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This paper presents an analysis of soil slope stability using a terrestrial laser scanner, particle swarm optimization, and the force
equilibrium method. The aim of this study was to demonstrate that a slope needed to be analyzed in many different directions in
order to assess its stability conclusively, rather than using just one cross-sectional profile to represent the entire slope. To achieve this
purpose, this study illustrates how a particle swarm optimization algorithm can be successfully incorporated into the analysis with
slope stability analysis software, STABL.This study compares results obtained with those of previous studies and makes important
observations.

1. Introduction

Rain-induced landslides are common phenomenon in sub-
tropical Taiwan, which frequently experiences heavy rainfall
from typhoons. The direction and mechanism of movement
of an unstable slope are the subject of this study. Traditionally,
the equilibrium condition of an earth slope is assessed by its
Factor of Safety (FS), which is defined as the ratio of the total
resisting force over the total driving forces, as shown in the
following equation:

FS =
𝐹
𝑅

𝐹
𝐷

, (1)

where𝐹
𝑅
is total resisting forces and𝐹

𝐷
is total driving forces.

The actual calculation of FS is a trial-and-error process
because it depends on the selection of the sliding surface
frommany possible choices. Usually a fixed number of sliding
surfaces are tested and the most critical sliding surface is
the one that yields the smallest FS. A number of researches
suggest that incorporating artificial intelligence algorithms
such as the particle swarm optimization (PSO) into the
computation could improve this practice. PSO is a com-
putationally inexpensive algorithm developed by Kennedy
and Eberhart [1, 2] that has roots in both artificial life and

evolutionary computation. The following is one of its most
original forms (with symbol changes):

V = 𝑤V + 𝑐
1
𝑟
1
(pbest − 𝑥) + 𝑐

2
𝑟
2
(gbest − 𝑥) ,

𝑥 = 𝑥 + V,
(2)

where𝑥 is present location (randomly initialized), V is particle
velocity (randomly initialized), 𝑤 is inertia weight (added to
the original PSO formula in [3]), 𝑐

1
is p increment (= 2 to

overfly the target half the time [1]), 𝑟
1
is random number

between 0 and 1, 𝑐
2
is g increment (= 2 to overfly the target

half the time [1]), 𝑟
2
is randomnumber between 0 and 1,𝑝𝑏𝑒𝑠𝑡

is personally best position, and 𝑔𝑏𝑒𝑠𝑡 is globally best position.
This paper presents a stability analysis of a slope near

Taipei using PSO and FS. The slope was laser scanned to
obtain accurate topographical profiles and analyzed from 0∘
to 359∘ at 1∘ intervals. Since an ideal landslide study location
is very difficult to come across and it may take years to
complete a single study, the authors believe that this work
represents a valuable case study for engineers interested in
the multidirectional analysis of landslides using a swarm
intelligence method.
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2. Research Method

The location of this study was near the Houshanyue hiking
trail about 25 km from the city center of Taipei. The general
area had a series of landslides after several typhoons within
a few years. The subject of this study was one of the slopes
affected by the landslides.The aerial photograph in Figure 1(a)
shows the study location. Scanning the slope (marked by
a red square) and the immediate area with a terrestrial
laser scanner produced the point cloud model shown in
Figure 1(b).

After the generation of the point cloud model, vegetation
was removed digitally (using a software tool called RiScan
Pro) to reveal the bare soils. Then, imaginary vertical cuts
weremade through the slope to create cross-sectional profiles
for later slope stability analysis as shown in Figure 1(c).Three
types of cuts were made. First, 45 north-south parallel cross-
sectional cuts (1m apart) were made to study the variation of
FS with profiles as illustrated in Figure 1(d). Next, 19 vertical
cross-sectional cuts oriented 45∘ to the north direction were
made as shown in Figure 1(e) to study the variation of FS
with profiles. The results of these two sets of analysis were
presented in two conferences [4, 5]. This study focuses on
the last type of cut profile, which consisted of nonparallel
cuts in directions ranging from 0∘ to 359∘ as shown in
Figure 1(f). Consequently, this study examined and compared
360 possible profiles.

The research followed the steps shown in Figure 2. After
downloading the point cloud data and the color panoramic
photographs of the slope from the laser scanner to a desktop
computer, the raw point cloud data and the panoramic
photographs were registered together to create a point cloud
model of the slope. The slope was cut from the highest
point of the slope (lower left corner of the slope), and the
slices were fanned out from 0∘ to 359∘. The vertical cross-
sectional profiles thus generated were fed into the standard
slope stability analysis software, STABL (a 2D limiting equi-
librium analysis program developed by Purdue University),
to calculate the FS of each profile. Custom Fortran codes
similar to that of [6] were used to read the output files of
STABL and change the analysis parameters based on the PSO
algorithm automatically. New input files were then generated
by computer and fed into the STABL program again. The
process continued itself until the FS values converged.

2.1. Simplified Bishop Method. The STABL program uses the
method of slices for slope stability analysis [7]. For the
method of slices (as illustrated in Figure 3), a slope is first dis-
sected into many vertical slices and the force equilibrium and
moment equilibrium are analyzed. Because there were more
variables than equilibrium equations, we made assumptions
to reduce the number of variables and solve for FS. Different
methods of slices had different assumptions. For circular
failure surfaces (the type of failure surfaces used in this study)
in a soil slope, STABL recommended the simplified/modified
Bishop method (using command CIRCL2) to achieve both
the speed and accuracy [8]. Figure 3 shows a schematic
diagram of the representative slice and the forces acting on

the slice of the simplified Bishop method. There were four
equilibrium assumptions:

(1) The overall moment equilibrium was satisfied.

(2) The slice moment equilibrium was not satisfied.

(3) The interslice vertical force equilibrium was satisfied.

(4) The interslice horizontal force equilibrium was not
satisfied.

In other words, the simplified Bishop method assumed that
the interslice forces were horizontal and that there were no
shear forces. Below is the FS according to (1) and Figure 3 for
the simplified Bishop method [9, 10] (with modification of
symbols):

FS =
∑ [𝑐𝑏
𝑖
+ (𝑊
𝑖
− 𝑢
𝑖
𝑏
𝑖
) tan𝜙] /𝑚

𝛼

∑𝑊
𝑖
sin𝛼
𝑖

,

𝑚
𝛼
= cos𝛼

𝑖
{1 +

tan𝛼
𝑖
tan𝜙

FS
} ,

(3)

where 𝑐 is soil cohesion, 𝜙 is angle of friction, 𝑏
𝑖
is width of

soil slice, 𝑙
𝑖
is width of soil slice along the sliding surface,

𝑊
𝑖
is weight of soil slice, 𝑇

𝑖
is resisting force of soil slice, 𝑁

𝑖

is normal force of soil slice, 𝑈
𝑖
is force of water, 𝑢

𝑖
is pore

pressure of water, 𝛼
𝑖
is slope angle of soil slice, and 𝐸

𝑖
is

interslice force.

2.2. ScriptingUsing PSO. Equations (3) show that the solution
of FS is a highly complex function with no direct solutions.
Since FS appears on both sides of the equations, the solution
of FS requires an iterative approach. Substituting an initial
assumed FS in (3) is necessary to compute a new FS. If the two
FSs are different, then the initial FS is discarded. Equations (3)
use the new FS to compute another FS value.The process will
continue until both the assumed and the obtained FSs finally
converge to the same value. Based on previous experience, the
authors have found a technique to delegate this computation
task to the STABL program and use the STABL program as
a computation engine [6]. PSO, because of its simplicity, was
ideal for this particular purpose. Neither did it have to know
the inner working of STABL, nor did it have to know how to
solve for the FS using the simplified Bishop method. All PSO
needed to do was to control the execution of STABL and to
adjust the parameters in the input files according to the results
returned by the STABL program. In a sense, PSO functioned
and acted similarly to a script, and the authors chose PSO for
this study because of its relatively easy implementation and
simple control.

3. Computer Analysis

The computer analysis in this study followed these steps:

(1) Create a point cloud model using RiScan Pro and raw
scan data.

(2) Filter out vegetation and reveal bare soils underneath.
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Figure 1: Research outline: (a) aerial photograph of the study location, (b) point cloud model of the slope, (c) imaginary cross-sectional cuts
of the slope, (d) north-south parallel cuts of the slope, (e) 45∘ parallel cuts of the slope, and (f) 0–359∘ nonparallel cuts of the slope.
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Figure 2: Illustration of research steps from laser scanning to slope stability analysis using STABL and Fortran and to incorporation of PSO
algorithm.
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Figure 3: The schematic diagram of the simplified/modified Bishop method of slices.

(3) Use the triangulated irregular network (TIN) tech-
nique to create the ground surface representation of
the slope (of bare soils).

(4) Select the zone/region of the slope for analysis.
(5) Choose the highest point of the slope.
(6) Using the highest point as the origin, use an imagi-

nary vertical plane to dissect the slope from 0∘ to 359∘
in 1∘ intervals. This is done programmatically.

(7) The cuts will intersect with the TIN surfaces and
generate traces of cross-sectional profiles of the slope.
This is also done programmatically.

(8) Because the lower left part of the terrain (southwest
portion of the area in Figure 1) forms a hill, the sliding

of the slope into the hill is not kinematically possible.
Hence, only 180 profiles were generated out of 360
possible directions.

(9) Produce input files for the STABL program using the
cross-sectional profiles and the soil parameters from
a nearby boring test.

(10) The STABL program called by a scripting program
processes the input files individually.

(11) The scripting program reads the output files (specifi-
cally the FS values in the output files) from the STABL
program.

(12) The STABLE program processes the next set of input
files based on the previous FS values and the PSO
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Figure 4: Relaxation of the boundary if a solution exists near the boundary.

algorithm, which generates a second set of output
files. The process continues with successive sets of
input files.

(13) The following parameters were used in the PSO script:
𝑐
1
= 2, 𝑐

2
= 2, 𝑤 = 1, and the number of particles =

30. The number of iterations needed to converge for
different profiles varies from 1 to 135, with an average
of 14.5 times.

(14) The scripting program stops when the FS values con-
verge.

The STABL program selects random slip surfaces from
the specified left and right horizontal ranges (as shown in
Figure 4). Because the ranges were usually too wide to form
the best slip surface and the corresponding minimum FS,
adjusting the sizes of the left range and the right range at
the same time was necessary. PSO optimizes the process
by mapping the two ranges to a new 𝑋-𝑌 space. The 𝑋

coordinate of the new𝑋-𝑌 space represents the left boundary
of the left range, and the 𝑌 coordinate represents the left
boundary of the right range. In order to explore as many
sliding surfaces as possible, the 𝑋 and 𝑌 ranges were both
set to be 16m, as shown in Figure 4. The 16 by 16 𝑋-𝑌 space
was defined as the search space, which was an imaginary
space, created purely for PSO formulation. It is worth noting
that within this imaginary space the object function (FS) is
not an explicit continuous function. Rather, STABL needs to

compute the FS value using (3) using an iterative approach.
Also, note that STABL requires a minimum width of 0.1m
for both the left and the right ranges to work. Therefore, a
solution (𝑥, 𝑦) in the new 𝑋-𝑌 space actually means the left
range of [𝑥, 𝑥 + 0.1] and the right range of [𝑦, 𝑦 + 0.1]. This
small restriction does not usually interfere with the execution
of the PSO and the STABL program. However, occasionally
when the optimum solution is located near the boundary
(as in Figure 4), the overall boundary of the new 𝑋-𝑌 space
needs to be relaxed a little (by 0.1m) in order for STABL to
function properly. An example is shown in Figure 5. Before
the relaxation (a), PSO erroneously produced a higher FS
than that of the initial trial. After relaxation (b), PSOwas able
to lower the FS as desired.

4. Results and Discussion

This study analyzed only the 180 directions that were kine-
matically possible, out of the 360 possible cut directions of
the slope (0∘–359∘). Two failed to produce any FS values with
STABL (81∘ and 106∘) and therefore were not included in the
subsequent analysis. Figure 6 summarizes the results. It shows
that the minimum FS obtained in this study is 0.985 and the
highest percentage of improvement by PSO is 20.05%. Except
for a few outliers, Figure 6 indicates that FS varies with the
direction of the cross-sectional cut, apparently following a
well-defined trend. The lowest FS values occurred in the 10∘
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Figure 5: An example of relaxing boundaries by 0.1m in order for STABL to function properly.

to 20∘ range. Then, the FS value quickly increased away from
this region and roughly reached the maximum at 111∘ and
289∘. No data points were available between 111∘ and 289∘
because it was kinematically impossible for the slope to move
in the range of these directions (into the hill). It is clear from
Figure 6 that FS is not a constant but rather a directionally
dependent property of the slope. Therefore, using a “typical”
2D profile to represent the entire slope in traditional stability
analysis is not very adequate.

4.1. Comparison with Previous Studies of the Same Site. Below
are summaries of the analysis results from this study and two
previous studies [4, 5]:

(1) 0∘-degree parallel cuts [4]: the minimum FS among
45 profiles was 0.924.The percentage of improvement
against the original FS ranged from 0.91% to 10.25%.

(2) 45∘-degree parallel cuts [5]: the minimum FS among
19 profiles was 1.130. The percentage of improvement
against the original FS ranged from 0.16% to 11.11%.

(3) 0∘–359∘ degree nonparallel cuts: the minimum FS
among 180 profiles was 0.985. The percentage of
improvement against the original FS ranged from
0.05% to 20.05%.

Figure 7 below compares the results of the analysis from
these three studies.The box-and-whisker plot used shows the
minimum, the first quartile, the median, the third quartile,
and the maximum of the data sets. Each study has two
sets of FS data. They represent the FS values before and
after applying the PSO algorithm to the computation. The
two leftmost groups in Figure 7 are data from this study,
while the middle two groups are from the north-south (0∘
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Figure 6: The results of 180 profiles analyzed in this study showing
both the original FS values and the FS values after applying the PSO
algorithm.

azimuth) profiles [4] and the two rightmost groups are from
the 45∘ azimuth cross-sectional profiles [5]. It is obvious from
Figure 7 that this study is the most comprehensive one of the
three studies. Not only does it provide the most data, but it
also covers the widest range of possible FS values. Here are a
number of observations:

(1) In all three studies, PSO improved (lowered) the FS.
This is a successful demonstration of the applicability
of PSO in the analysis of slope stability.

(2) 0.924 was the lowest FS obtained from the mid-
dle study, which represented north-south parallel
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Figure 7: The comparison of results from this study (leftmost two
groups), 0-degree cuts (middle two groups), and 45-degree cuts
(rightmost two groups).

cross-sectional cuts.The lowest FS from the 0∘ to 359∘
study was a little higher (but not by much) at 0.985.
According to (1), a FS less than one means that the
driving forces acting on the slope are greater than the
forces resisting the sliding movement. Since in both
cases the FS values (0.924 and 0.985) were less than
one, it indicates the instability of the analyzed slope.

(3) The rightmost two groups in Figure 7 (representing
the study of 45∘ parallel cuts) were the least satis-
factory group in the comparison. The minimum FS
obtained from this study was substantially higher
than the minimums obtained from the other two
studies.

(4) Figure 7 also shows that PSO improved the FS consis-
tently, but the percentages of improvement resulting
from the application of PSO were different for all
three studies and varied from profile to profile.This is
reasonable because the computation of FS is a highly
complex iterative task (and nonlinear) performed by
the STABL program. PSO was only used to optimize
the boundary parameters sent to the STABL program.

(5) It is difficult to conclude from Figure 7 which type of
analysis is most suitable for other slopes in the future.
The 0∘ to 359∘ analysis was the most comprehensive,
but the 0∘ analysis resulted in a lower minimum
FS. They all had their respective advantages and
shortcomings. Moreover, slopes will have different
ground surface profiles and soil parameters. There-
fore, Figure 7 cannot provide any universal rules
and apply to other slopes in general. We recommend
analyzing all slopes in all possible manners using the
automatic procedures shown in this study (and the
two previous studies) in order to obtain conclusive
results.

(6) The conclusion from combining all three studies is
that the lowest FS of the analyzed slope is 0.924. This
is the result after analyzing 244 (180 + 45 + 19) cross-
sectional profiles and should bear great significance
to this slope. This FS value should also give the user

a much higher level of confidence than that obtained
from analyzing only one “typical” 2D slope profile.

4.2. Good Match with the Landslide Occurred. The analysis
presented in this study was based on laser scanning of the
target slope in June of 2011.The analysis showed that the slope
was unstable. In August of 2012 after typhoon Saola, the slope
indeed slid northward [11, 12], in the same general direction
predicted by Figure 6.The sliding of the slope provides strong
physical evidence in support of the above analysis.

4.3. Extension to More Sophisticated Evolutionary Algorithms.
The technique presented in this study represents an ideal fit
between slope stability analysis (STABL) and evolutionary
computation (PSO). As mentioned in the research methods
above, solving for FS was a complex task that required an
iterative approach. However, treating the STABL program
as a computation engine and a black box avoided the
problem entirely. Using STABL rather than writing codes
to calculate FS also made the analysis results more credible
for comparison purposes. Using a combination of PSO and
STABL also meant that there was no need to take the extra
step to verify whether in-house codes performed just as well
and yielded the same results as the standard STABL program.
PSO did not need to know how STABL solved the FS. It
only “told” STABL what to do in order to converge on the
best results. Other, more sophisticated, artificial intelligence
methods such as artificial neural networks (ANNs) are not
applicable, because they require more interactions with the
routines inside the STABL program, which is not possible
since STABL is commercial software and not open source. As
no other researcher has attempted this kind of separation of
two tightly coupled components in slope stability analysis, FS
calculation (STABL), and optimization (PSO), direct compar-
isons between the results of this study and other algorithms
are not possible. However, other direct search optimization
methods that might match the results and performance of
PSO in this study could exist. Extending the current PSO +
STABL approach to other evolutionary methods necessitates
a new study.

4.4. Exhaustive Search. An exhaustive search examines every
possible point in the search space. The authors conducted
an exhaustive search on a fictitious soil slope problem (a
commonly used slope by many researchers for theoretical
studies and comparison) in a previous study [6]. 5000 grid
points of the single 2D profile in [6] were analyzed. A similar
exhaustive search was conducted in this study for the profile
(among 180 profiles) with the minimum FS (0.985), which
was oriented 18∘ to the north direction. Figure 8 shows the
3D surface plot of the computed FS values, whereas Figure 9
shows the enlargement of the circled part of Figure 8. The
computation took around four hours on an Intel core i7
computer (including plotting), and the grid point was precise
to one decimal place. From the PSO resultsmentioned earlier,
it was determined that theminimumFS occurred at the point
of (15.900, 34.870) in the imaginary 𝑋-𝑌 space (Figure 4).
Comparing this result with those shown in Figures 8 and 9, it
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is obvious that the exhaustive search only roughly determined
the region where the minimum FS might occur (the front-
facing side of Figure 9). It did not pinpoint the exact location
as the PSO method did. In order to achieve the same precise
solution as PSO (from one-decimal place to three-decimal
places), it would have required 100 ∗ 100 = 10,000 more
times of computation than the current exhaustive search.
The authors did not consider this additional computation to
be beneficial for this study, because the reason for selecting
PSO in the first place was to eliminate the huge time cost.
If a three-decimal place exhaustive search had been used in
this study, an analysis of a total of 16m ∗ 1000 grids/m ∗

16m ∗ 1000 grids/m = 256,000,000 grids would have been
needed for a single profile. Since there were 180 profiles,
roughly 256,000,000 ∗ 180 profiles = 46,080,000,000 grid
points would have been required.The STABL program needs
calling for every grid point, with each call generating 100
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Figure 10: A set of convergence curves with different inertia weights
(𝑤) for the profile with theminimumFS (0.985).The only curve that
did not converge to the global minimum of 0.985 belongs to𝑤 = 0.0

as expected from [6].

circular surfaces to compute the FS. Such large computation
was difficult to justify and contradicted using PSO for its
efficiency. Furthermore, the results from study [6] obtained
by PSO were as good as the best results obtained by the
exhaustive search. This important finding suggested that the
addition of the exhaustive search was neither necessary nor
beneficial for this study. It would not also help the under-
standing of the key points explored in this study, the purpose
of which was to examine the use of PSO to accomplish an
efficient and effective 3D slope stability analysis.

4.5. Randomness and Convergence. Typical PSO formulation
has a number of parameters such as 𝑐

1
, 𝑐
2
, and 𝑤 that can

be adjusted for better performance or avoidance of local
minimums. However, the previous example soil slope study
[6] showed that PSO converged quickly (usually only after
dozens of iterations) when it was applied to the analysis of
slope stability. Moreover, the selection of parameters (such as
inertia weight) and random seeds had almost no influence
on either the global minimum discovery or the system
performance, as long as the inertia weight chosen was not
close to zero. For verification purposes, a convergence test of
different inertia weights (for 𝑤 = 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0) was repeated for the profile with the minimum FS of
0.985 in this study (as shown in Figure 10). The result is very
similar to that conducted on a fictitious example soil slope
in [6]. As can be seen from Figure 10, all curves converged
quickly, and the only curve that did not converge to the global
minimum of 0.985 belongs to 𝑤 = 0.0, as expected from [6].
Since the inertia weight had only negligible influence on the
convergence behavior (as long as the inertia weight was not
zero), the authors decided to use 𝑤 = 1 and the number
of particles equal to 30 in the analysis of the remaining the
profiles.
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Figure 11: A set of convergence curves with the same inertia weight
(𝑤 = 1.0) but different initial random seeds for the profile with the
minimum FS (0.985).

To test different initial random seeds, Figure 11 shows
the results of six different runs (only six are shown in the
figure to avoid clutter). Again, all curves converged quickly
to the global minimum (less than 26 times of iterations). It
verifies the conclusion of [6] that the influence of random
seed was also negligible. Looking at Figure 11 closely together
with Figures 8 and 9, the reason behind this result is clear.
Although the computation of FS using the modified Bishop
method (equations (3)) was an iterative procedure and highly
complex, the solution of FS shown in Figure 8 represents a
relatively simple surface. The minimum of this surface was
located in the thin region near the boundary and unlikely
missed, no matter what the initial random seed was.

The overall performance of the approach outlined in
this paper is satisfactory. More importantly, PSO improved
(lowered) the FS in every case. Moreover, the results obtained
were as precise as they could be. This is because STABL only
outputs FS to three-decimal places. Therefore, any further
tuning of the PSO parameters will not yield a more precise
result. For example, suppose that the minimum FS is 0.985,
and it corresponds to a point (15.900, 34.870) in the imaginary
𝑋-𝑌 space. If there existed a point close to (15.900, 34.870)
with an even lower FS, it will not be discovered because
STABL will return the same FS of 0.985 for the new point.
Since the FSs are the same, the input parameters will not
be adjusted and PSO will not attempt further optimization.
This is a shortcoming of using STABL as a block box in
computation.

4.6. Other Related Works. PSO is a powerful yet simple
optimization technique that has been applied to many
different fields to solve many different types of problems,
including the stability analysis of earth slopes. For earth
slopes, PSO was primarily used to compute the minimum FS

and to determine the most critical sliding surface [13–20]. In
addition to theoretical framework development, a number of
real-world engineering case studies were also available. For
example, Khajehzadeh et al. [16] back-calculated the FS of a
landslide in Ulu Klang, Malaysia; Wang et al. [21] used PSO
to assess the stability of the valley shoulder deposits on the
left bank of the Xiluodu Hydropower Station in China; and
Li et al. [22] applied PSO to the reinforcement design of the
Zhongjiawu high cut slope of the Three Gorges. However,
most of these PSO-related studies were based on 2D profiles,
while none used laser scanning and STABL in the analysis.
Of these studies, only one considered 3D analysis of slope
stability by means of a general rotating ellipsoid shape [17].
Nevertheless, the method was entirely different from the
approach taken in this study, which analyzed the target slope
in directions ranging from 0∘ to 359∘. Originally, this study
only preliminarily analyzed the slope using STABL in [11].
Later, the analysis in [12] incorporated PSO with manually
generated profiles (instead of automatically created profiles).
The total combined horizontal range (left and right) of the
slope in these studies was about 20m, which was less than
the current study. Because of the differences in analysis, the
FS values of these studies were different from the FS values
in this study, in which a dissection program cut the slope
automatically and the horizontal ranges extended.

5. Summary and Conclusions

Landslides are a major problem affecting millions of people
around the world. The goal of this study was to understand
how using PSO could improve the analysis of questionable
slopes before a landslide took place. State-of-the-art equip-
ment (a terrestrial laser scanner) was used to generate 3D
ground surfaces, and industry standard application software
(STABL) was used in the analysis of slope stability. The
authors also developed in-house custom programs to cut
the slope and generate profiles in many different directions.
The main use of the PSO algorithm was to optimize the
parameters related to the boundaries of the slope where slid-
ing surfaces initiated and ended. Using the STABL program
as a computation engine, the proposed system was able to
read output files and generate new input files automatically.
With this analysis capability, it was then possible to analyze
the slope in directions ranging from 0∘ to 359∘. This study
proved that a complete analysis of a slope could be performed
automatically. As such, it removed the limitations of treating
the slope as a 2D object and analyzing only one cross-
sectional profile to represent the entire slope. The results
showed that FS was not a constant but rather a directionally
dependent property of the slope and that more accurate
information regarding the state of the slope resulted from
thoroughly analyzing the slope in many directions. Armed
with this information, it is less likely that engineerswill ignore
unstable slopes in the future. This study also demonstrated
that the PSO algorithm was highly applicable in the analysis
of slope stability. Summarizing this research and two previous
studies of the same site, the lowest FS of the analyzed slope
was 0.924. This was the result after analyzing 244 (180 + 45 +
19) cross-sectional profiles. Therefore, this value should have
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great significance and should give the engineer amuch higher
level of confidence.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This study was partially supported by Grant numbers NSC
102-2221-E-027-077 and MOST 103-2221-E-027-052 from the
National Science Council and the Ministry of Science and
Technology of Taiwan. The financial support is highly appre-
ciated.

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, IEEE Service Center, Perth, Australia,
1995.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science (MHS ’95), pp. 39–
43, Nagoya, Japan, October 1995.

[3] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,”
in Proceedings of the IEEE International Conference on World
Congress on Computational Intelligence, pp. 69–73, Anchorage,
Alaska, USA, May 1998.

[4] Z.-P. Shen and W. W. Chen, “Slope stability analysis using
multiple parallel profiles,” inProceedings of the 11th International
Conference on Natural Computation (ICNC ’15) and the 12th
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD ’15), Zhangjiajie, China, August 2015.

[5] Z.-P. Shen andW.W. Chen, “Directional analysis of slope stabil-
ity using a real example,” in Proceedings of the 6th International
Conference on Swarm Intelligence (ICSI ’15), Beijing, China, June
2015.

[6] W. W. Chen, Z.-P. Shen, J.-A. Wang, and F. Tsai, “Scripting
STABL with PSO for analysis of slope stability,” Neurocomput-
ing, vol. 148, pp. 167–174, 2015.

[7] R. A. Siegel, STABL User Manual, Purdue University, West
Lafayette, Ind, USA, 1975.

[8] E. Achilleos, User Guide for PC STABL 5M, Purdue University,
West Lafayette, Indiana, 1988.

[9] R. Salgado,TheEngineering of Foundations, McGraw-Hill Inter-
national Edition, McGraw-Hill, New York, NY, USA, 2008.

[10] W.-T. Wu, Slope Stability Analysis Methods and Applications,
1980 (Chinese).

[11] C.-K. Hsu and W. W. Chen, “New landslide at Mt. Houshanyue
hiking trail,” in Proceedings of the International Symposium on
Remote Sensing (ISRS ’13), Tokyo, Japan, May 2013.

[12] Z.-P. Shen, C.-K. Hsu, andW.W. Chen, “Slope stability analysis
of houshanyue landslide using STABL and PSO,” in Proceedings
of the 34th Asian Conference on Remote Sensing (ACRS ’13), Bali,
Indonesia, October 2013.

[13] L. Li and X.-S. Chu, “An improved particle swarm optimization
algorithm with harmony strategy for the location of critical slip
surface of slopes,” China Ocean Engineering, vol. 25, no. 2, pp.
357–364, 2011.

[14] M. Khajehzadeh, M. R. Taha, and A. El-Shafie, “Reliability
analysis of earth slopes using hybrid chaotic particle swarm
optimization,” Journal of Central South University of Technology,
vol. 18, no. 5, pp. 1626–1637, 2011.

[15] H. Li, H. Zhong, Z. Yan, and X. Zhang, “Particle swarm
optimization algorithm coupled with finite element limit equi-
libriummethod for geotechnical practices,”Mathematical Prob-
lems in Engineering, vol. 2012, Article ID 498690, 14 pages, 2012.

[16] M. Khajehzadeh, M. R. Taha, A. El-Shafie, and M. Eslami, “Sta-
bility assessment of earth slope using modified particle swarm
optimization,” Journal of the Chinese Institute of Engineers, vol.
37, no. 1, pp. 79–87, 2014.

[17] R. Kalatehjari, A. S. A Rashid, N. Ali, and M. Hajihassani,
“The contribution of particle swarm optimization to three-
dimensional slope stability analysis,” The Scientific World Jour-
nal, vol. 2014, Article ID 973093, 12 pages, 2014.

[18] S. Xiao, K. Li, X. Ding, and T. Liu, “Numerical computation
of homogeneous slope stability,” Computational Intelligence and
Neuroscience, vol. 2015, Article ID 802835, 10 pages, 2015.

[19] B. Li, D. Li, Z. Zhang, S. Yang, and F.Wang, “Slope stability anal-
ysis based on quantum-behaved particle swarm optimization
and least squares support vector machine,” Applied Mathemati-
cal Modelling, vol. 39, no. 17, pp. 5253–5264, 2015.

[20] B. Gordan, D. J. Armaghani, M. Hajihassani, and M. Monjezi,
“Prediction of seismic slope stability through combination of
particle swarm optimization and neural network,” Engineering
with Computers, vol. 32, no. 1, pp. 85–97, 2015.

[21] S. N. Wang, C. Shi, Y. L. Zhang, and K. H. Chen, “Numerical
limit equilibrium analysis method of slope stability based on
particle swarm optimization,”AppliedMechanics andMaterials,
vol. 353–356, pp. 247–251, 2013.

[22] S. Li, H. Gao, D. Xu, and F. Meng, “Comprehensive determi-
nation of reinforcement parameters for high cut slope based
on intelligent optimization and numerical analysis,” Journal of
Earth Science, vol. 23, no. 2, pp. 233–242, 2012.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


