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Aiming at the multiple target recognition problems in large-scene SAR image with strong speckle, a robust full-process method
from target detection, feature extraction to target recognition is studied in this paper. By introducing a simple 8-neighborhood
orthogonal basis, a local multiscale decomposition method from the center of gravity of the target is presented. Using this method,
an image can be processed with a multilevel sampling filter and the target’s multiscale features in eight directions and one low
frequency filtering feature can be derived directly by the key pixels sampling. At the same time, a recognition algorithm organically
integrating the local multiscale features and the multiscale wavelet kernel classifier is studied, which realizes the quick classification
with robustness and high accuracy formulticlass image targets.The results of classification and adaptability analysis on speckle show
that the robust algorithm is effective not only for the MSTAR (Moving and Stationary Target Automatic Recognition) target chips
but also for the automatic target recognition of multiclass/multitarget in large-scene SAR image with strong speckle; meanwhile,
the method has good robustness to target’s rotation and scale transformation.

1. Introduction

Synthetic Aperture Radar (SAR) is an important sensor due
to its all weather, day/night, high resolution imaging, and
long standoff capability. Along with the development of
radar technologies, as well as with increasing demands for
target identification in radar applications, automatic target
recognition (ATR) using SAR has become an important
branch of image recognition.

Although there are many research findings in early SAR
ATR field, most algorithms are based on the single target
chips of the MSTAR dataset [1]. The MSTAR public dataset
was provided by DARPA (Defense Advanced Research
Project Agency)/AFRL (Air Force Research Laboratory).
The MSTAR data is a standard dataset in the SAR ATR
community, allowing researchers to fairly test and compare
their ATR algorithms. The MSTAR data used in this paper
consists of 128 × 128 pixel chips, which are 1 foot resolution,
X-band, and three types of ground military vehicles, that is,
BMP2, BTR70, and T72. Each chip has SAR images separated

by 1∘ azimuth increments within an angular coverage from
0∘ to 360∘. All the chips are taken at depression angles of
17∘ and 15∘. As the MSTAR dataset gives the target chip
directly, which are fixed in size and target position, the
target segmentation and detection processes of the above-
mentioned algorithms are omitted. Moreover, as there is
only one target in each sample chip, the difficulty of target
feature extraction is significantly reduced, which gives a low
availability for practical applications. So, these algorithms are
not the real sense of SAR image ATR.

In real applications, a common ATR of SAR images from
the input of image to the output of recognition result can
be divided into four stages, (I) image preprocessing, (II)
feature processing, (III) classification, and (IV) postprocess-
ing. In stage I, the main works include image filtering and
denoising, distortion correction, image segmentation and
target detection, regions of interest (ROI) discrimination, and
image normalization. Stage II commonly contains the feature
extraction, feature selection, feature dimension reduction,
data clustering, and novelty detection. In stage III, the tasks
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include the selection and design of classifier, the training
of classifier, and target classification. The main work of
postprocessing in stage IV is the further improvement for
the early classification process; this stage critically focuses on
the recognition precision and robustness, which are the chief
properties of SAR ATR systems.

There are some special requirements to the SAR ATR
algorithms, especially in the steps of feature extraction and
the design of classifier. For example, the principle of the
feature extraction method must be simple and can be easily
realized with a real-time requirement; the feature has the
advantages of antinoise and anticluster ability; and the feature
has strong robustness for the translation, rotation, and scale
transformation. On the other hand, the classifier must have
high classification precision and learning efficiency.

By analyzing the literatures on SAR ATR [2], it can be
found that the feature based classification methods get more
and more attention than the whole image based methods.
Many typical feature extraction methods have been used for
SAR image classification, such as the PCA [3], the SDA [4],
the shadow contour [5], multilinear subspace learning of
tensor objects [6], the neighborhood geometric center scaling
embedding method [7], feature selection [8], and feature
sparsity [9]. In the classifier design and selection aspect, there
are also some algorithms such as neural networks [10–12],
support vector machine [13], and boosting [14].

For the common off-line recognition task, the above-
mentioned methods maybe have some merits and have high
recognition precision, but most of these methods need a
large number of labeled samples to train an efficient classifier
and cannot support the robust and full-process application
of ATR. Whether in the realization difficulty aspect of
feature extraction, or in the aspect of adaptability on speckle,
there are still large gaps to the practical applications. In
recent years, the event detection and event recounting to the
unconstrained web videos have attracted a lot of attention;
some new algorithms also have achieved state-of-the-art
performances using the zero-example or limited supervision
methods [15, 16]. But analyzing the image frame in the real-
time videos, we can see that the targets are clear and have
no noise, which is different from the SAR image ATR. The
SAR images are usually fuzzy, whether the targets in the
images or the backgrounds. Especially for the targets in SAR
image, the inevitable speckle, which is a chaotic phenomenon
that results from coherent summation of the backscattered
signals, may cause great disturbance to the target features. So,
the robustness of the algorithm on speckle directly decides
the final recognition efficiency. As a result, the performance
evaluation, especially the robustness and adaptability analysis
of the algorithm, is very important work [17].

On this basis, a robust method from target detection,
feature extraction to target recognition is studied, which
can solve the multitarget ATR in large-scene SAR images
effectively. The distributions of the method mainly include
three aspects. Firstly, a robust local multiresolution analysis
method for image target is presented, which brings a fast
realization of feature extraction.Meanwhile, the dimension of
the feature vector is relatively lower than some othermethods
with the similar performance. To acquire effective features, a

multiscale analysis method from the center of gravity of the
SAR image target is presented. By introducing a simple 8-
neighborhood orthogonal basis, an image can be processed
with a multilevel sampling filter, and then the multiscale
features in eight directions and one low frequency filtering
feature of the image can be achieved. Furthermore, the feature
extractionmethod can be simply and rapidly realized and has
good characterization performance. Secondly, aiming at the
multiscale features, a multiple kernel classifier and the fusion
between the multiscale features and the multiple kernels are
studied, which brings higher classifier precision than the
common single kernel support vector classifier. Comparing
with the traditional method, the presented algorithm is far
more advanced in fast detection of target and the dimension
of feature vectors. Thirdly, the presented algorithm is a full-
process image target recognition method, which can realize
the steps frommultiple targets detection, feature extraction to
target recognition in large-scene SAR images, and has better
practical application value. Analyzing the relevant references
on SAR ATR, we can find that most target classification
algorithms are only suitable for the step-by-step recognition
and single target image cases, which is not the real SAR
automatic target recognition.The robust algorithm is effective
not only for the MSTAR target chips but also for the ATR of
multiclass/multitarget in large-scene SAR image with strong
speckle. Also, the method has strong robustness against the
rotation and scale transformation.

In the remainder of this paper, we go along through
different sections which are organized as follows: in Section 2,
we introduce the local multiscale feature extraction method
and design the multiscale wavelet kernel classifier.The robust
target recognition method and adaptability analysis against
speckle are studied in Section 3. In Section 4, several experi-
ments are carried out to testify the effectiveness of themethod
proposed in this paper. Finally, we conclude in Section 5.

2. Feature Extraction and Design of Classifier

2.1. Feature Extraction. On SAR image targets (especially the
vehicle targets owning some structural characters), without
loss of generality, we may also take the MSTAR dataset as the
object of investigation. The targets in MSTAR chips have the
following characters: the sample images are the chips with the
same size; there is only one target in one chip; the target lies
in the center of the chip; the targets are distributed around
the centers of the chips within an angular coverage between
0∘ and 360∘; the chips have the same resolution and scale.

Most of the traditional multiresolution analysis methods
are realized by filter and sampling, which can solve the
generation problem of orthogonal basis effectively, but the
sampling is commonly from the beginning to the end of
series. These methods have disadvantages for feature extrac-
tion, because the obtained orthogonal basis may not give
the similar expression for the data having the same local
characteristic. Inspired by the sampling filter idea of the
traditional wavelet method, a new sampling method using a
local extension is adopted to solve this problem. With this
method, each sampling process is extended from the local
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Figure 1: 8-neighborhood orthogonal basis and its frequency spectrum.

point to around, which can guarantee the generated basis
pointing to the local region and can guarantee the same local
characteristics having the similar projection coefficients on
the basis. In the detailed implementation, we can begin from
the local point of an image (e.g., the point could be a Point
of Interest (POI) or a geometric center point); then several
times of filtering process can be executed using the fast filter;
namely, the multiscale decomposition of the image is gained,
and the difference of Gaussian (DOG) like space image of the
original image is also obtained. Finally, directly utilizing the
key pixels sampling from themultilevel image, we can rapidly
obtain the local multiscale feature of the image.

Through the above analyzing, we can firstly construct
a multilevel DOG like scale space based on image. Then
we design an 8-neighborhood orthogonal basis, with which
the multilevel sampling filter on image can be executed.
As a result, the image features in the 8 directions and a
low frequency feature are derived. The structure of the 8-
neighborhood orthogonal basis and its frequency spectrum
are shown in Figure 1.

Aiming at the images in MSTAR dataset, the targets first
can be detected using the constant false alarm rate (CFAR)
method. In consideration of the targets only occupying the
central location of the chips, for convenience, the central area
with the size of 81 × 81 in each 128 × 128 chip is taken as the
research target.

To get robust and effective features, a multiscale analysis
method from the center of gravity of the SAR image target
is presented. The above-mentioned 8-neighborhood orthog-
onal basis is also a template matrix; a convolution operation
between the original image matrix and the template matrix
can be executed using

g = f ⊗ h,
g (𝑖, 𝑗) = ∑

𝑘,𝑙

f (𝑖 + 𝑘, 𝑗 + 𝑙) h (𝑘, 𝑙) , (1)

where g is the image after sampling, f is the original image,
and h is the template image. In this process, the obtained
image can be seemed as a sampling filter from the original
image. If the convolution is applied repeatedly, the pyramid-
shapedmultilevel sampling filter images is gained. Finally, the
multiscale features in eight directions and one low frequency
filtering feature can be achieved from the direct selection
of key pixels in every level of the pyramid images. In this
paper, the obtained image is processed by a 4-level local
multiresolution decomposition. As for the feature extraction,
we can directly choose the pixels in each level of the image
as follows: in the highest level, the image size is 3 × 3; all the
9 pixels are chosen as the 9-dimension feature; in the second
level, the 8 image blocks with the size of 3 × 3 corresponding
to the 8 peripheral pixels in the highest level are chosen as the
feature, so the feature dimension is 72; the feature extraction
method in the third level is similar to the second level; the
eight 3× 3 image blocks corresponding to the block centers in
the second level are selected; the feature dimension is also 72;
in the fourth level, the peripheral 8 central pixels are directly
selected, so the feature dimension is 8. So, for a given image,
the total feature dimension is 9 + 72 + 72 + 8 = 161.
2.2. MultiscaleWavelet Kernel Support Vector Classifier. Neu-
ral network based methods are widely used in hypersonic
flight automatic control [18–20] and the tracking control in
the Internet of Things [21], but SAR ATR is a high real-time
application, and in most cases, enough SAR target images
could not be collected. So, the support vector machine is
chosen as the classifier, which is suitable for small samples
and can be well modified for the online learning. As the
common support vector classifier (SVC) has low speed owing
to the solution of quadric programming, it is hard for them
to apply to some real-time cases. Suykens and Vandewalle
[22] proposed an improved SVM method, least squares
support vector machine (LSSVM). By replacing the quadric
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programming with a solution of linear equations, LSSVMhas
a great improvement on speed. According to the Structural
Risk Minimization principle, the optimization problem of
LSSVC is given as

min 12𝜔T𝜔 + 12𝐶
𝑙∑
𝑖=1

𝜉2𝑖
s.t. 𝑦𝑖 − 𝜔Τ𝜑 (x𝑖) − 𝑏 = 𝜉𝑖, 𝑖 = 1, 2, . . . , 𝑙,

(2)

where 𝜔 is the normal vector of the decision surface, 𝐶 is the
error penalty parameter, 𝜉𝑖 is the error of the 𝑖th sample, x𝑖 is
the 𝑖th sample, 𝑦𝑖 is the corresponding class label, and 𝑏 is the
bias term.

Transforming (2) to a nonrestricted optimization, the
Lagrangian function can be defined as

𝐿 = 12𝜔T𝜔 + 12𝐶
𝑙∑
𝑖=1

𝜉2𝑖 − 𝑙∑
𝑖=1

𝛼𝑖 [𝜔Τ𝜑 (x𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖] , (3)

where 𝛼𝑖 are Lagrangian multipliers. The optimality of upper
function is as the following sets of linear equations instead of
quadratic program in traditional SVC.

𝜕𝐿𝜕𝜔 = 0 󳨀→ 𝜔 =
𝑙∑
𝑖=1

𝛼𝑖𝜑 (x𝑖) ,
𝜕𝐿𝜕𝑏 = 0 󳨀→

𝑙∑
𝑖=1

𝛼𝑖 = 0,
𝜕𝐿𝜕𝜉𝑖 = 0 󳨀→ 𝛼𝑖 = 𝐶𝜉𝑖,
𝜕𝐿𝜕𝛼𝑖 = 0 󳨀→ 𝜔Τ𝜑 (x𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖 = 0.

(4)

By eliminating variables 𝜔 and 𝜉𝑖, we get the following
equation:

[
[
0 󳨀⇀1 Τ󳨀⇀1 K + 𝐶−1I]][

𝑏
𝛼

] = [0
Y
] , (5)

where Y = (𝑦1, 𝑦2, . . . , 𝑦𝑙)T, 󳨀⇀1 = (1, 1, . . . , 1)T, 𝛼 = (𝛼1, 𝛼2,. . . , 𝛼𝑙)T, I is 𝑙 × 𝑙 identity matrix, K𝑖,𝑗 = 𝜑(x𝑖)T𝜑(x𝑗) =𝑘(x𝑖, x𝑗), and 𝑘(⋅, ⋅) is kernel function, 𝑖, 𝑗 = 1, 2, . . . , 𝑙.
Then solving the linear equations, we get the decision

function of LSSVC as

𝑓 (x) = sgn[ 𝑙∑
𝑖=1

𝛼𝑖𝑦𝑖𝑘 (x, x𝑖) + 𝑏] . (6)

Set H = K + 𝐶−1I; we can get the classifier coefficient
vector 𝛼 and the bias item 𝑏 from (5)

𝑏 = 󳨀⇀1 T
H−1Y󳨀⇀1 T
H−1󳨀⇀1 , (7)

𝛼 = H−1(Y − 󳨀⇀1 󳨀⇀1 T
H−1Y󳨀⇀1 T

H−1󳨀⇀1 ) . (8)

The fusion of kernels with multiple scales is a special
situation of multiple kernel learning [23, 24]. This kernel
method has better flexibility and can bring more completed
scale choice than other methods, such as the multiscale
kernel method. In addition, with the wavelet theory and the
multiscale analysis theory continuing to mature, the multiple
kernel method gains good theory background by introducing
the scale space, which is a great promotion for kernel method
based machine learning [25, 26].

The foundation of multiscale kernel method is seeking a
set of kernel functions owning the multiscale representation
capability. Among the kernel functions beingwidely used, the
Gaussian radial basis function (RBF) (9) is the most popular
one, because of its general approximation ability. Meanwhile,
it is also a typical kernel and can be multiscaled

𝑘 (x, z) = exp(−‖x − z‖22𝜎2 ) . (9)

Taking the RBF kernel as the example, it can be mul-
tiscaled as (10) (suppose the generated kernels have the
translation invariant)

exp(‖x − z‖22𝜎21 ) , . . . , exp(‖x − z‖22𝜎2𝑚 ) , (10)

where 𝜎1 < ⋅ ⋅ ⋅ < 𝜎𝑚. From (10), we can find that when 𝜎 is
small, the support vector classifier (SVC) with the RBF kernel
can fit the samples having drastic variation. And when 𝜎 is
larger, the same classifier can well classify the samples with
mild variation. So the multiscale kernels can obtain better
generalization. Inspired by the scale-variant rule of wavelet
transformation, the values of can be defined as

𝜎𝑖 = 2𝑖𝜎, 𝑖 = 0, 1, 2, . . . (11)

Another typical multiscale kernel is the wavelet kernel
function [27].

Theorem 1. Let ℎ(𝑥) be a mother wavelet function, 𝑎 and 𝑐 are
the scaling factor and the transfer factor, 𝑥, 𝑎, 𝑐 ∈ R, if x, z ∈
R𝑛, and then the inner product type wavelet kernel function
can be expressed as

𝑘 (x, z) = 𝑛∏
𝑖=1

ℎ (𝑥𝑖 − 𝑐𝑖𝑎 ) ℎ(𝑧𝑖 − 𝑐󸀠𝑖𝑎 ) , (12)

and the transfer invariant wavelet kernel function is

𝑘 (x, z) = 𝑛∏
𝑖=1

ℎ (𝑥𝑖 − 𝑧𝑖𝑎 ) . (13)

Theorem 2. Considering a common wavelet function (14)

ℎ (𝑥) = cos (1.75𝑥) (−𝑥22 ) (14)
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if x, z ∈ R𝑛, then the wavelet kernel function is

𝑘 (x, z) = 𝑛∏
𝑖=1

ℎ (𝑥𝑖 − 𝑧𝑖𝑎 )
= 𝑛∏
𝑖=1

{cos [1.75 (𝑥𝑖 − 𝑧𝑖)] exp[−󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑧𝑖󵄩󵄩󵄩󵄩(2𝑎2) ]} .
(15)

By changing the values of the scale parameter 𝑎, different
scale wavelet kernel functions can be constructed.

In this paper, the multiscale wavelet kernel is introduced
to the LSSVC, and the multiscale wavelet kernel LSSVC is
defined as

𝑓 (x) = sgn( 𝑚∑
𝑗=1

𝛽𝑗 𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖 ⟨𝜙𝑗 (x) , 𝜙𝑗 (x𝑖)⟩ + 𝑏) ; (16)

namely,

𝑓 (x) = sgn( 𝑚∑
𝑗=1

𝛽𝑗 𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾𝑗 (x, x𝑖) + 𝑏) . (17)

On the other hand, it is also an effective approach
for the improvement of target recognition accuracy if we
synthesize the features having multiresolution character and
the multiscale kernel functions. In this paper, the 4-level
local multiscale feature and the 4-scale wavelet kernels are
synthesized; the scales of corresponding kernel functions are
increased by 2 times. At the same time, the weights of kernels
are determined by equal coefficients; namely, 𝛽1 = 𝛽2 = 𝛽3 =𝛽4 = 1/4; the schematic diagram is shown in Figure 2.

3. Robust ATR Complexity Analysis and
Adaptability Analysis

3.1. Robust ATRMethod and Complexity Analysis. The robust
ATR procedure includes two stages which are the multi-
scale kernel classifier training and the recognition test; the
schematic diagram is shown in Figure 3.

The multiscale kernel classifier training is mainly based
on the MSTAR dataset; the steps are as follows.

Step 1. Finish the CFAR detection, respectively, for all the
training target chips and obtain the target segmentation
results.

Step 2. From the centers of the chips (namely, the centers of
targets), execute the 4-level local multiscale decomposition
for the target images.

Step 3. Encode the coefficients from the multiscale analysis,
and extract the feature vectors of every target.

Step 4. Train themultiscale wavelet kernel classifier using the
multilevel feature vectors.

The recognition test is based on the large-scene multiple
targets image samples acquired in real-time; the steps are as
follows.

Step 1. Do the CFAR detection for the large-scene image and
segment the targets and regions of interest (ROI).

Step 2. Process the targets with the mathematical morpho-
logical, eliminate the false alert, and calculate the gravity
center of each target, which is taken as the starting point of
local multiscale decomposition.

Step 3. Conduct the 4-level local multiscale decomposition
from the gravity center of each target.

Step 4. Extract the features of each target by sampling and
construct the feature vector.

Step 5. Input the feature vectors to the multiscale wavelet
kernel classifier, and output the recognition result.

In pattern recognition application using SVM, the train-
ing and testing are two different processes, so the algorithm
complexity should not be understood as a whole. Here we
mainly discuss the complexity in the training process, namely,
the complexity solving of the quadratic programming prob-
lem. For a typical SVM training algorithm, its computational
complexity is in the range of O(Nsv

3 + LNsv
2 + dLNsv) ∼

O(dL2), where Nsv is the number of support vectors, L is the
number of samples in training set, and d is the dimension of
each sample, so in the worst case, the algorithm complexity
is O(dL2). In our algorithm of this paper, the number of
training samples L = 1622; the sample dimension d =161. Considering themultiple kernel classifier, we introduced
m = 4 kernels to the algorithm, m ≪ d and m ≪ L,
and we still can think that the complexity of the multiple
kernel training is O(dL2). So, we can conclude that the
computational complexity in the multiple kernel classifier
training process isO(dL2).

In the large-scene multiple targets ATR process, the
complexity is mainly dependent on the kernel function
computation between the testing sample vector and the
support vectors. In this process, the complexity of each target
sample isO(dNsv). In the large-scene SAR image, suppose the
number of the detected targets is t, then the complexity of the
whole testing may beO(tdNsv). In practical applications, the
value t usually is small; for example, in the experiments of
adaptability analysis in our manuscript, there are 6 targets in
the images. So we still can conclude that the complexity of the
testing process isO(dNsv).
3.2. Adaptability Analysis Method. The speckle may cause
inconvenience to SAR image ATR, but this noise is inevitable
and cannot be absolutely eliminated. So, the adaptability
against speckle of the target recognition algorithm directly
decides the usability and robustness. On the adaptability
analysis against speckle, the main method is adding speckle
into the large-scene multiple target image and then analyzing
the recognition precision. When the speckle adding degree
(SAD) is plus 1, the speckle is added into thewhole imagewith
mean 0 and variance 0.04. On this basis, some parameters
such as the mean, the variance, the dynamic range, and the
peak signal noise ratio of the image can be calculated. Then
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Figure 2: Synthesis schematic diagram of 4-level local multiscale feature and 4-scale wavelet kernel.
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wavelet kernel classifier Multiscale wavelet kernel

classifier

Multiscale wavelet
kernel classifier Recognition result

Mathematical morphological,
calculate the center of gravity
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from the center of gravity

128 × 128 samples

Figure 3: Flow diagram of multiscale wavelet kernel classifier
training and large-scene multiple target ATR.

for the image with added speckle, through executing the
target detection, feature extraction, and classification again,
we can study the target detection and recognition precision
at different speckle degree.

4. Experiments

4.1. Single Target Recognition and Adaptability Analysis for
Speckle. The single target recognition and speckle adaptabil-
ity analysis are based on the MSTAR dataset; the numbers
of the 3 classes samples are shown in Table 1. After feature
extraction with local multiscale decomposition for all the
sample chips, we design and train the classifier. Then the
multiple-class classification problem is transformed into the
two-class problem by “One VS One” method.

Table 1: MSTAR dataset.

Target
type

Training set Testing set
File name Number File name Number

T72
SN 132 232 SN 132 196
SN 812 231 SN 812 195
SN S7 228 SN S7 191

BMP2
SN 9563 233 SN 9563 195
SN 9566 232 SN 9566 196
SN C21 233 SN C21 196

BTR70 SN C71 233 SN C71 196
SUM 1622 1365

Utilizing the training set, we also can obtain the optimal
multiscale wavelet kernel classifier, where the scale factors
of wavelet kernel are 𝑎1 = 800, 𝑎2 = 400, 𝑎3 = 200, and𝑎4 = 100. The penalty coefficient 𝐶 = {1, 10, 100, 1000}.
After the features of the testing set being extracted, the
feature vectors are sent to the classifier and the recognition
precision is outputted. To analysis the algorithmperformance
in a nondistortion circumstance, some experiments and
performance comparison between the proposed method and
other typical methods are executed. The feature extraction
methods, the feature dimension, the classifiers, and the
classification precision are shown in Table 2.

From the experimental result, we can see that the fusion
method with the multiscale feature and the multiscale kernel
classifier gives a very high classification precision of 98.75%
when there is no speckle added. In addition, the algorithm
realizes the fast access and storage to nearly 3000 SAR
images in a short time, which indicates good real-time
performance. Comparing with the traditional method, the
presented algorithm is far more advanced in fast detection of
target and less dimension of feature vectors.
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(a) Image I (SAD = 0) (b) Image I (SAD = 1) (c) Image I (SAD = 2) (d) Image I (SAD = 3)

(e) Image II (SAD = 0) (f) Image II (SAD = 1) (g) Image II (SAD = 2) (h) Image II (SAD = 3)

Figure 4: Result images with different speckle adding degrees.

Table 2: ATR result of different feature extraction methods and
classifier.

Feature
extraction
methods

Dimension of
features Classifier Recognition

rate

Hu’s moment 7 LSSVC 0.7313

Wavelet moment 7 LSSVC 0.8469
17 LSSVC 0.9184

Wavelet moment
+ entropy

7 LSSVC 0.8776
17 LSSVC 0.9660

PCA 196 LSSVC 0.9643
Local multiscale
feature 161 LSSVC 0.9802

Local multiscale
feature 161 Multiscale

kernel classifier 0.9897

To analyze the adaptability against noise, the speckle with
mean 0 and variance 0.04 is added to the MSTAR testing set.
When SAD is plus 1, the speckle is added into the image one
time. Through the comparison experiments under different
SADs, the final recognition results are shown in Table 3.

When the speckle is added into the testing samples, the
recognition precision comes to 93.41% with SAD = 1. As the
enhancement of speckle, the recognition precisions reduce
to 87.62% and 76.48% when SAD = 2 and SAD = 3,
respectively, which are still the preferably correct ratios. The
reasons lie in that there is only one target in each sample, and
we already know the targets lie in the center of sample chips.
So, even though the target structure changes, we can still do
the local multiscale decomposition from the center of sample
and extract the exactly proper features.

Table 3: Single target ATR result under different speckle adding
degree.

Speckle adding
degree (SAD)

Number of
testing
sets

Correct
recognition
number

Recognition
precision

SAD = 0 (no adding
speckle) 1365 1348 98.75%

SAD = 1 1365 1275 93.41%
SAD = 2 1365 1196 87.62%
SAD = 3 1365 1044 76.48%

4.2. Large-Scene Multiple Target ATR and Adaptability Analy-
sis for Speckle. For large-scenemultiple target ATR, firstly, we
must construct the large-scene multiple target images. Here,
we randomly select 6 targets being correctly classified in the
MSTAR testing set, where 2 targets are selected from each
class, respectively, and the targets are embedded in the large-
scene clutter images. Using this method, two large-scene
multiple target images are formed, where Image I has a size
of 512 × 512, with the image parameters of mean 𝜇 = 10.82,
variance 𝜎 = 75.30, and the dynamic range𝐷 = 64.07. Image
II has a size of 768 × 768 and 𝜇 = 9.08, 𝜎 = 118.51, and𝐷 = 62.25, respectively.

In the simulation tests, 3 degrees of speckle is added
into the two large-scene multiple target images; the result
images with different SADs are shown in Figure 4.Then using
the same target segmentation, mathematical morphological
processing, and center of gravity calculation, we can achieve
the target detection andmarking result. Figures 5 and 6 show
the two-image target segmentation, detection, and marking
result under the speckle adding degree 1 (SAD = 1). Then,
begin from the center of gravity, execute the multiscale
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Table 4: Large-scene image parameters and multiple targets ATR result under different SADs.

Large-scene images Speckle adding
degree (SAD)

Image parameters𝜇, 𝜎,𝐷, PSNR Number of
detected targets

Number of correctly
recognized targets

Image I
SAD = 1 10.96, 107.42, 65.43, 37.78 6 6
SAD = 2 11.50, 146.34, 66.45, 31.72 6 5
SAD = 3 12.59, 232.78, 67.88, 27.66 6 4

Image II
SAD = 1 8.88, 122.70, 63.08, 38.31 6 6
SAD = 2 9.31, 162.29, 64.54, 32.24 6 5
SAD = 3 10.21, 244.97, 66.15, 28.17 6 5

(a) Original image (SAD = 1) (b) CFAR detection and seg-
mentation result

(c) Morphological processing
and gravity center location

(d) Target detection and mark-
ing result

Figure 5: Multiple targets detection and marking result of the large-scene sample Image I.

(a) Original image (SAD = 1) (b) CFAR detection and seg-
mentation result

(c) Morphological processing
and gravity center location

(d) Target detection and mark-
ing result

Figure 6: Multiple targets detection and marking result of the large-scene sample Image II.

decomposition and feature extraction, and gain the feature
vectors. Finally, send the feature vectors into the multiscale
wavelet kernel classifier, and output the recognition results.

The large-scene multitarget image parameters and the
ATR results under different SADs are recorded in Table 4.
The experimental results indicate that when the SAD = 1,
although the center of gravity of target is shifted from the
geometrical center of the chips after target segmentation, the
6 targets still can be detected and correctly classified, which
testifies the effectiveness and robustness of the presented
algorithm. With the enhancement of speckle, the number of
correctly recognized targets is decreased. The targets marked
“6” and marked “1” in Image I are error recognized with
the SAD = 2 and SAD = 3. In Image II, only the
target marked “6” is error recognized with the two SADs;
the rest 5 targets are correctly recognized. The main reason
is the multiplicative characteristic of speckle, which can

cause drastic variability to the target structure with target
segmentation and mathematical morphological processing,
so the center of gravity of target shifts dramatically. As a
result, the local multiscale features are influenced. Overall,
the feature extraction and classification method has good
adaptability on speckle.

4.3. ATR with Scale and Rotation Transformation and Adapt-
ability Analysis for Speckle. In this test, the rotation and scale
transformations of the targets are introduced based on Image
I and Image II in Section 4.2. For Image I, the targets marked
“4,” “2,” and “5” are resized with scale parameters 2, 1.5, and
1.5, respectively, andwith a rotation of 30∘; then the targets are
embedded into the original image and the new image named
Image III is constructed. For Image II, the targets marked
“1,” “4,” and “5” are resized with scale parameters 2, 1.5, and
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Table 5: Large-scene image parameters and multiple targets ATR result with rotation and scale transformation under different SADs.

Large-scene
images

Speckle adding
degree (SAD)

Image parameters𝜇, 𝜎,𝐷, PSNR Target marks
Correctly

recognized target
marks

Image III
SAD = 1 11.68, 180.76, 65.45, 36.44 2, 4, 5 2, 4, 5
SAD = 2 12.26, 238.52, 66.85, 30.37 2, 4, 5 2, 4
SAD = 3 13.43, 364.02, 68.33, 26.27 2, 4, 5 —

Image IV
SAD = 1 9.38, 157.41, 63.79, 37.45 1, 4, 5 1, 4, 5
SAD = 2 9.84, 206.92, 64.89, 31.34 1, 4, 5 1, 4
SAD = 3 10.80, 310.20, 66.55, 27.29 1, 4, 5 4

(a) Original image (SAD = 1) (b) CFAR detection and seg-
mentation result

(c) Morphological processing
and gravity center location

(d) Target detection and mark-
ing result

Figure 7: Multiple targets detection and marking result of the large-scene sample Image III with rotation and scale transformation.

(a) Original image (SAD = 1) (b) CFAR detection and seg-
mentation result

(c) Morphological processing
and gravity center location

(d) Target detection and mark-
ing result

Figure 8: Multiple targets detection and marking result of the large-scene sample Image IV with rotation and scale transformation.

1.5, respectively, and with a rotation of 30∘; using the same
method, Image IV is constructed.

In the tests, 3 degrees of speckle is added into Image III
and Image IV. Then utilizing the same target segmentation,
mathematical morphological processing with modulation of
parameters, and center of gravity calculation, we can achieve
the target detection andmarking result. Figures 7 and 8 show
the two-image target segmentation, detection, and marking
result under the SAD = 1. Then, begin from the center
of gravity, execute the multiscale decomposition and feature
extraction, and gain the feature vectors. Finally, send the
feature vectors into the multiscale wavelet kernel classifier,
and output the recognition results.

Only considering the targets with rotation and scale
transformation, the large-scenemultitarget image parameters
and the ATR results under different SADs are recorded in
Table 5. Under the condition of SAD = 1, the 3 targets,

respectively, in Image III and Image IV are still correctly
recognized, which testifies the effectiveness of the feature
extraction method and the robustness on rotation and scale
transformation. But with the enhancement of the speckle, the
recognition rate significantly decreased. For example, when
SAD = 2, only 2 targets are correctly recognized, respectively,
in Image III and Image IV; when SAD = 3, all 3 targets in
Image III are error recognized, and only 1 target in Image
IV can be correctly recognized. It is shown that the structure
features of the targets are strongly changed after the rotation
and scale; at the same time, the speckle has a far greater
impact on large scale targets. As a result, the local multiscale
features are extremely influenced, which leads to the error
recognition of the targets.

To further testify the performance of the algorithm under
rotation, scale transformation, and speckle, more large-scene
image samples are constructed and tested. Based on Image I
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Table 6: ATR results with more large-scene image samples under
rotation and scale transformation.

Large-scene
image
datasets

Number of
image
samples

Number of
targets

Number of
correctly
recognized
targets

Recognition
rate

Dataset I 12 72 63 87.5%
Dataset II 12 72 65 90.3%

and Image II, the targets in the two images are resized with
scale parameter 1.5 firstly; then the targets are rotated at 30∘,
and finally, the speckle with SAD = 1 is added into the
images.Ultimately, two datasets having 12 large-scene images,
respectively, can be constructed from Image I and Image II.
In each dataset, there are 72 targets in total with 3 classes.

The experiments are carried out with the two datasets,
and the results are shown in Table 6. From the data in the
table, we can find that the correct recognition rates of the
three classes targets are 87.5% for Dataset I and 90.3% for
Dataset II. The results once again indicate that the local
multiscale feature has good adaptability on rotation, scale
transformation, and speckle. Meanwhile, the fusion of local
multiscale feature and the multiscale kernel classifier can
bring better robustness and recognition rate for ATR systems.

5. Conclusions

Compared with the other image target recognition such as
the face recognition, the gesture recognition, the fingerprint
recognition, and the gait recognition, great obstacles are
brought to the usability and recognition efficiency of SAR
ATR as the strong speckle and low image resolution. Based
on the fusion of multiscale feature and multiscale kernel
machine, a robust full-process method from target detection,
gravity center locating, local multiscale decomposition, and
feature extraction to target classification with multiscale
kernel LSSVC is studied, which can solve themultitarget ATR
in large-scene SAR images with strong speckle effectively.
Through adaptability analysis, the robust algorithm is tes-
tified having good adaptability on speckle. Meanwhile, the
algorithm is well suitable for the requirement of practical
applications. As you can imagine, the method can be applied
to the vehicle target detection from the other imaging sensors
such as visible light image and the infrared image; it also can
be used for ship recognition in SAR images with complex sea
clutters. On the other hand, to achieve better classification
precision, a large number of labeled samples are needed to
train an effective classifier for the support vector machines
including the classifier presented in this paper. But the labeled
sample acquisition is costly, laborious, and time-consuming;
how to improve the classifier accuracy using unlabeled data
has received considerable attention in medical applications
and more recently in crowdsourcing and the event detection
and event recounting problems to real video datasets [28]. So,
in the next step, we look forward to making the significant
improvement of performance and efficient implementation
from this idea in SAR ATR.
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