝐶𝑖|/|seg𝑘|.

If bit(seg[𝑖, 𝑘]) = 1, then the segment contains a valid
sector that should be transferred to the host. Otherwise,
bit(seg[𝑖, 𝑘]) = 0. Also, bit(𝐶[𝑖]) = 1 implies that all the seg-
ments consisting of 𝐶𝑖 contain the valid sectors. Algorithm 3
shows the steps involved in the write process for the cache
memory.

3.5. MultiCache Resource Monitor. The resource monitor
calculates the resource statuses of guest VMs and host server
at the hypervisor level because it should monitor the usage
information independently of guest operating systems. Also,
it is organized with the light-weight modules so that it
rarely affects I/O bandwidth on VMs. During application
executions, the monitor periodically notifies the resource
usage information to the guest-level and hypervisor-level
components to help themmaintain the effective cache capac-
ity for I/O improvement.

The resource monitor is composed of three modules:
resource collectionmodule, resource calculationmodule, and
usage container. The resource collection module works on
top of the server, while communicating with proc file system
and libvirt to collect the resource status information such as
CPU, memory, disk I/O, and network status. The resource
calculationmodule calculates resource usages and, finally, the
usage container stores the calculated information to offer it to
both components of MultiCache.

Figure 5 represents the functions to be called in the
resource monitor. To activate the monitor, the resource

Scientific Programming 9

(1) for each chunk 𝐶
𝑖

(2) if (bit(𝐶[𝑖]) = 1) then transfer 𝐶
𝑖
to the host; bit(𝐶[𝑖]) = 0 end if

(3) end for
(4) /∗ let sc be the current sector to be stored in the cache memory ∗/
(5) /∗ let 𝑖 and 𝑘 be the chunk and segment numbers, respectively, selected from the cache memory table ∗/
(6) store sc to seg

𝑘
of 𝐶
𝑖
; bit(seg[𝑖, 𝑘]) = 1; update bit(𝐶[𝑖]) while reflecting bit(seg[𝑖, 𝑘]) value;

(7) 𝑘++;
(8) if ((𝑘 < |𝐶

𝑖
|/|seg

𝑘
|) and bit(seg[𝑖, 𝑘]) = 0) then

(9) store 𝑖 and 𝑘 to the cache memory table as the next position in the cache memory; exit;
(10) end if
(11) /∗ find the next empty chunk in the cache memory ∗/
(12) search for 𝐶

𝑖
such that (𝑖 = (𝑖 + 1)%(𝑀

ℎ
/|𝐶
𝑖
|) and bit(𝐶[𝑖]) = 0);

(13) store 𝑖 and 0 to the cache memory table as the next position in the cache memory;

Algorithm 3: Cache memory management.

struct HostDBReq

struct VMDBReq

GetMemInfo()

GetCPUInfo()

GetDiskInfo()
GetNetInfo()

GetVCPUInfo()

GetVMemInfo()

GetVDiskInfo()
GetVNetInfo()

SaveQuery()

ModuleInit()

allocedDataReq

calculatedVInfoReq

calculatedHInfoReq

Resource collection

Server

VM

Init routine

Proc routine

GetHostInfo()

CheckingDB()

DBTypeReq

CheckSystem()

GetVMInfo()

Host routine
CalcHostInfo()

CalcVMInfo()

MySQL
tableVM routine

Host table

HostName (PK)
IP Address
CPU
Memory
Disk
Network

VM table

VM UUID (PK)
HostName (FK)
VM name
CPU
Memory
Disk
Network

WaitforVDIStruct()
WaitforVDITableData()

Resource calculation Usage container

KERNEL

KVM

H
os

t a
nd

 V
M

 st
ru

ct
Re

q

H
os

t a
nd

 V
M

 ta
bl

eR
eq

Struct HostDB

u128 Hcpu
u128 Hmem
u128 w_Hdisk, r_Hdisk
u128 t_Hnet, r_Hnet

Struct VMDB

u128 Vcpu
u128 Vmem
u128 w_Vdisk, r_Vdisk
u128 t_Vnet, r_Vnet

VM routine
1 : N

Repeated at
every 𝜆

Figure 5: Resource monitor structure in MultiCache.

collection first initializes the functions to be called in the
resource calculation and the usage container, by issuing
𝑀𝑜𝑑𝑢𝑙𝑒𝐼𝑛𝑖𝑡(). Also, it communicates with /proc and libvirt at
every time period 𝜆 by calling 𝐺𝑒𝑡𝑋𝑋𝑋𝐼𝑛𝑓𝑜() and accumu-
lates the resource status information to store it to the usage
container. The resource calculation module retrieves the sta-
tus information, by calling calcHostInfo and 𝑐𝑎𝑙𝑐𝑉𝑀𝐼𝑛𝑓𝑜(),
and calculates the resource usages by applying the formulas
described in Table 2. Finally, the results are stored in the usage
container.

4. Performance Evaluation

4.1. Experimental Platform. We executed all experiments on
a host server equipped with an AMD FX 8350 eight-core
processors, 24GB of memory, and 1 TB of Seagate Barracuda
ST1000DM003 disk. Also, the other server having the same
hardware specification as the host server is configured as the

shared storage node. Two servers are connected with 1 Gbit of
network.The operating systemwasUbuntu release 14.04 with
3.13.0-24 generic kernel. We installed the virtual machine on
top of the host server by using KVM hypervisor. Each VM
was configured with two-core processors, 8 GB of memory,
and 50GB of virtual disk using virtIO. The operating system
of each VM was CentOS release 6.5 with 2.6.32-431 kernel.
We used postmark benchmark for the evaluation.

4.2. MultiCache Guest-Level Component Evaluation. We first
evaluated the guest-level component of MultiCache. In order
to analyze the accurate I/O performance pattern of the guest-
level component, we used the original KVM/QEMU version
that is not integrated with the MultiCache hypervisor-level
component. Also, we modified postmark to connect between
the host server and the shared storage node. As a result,
when files are generated from postmark, the files already
brought into the guest from the storage node are read from

10 Scientific Programming

Table 2: Formulas and data structures for calculating resource usages.

Resource usage formula Resource monitor data structure

CPU% = 100 −
100

total
× (idlenow − idle

𝑡
)

(i) Total: total CPU usage
(ii) idlenow, idle𝑡: idle values at the moment and at 𝑡

struct S ProcCpuInfo {
u128 user, nice, system, idle, iowait;
u128 irq, softirq, steal, guest;

}

Memory usage = 100 × total − f ree
total

(i) Total, free: total and free memory sizes, respectively

struct S ProcMemInfo {
u128 total, free;
u128 buffers, cached;

}

Disk usage = (sectrnow − sectr
𝑡
) × 512

(i) sectrnow, sectr𝑡: sector usages up to now and at 𝑡, respectively

struct S ProcDiskInfo {
char disk name[20];
u128 r compl, r merge, r sectr, r milsc;
u128 w compl, w merge;
u128 w sectr, w milsc;
u128 io c prc, io milsc, io w milsc;

}

Network usage

PPS = packetnow − packet
𝑡

PacketSize =
(bytenow − byte

𝑡
) × 8

PPS
+ 12 + 7 + 1

BPS = PPS × PacketSize
(i) PPS: number of packets transmitted per second
(ii) BPS: network bandwidth in bit per second

struct S ProcNetInfo {
char net name[20];
char net hwaddr[20];
u128 r byte, r pack, r err, r drop;
u128 r fifo, r frm, r cmp, r mult;
u128 t byte, t pack, t err, t drop;
u128 t fifo, t col, t cal, t cmp;

}

MultiCache (cached) and the other files not residing in
MultiCache are read from the storage through NFS (not
cached).

Figure 6 shows I/O bandwidth while varying file sizes
from 4KB to 1MB. 𝑥-axis represents the ratio of not cached
to cached. For example, 90 : 10 implies that 90% of files
to be needed during transactions are exchanged with the
shared storage node. The number of transactions is 20000
and the ratio of read to write is 50 : 50. In the figure,
as the percentage of files being accessed from MultiCache
becomes high, better I/O bandwidth is achieved. Moreover,
the effect of MultiCache is more apparent with large files.
For example, with 20 : 80, where 80% of files are accessed
fromMultiCache, about 53% of I/O bandwidth improvement
is observed with 1MB of files as compared to that of 4 KB
of files. The reason is that as more number of large files is
accessed from MultiCache the network overhead to transfer
data to VM becomes small, resulting in the bandwidth
speedup.

In the evaluations, we observed that the effect of Multi-
Cache is especially obvious with read operations, as shown
in Figure 7. In order to see the impact of MultiCache in
the mixed I/O operations, we varied the read and write
percentages while increasing the number of transactions. In
Figure 7, 80 : 20 means that 80% of transactions are read
operations and 20% of transactions are writes. Also, we used
1MB of file size. Figure 7 exhibits that better I/O throughput
is generated with the large number of transactions and
especially with the larger percentage of read operations. This
is because write operations inevitably incur network and
I/O overheads to store data to the shared storage and such
burdens may lower the throughput.

0

50

100

150

200

I/O
 b

an
dw

id
th

 (M
B/

se
c)

20 : 8050 : 5080 : 2090 : 10
Cache ratio (not cached : cached)

64KB
16KB
4KB 256KB

1MB

Figure 6: I/O bandwidth of virtCache.

However, I/O latency between the shared storage and the
VM is not the only one that should be addressed to achieve
the desirable performance. As mentioned, the I/O path from
the guest to the host should also be scrutinized because there
are multiple places causing the performance slowdown, such
as I/O contention to physical devices and mode transition
between the guest and the hypervisor. We will observe how
the hypervisor-level component of MultiCache can achieve
better bandwidth by overcoming such latencies.

4.3. I/OBandwidth ofHypervisor-Level Component. Wemea-
sured the I/O performance of the hypervisor-level compo-
nent. In this experiment, there is no file transmission between

Scientific Programming 11

5000
10000

15000
20000

0

50

100

150

200

250

300

350

I/O
 b

an
dw

id
th

 (M
B/

se
c)

90 : 1080 : 2050 : 5020 : 80
Read : write ratio

Figure 7: Performance evaluation based on I/O accesses.

0

20

40

60

80

100

Cache memory size

Ca
ch

e h
it

ra
tio

 (%
)

4GB2GB1GB500MB250MB

Figure 8: The effect of the cache memory.

the shared storage and the guest. In other words, all files for
I/O were generated from the postmark benchmark running
on the guest. The file sizes vary between 4KB and 1MB.

First of all, we observed the effect of the hypervisor cache
memory in Figure 8, while changing the cache memory size
from 250MB to 4GB. To warm the cache, we executed the
modified postmark for 5 seconds and took the average value
of each test case. Figure 8 shows the cache hit ratio obtained
while changing the cache memory size.The figure shows that
as the cache memory size becomes large, so does the hit ratio.
For example, increasing the memory size from 250MB to
4GB shows the hit ratio improvement by up to 6.9x.

However, there is a subtle difference worthwhile to
observe in the figure. While the hit ratio improves 126% from
500MB to 1GB, the hit ratio from 1GB to 2GB increases 34%.
Extending the cache memory from 2GB to 4GB produces
even the smaller percentage of hit ratio improvement. We
guess that this is because the locality is shifted as time goes
on. Also, the metadata stored in the metadata repository are
replaced to the new ones due to the space restriction.

Figure 9 shows the I/O bandwidth obtainedwhile varying
the cache memory size from 250MB to 4GB. We can notice
that Figure 9 depicts the similar performance pattern to
that of Figure 8: the larger cache memory size is, the better

1000

800

600

400

200

0

250MB 500MB 1GB 2GB 4GB
Cache memory size

Original
MultiCache

Re
ad

 b
an

dw
id

th
 (M

B/
se

c)

Figure 9: Read bandwidth based on the cache memory.

0

200

400

600

800

1000

Chunk size

Re
ad

 b
an

dw
id

th
 (M

B/
se

c)

4MB1MB512KB64KB

Figure 10: The effect of the chunk size on read.

I/O bandwidth is. Also, while increasing the cache memory
size from 500MB to 1GB shows about 43% of bandwidth
speedup, the cache memory extension from 1GB to 2GB
produces only 12% of performance improvement.

In Figure 9, we compared the I/O performance of Multi-
Cache to that of the original KVM/QEMU. With the small
cache memory size such as 250MB, the I/O bandwidth of
MultiCache is less than that of the original version because
of the cache miss incurred by space restriction. However,
the performance difference becomes large as the memory
size of MultiCache increases. With 2GB of cache memory
size, MultiCache produces about 37% of I/O bandwidth
improvement compared to that of the original version. We
currently use 2GB of cache memory size. The RAM size of
the host is 24GB; therefore we use only about 8% of the total
size as the cache memory.

Figure 10 shows the read results while changing the chunk
size from 64KB to 4MB in the cachememory. As can be seen
in the figure, changing the chunk size does little affect I/O
bandwidth in the read operation because no write occurred
to the host.

Figure 11 shows thewrite bandwidths ofMultiCachewhile
comparing to those of the original KVM/QEMU.The original
version supports three write modes: default, write-through,

12 Scientific Programming

0

100

200

300

400

500

600

700

MultiCache
Original (default)

Original (write-through)
Original (write-back)

Chunk size

W
rit

e b
an

dw
id

th
 (M

B/
se

c)

4MB1MB512KB64KB

Figure 11: Write bandwidth based on the chunk size.

and write-back. In the case of using 1MB of chunk size
in MultiCache, it generates about 33% and 27% higher
bandwidth than the default mode and the write-back mode
of the original version, respectively. There are two reasons
to explain such I/O bandwidth improvements. In the case of
write-back mode of the original version, it buffers the data
for I/O in the host kernel so that I/O requests issued in the
guest should go through the guest kernel and QEMU before
arriving at the host. Second, instead of flushing the data
out to the physical device, the hypervisor-level component
intercepts them in QEMU and collects in the cache memory
in a big I/Ounit. Such amethod can contribute to accelerating
I/O bandwidth, because, in Figure 11, we can notice that as
the chunk size increases, the write performance also becomes
large. However, based on the result with 4MB of chunk size,
increasing the size more than 1MB might not produce the
significant performance speedup due to the write latency in
the host.

5. Conclusion

We proposed a multilayered cache mechanism, called Mul-
tiCache, to optimize I/O virtualization overhead. The first
layer ofMultiCache is the guest-level component whosemain
goal is to optimize the I/O overhead between the back end,
shared storage, and the guest. Also, caching the application-
specific data in the guest can contribute to accelerating the
performance speedup. In order to achieve this goal, the guest-
level component uses the history logs of file usagemetadata to
preload preferential files from the shared storage and tomain-
tain recently referenced files in the guest. The second layer of
MultiCache is to minimize the I/O latency between the guest
and the host, by utilizing the I/O access frequency in QEMU.
Also, by intercepting I/O requests in QEMU before they are
transferred to the host kernel, the component can mitigate
I/O contention on the physical device attached to the host. In
the component, we accumulated the I/O access information
about application executions in the metadata repository and
used it to retain data with high I/O access frequency in
the cache memory. Both components of MultiCache were

integrated with the real-time resource monitoring module
collecting the resource usage information of VMs and host
at the hypervisor. The performance measurement with the
postmark demonstrates that our approach is beneficial in
achieving high I/O performance in the virtualization envi-
ronment. As a future work, we will evaluate MultiCache with
more real applications to prove its effectiveness in improving
I/O performance.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIP) (NRF-2014R1A2A2A01002614).

References

[1] R. Spruijt, “VDI Smackdown,” White Paper, v.1.4, 2012.
[2] J. Hwang and T. Wood, “Adaptive dynamic priority scheduling

for virtual desktop infrastructures,” in Proceedings of the IEEE
20th International Workshop on Quality of Service (IWQoS ’12),
pp. 1–9, IEEE, Coimbra, Portugal, June 2012.

[3] D.-A. Dasilva, L. Liu, N. Bessis, and Y. Zhan, “Enabling green IT
through building a virtual desktop infrastructure,” in Proceed-
ings of the 8th International Conference on Semantics, Knowledge
and Grids (SKG ’12), pp. 32–38, Beijing, China, October 2012.

[4] J. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging
the Gap between Software and Hardware Techniques for I/O
Virtualization,” in Proceedings of the USENIX Annual Technical
Conference, Boston, Mass, USA, 2008.

[5] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and Y. Jiang,
“Towards high-quality I/O virtualization,” in Proceedings of the
Israeli Experimental Systems Conference (SYSTOR ’09), article
12, May 2009.

[6] C. Tang, “FVD: a high-performance virtual machine image for-
mat for cloud,” in Proceedings of the USENIX Annual Technical
Conference, Portland, Ore, USA, June 2011.

[7] D. Le, H. Huang, and H. Wang, “Understanding performance
implications of nested file systems in a virtualized environ-
ment,” in Proceedings of the 10th USENX Conference on File and
Storage Technologies (FAST ’12), San Jose, Calif, USA, February
2012.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
the Linux virtual machine monitor,” in Proceedings of the
Ottawa Linux Symposium (OLS ’07), pp. 225–230, July 2007.

[9] R. Russell, “Virtio: towards a De-Facto standard for virtual I/O
devices,”ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 95–103, 2008.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, Anaheim, Calif, USA, April 2005.

[11] V. Tarasov, D. Hidebrand, G. Kuenning, and E. Zadok, “Virtual
machine workloads: the case for new benchmarks for NAS,” in
Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST ’13), pp. 307–320, Santa Clara, Calif, USA,
2013.

Scientific Programming 13

[12] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu,
“vCacheShare: automated server flash cache spacemanagement
in a virtualization environment,” in Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(USENIX ATC ’14), pp. 133–144, Philadelphia, Pa, USA, June
2014.

[13] S. Byan, J. Lentini, A. Madan et al., “Mercury: host-side flash
caching for the data center,” in Proceedings of the IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST
’12), pp. 1–12, IEEE, San Diego, Calif, USA, April 2012.

[14] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-
CAVE: effective SSD caching to improve virtual machine
storage performance,” in Proceedings of the 22nd International
Conference on Parallel Architectures andCompilation Techniques
(PACT ’13), pp. 103–112, Edinburgh, UK, September 2013.

[15] D. Arteaga and M. Zhao, “Client-side flash caching for cloud
systems,” in Proceedings of the 7th ACM International Systems
and Storage Conference (SYSTOR ’14), Haifa, Israel, June 2014.

[16] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu, and F. Zhou, “Optimizing
the live migration of virtual machine by CPU scheduling,”
Journal of Network and Computer Applications, vol. 34, no. 4,
pp. 1088–1096, 2011.

[17] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A.
F. De Rose, “Server consolidation with migration control for
virtualized data centers,” Future Generation Computer Systems,
vol. 27, no. 8, pp. 1027–1034, 2011.

[18] dm-cache, http://visa.lab.asu.edu/dmcache.
[19] K. Razavi and T. Kielmann, “Scalable virtual machine deploy-

ment using VM image caches,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’13), Denver, Colo, USA, November
2013.

[20] S. Bhosale, A. Caldeira, B. Grabowski et al., IBM Power Systems
SR-IOV, IBM Redpaper, IBM, 2014.

[21] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with SR-IOV,” Journal of
Parallel andDistributedComputing, vol. 72, no. 11, pp. 1471–1480,
2012.

[22] B. Yassour, M. Ben-Yehuda, and O. Wasserman, “Direct device
assignment for untrusted fully-virtualized virtual machines,”
Tech. Rep. H-0263, IBM Research, 2008.

[23] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger,
and R. Ladelsky, “Efficient and scalable paravirtual I/O system,”
in Proceedings of the USENIX Annual Technical Conference, pp.
231–242, San Jose, Calif, USA, 2013.

[24] A. Menon, A. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” in Proceedings of the USENIX Annual
Technical Conference, Boston, Mass, USA, 2006.

[25] P. Barham, B. Dragovic, K. Fraser et al., “Xen and the art of
virtualization,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, 2003.

[26] H. Kim, H. Jo, and J. Lee, “XHive: efficient cooperative caching
for virtual machines,” IEEE Transactions on Computers, vol. 60,
no. 1, pp. 106–119, 2011.

[27] M. Shamma,D.Meyer, J.Wires,M. Ivanova,N.Hutchinson, and
A. Warfield, “Capo: recapitulating storage for virtual desktops,”
in Proceedings of the 9th USENIX Conference on File and Storage
Technologies, San Jose, Calif, USA, February 2011.

[28] C.-H. Hong, Y.-P. Kim, S. Yoo, C.-Y. Lee, and C. Yoo, “Cache-
aware virtual machine scheduling on multi-core architecture,”
IEICE Transactions on Information and Systems, vol. E95-D, no.
10, pp. 2377–2392, 2012.

[29] D. Gupta, S. Lee,M. Vrable et al., “Difference engine: harnessing
memory redundancy in virtual machines,” Communications of
the ACM, vol. 53, no. 10, pp. 85–93, 2010.

[30] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in virtual
machine monitors,” in Proceedings of the 4th International
Conference on Virtual Execution Environments (VEE ’08), pp. 1–
10, Seattle, Wash, USA, March 2008.

[31] P. Lu and K. Shen, “Virtual machine memory access tracing
with hypervisor exclusive cache,” in Proceedings of the USENIX
Annual Technical Conference, Santa Clara, Calif, USA, June
2007.

[32] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Geiger: monitoring the buffer cache in a virtual machine
environment,” ACM SIGPLAN Notices, vol. 40, no. 5, pp. 14–24,
2006.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

