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An improved synthetic𝑋 control chart based onhybrid adaptive scheme and run rule scheme is introduced to enhance the statistical
performance of traditional synthetic𝑋 control chart on service andmanagement operation.The proposed scientific hybrid adaptive
schemes consider both variable sampling interval and variable sample size scheme.Theproperties of the proposed chart are obtained
using Markov chain approach. An extensive set of numerical results is presented to test the effectiveness of the proposed model
in detecting small and moderate shifts in the process mean. The results show that the proposed chart is quicker than the standard
synthetic𝑋 chart and CUSUM chart in detecting small and moderate shifts in the process of service and management operation.

1. Introduction

Since control chart was introduced by Walter A. Shewhart in
1924, it has been treated as an important tool to detect the
process shifts that may occur in services and managements
operation process. In today’s service andmanagement opera-
tion practice, processes have obtained a low level of noncon-
formities or defects as a result of technological advancement
and automation. Although the traditional Shewhart charts
have the advantage of easy setup, they also have the high
false alarm rates and inability to detect further process
improvement under a low-defect environment [1].

To deal with this situation, different types of control
charts have been proposed to obtain good performance
for effective detection with a wide range of shift sizes,
such as cumulative sum (CUSUM) chart, synthetic 𝑋 chart,
and time-between-events (TBE) chart. Among them, the
synthetic𝑋 chart which was introduced byWu and Spedding
(2000) outperformed the traditional 𝑋 chart in terms of
smaller average run length under the small shift in process
mean. It is the combination of Shewhart 𝑋 chart and
conforming run length (CRL) chart used to detect shifts in the
process mean.The difference between Shewhart𝑋 charts and

synthetic 𝑋 charts is that the synthetic 𝑋 charts do not send
an alarm instantlywhen a sample falls outside of the limits but
inspect the number of the samples taken since the last time
that a point fell outside the limits, or since the first sample
if there have been no previous points outside the limits. If
that number of samples is sufficiently small, then a signal
is triggered. The synthetic 𝑋 chart provides a significantly
better detection power than Shewhart𝑋 chart for all levels of
mean shifts [2]. Numerous studies and extensions have been
performed on the synthetic chart. Among the more recent
ones are Chen et al. [3], Zhang et al. [4], Yen et al. [5], and
Zhen [6].

On the other hand, to enhance further detection of the
power of control charts for better process control, the adap-
tive control charts in which at least one of input parameters
(the sampling interval, the sample size, and the control limits)
is allowed to be changed based on the current state of the
process are proposed. Some common adaptive control charts
are often concerned in SPC studies, such as the variable
sample size (VSS) control charts (see [7–10]), the variable
sampling interval (VSI) control charts (see [11, 12]), and the
variable sample size and sampling interval (VSSI) control
charts (see [7, 8, 13, 14]). It is found that totally adaptive
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control charts have been shown to detect the process change
faster than the corresponding standard Shewhart chart [15].
Qu and Meng [16], Qu et al. [17], Zhen [18], and Zhen [19]
used the fundamental diagrams for extreme-scenario analysis
on transportation. Among these different types of adaptive
charts, the VSSI 𝑋 chart is even quicker than the VSI or VSS𝑋 charts in detecting moderate shifts in the process [20].

Some researchers tried to combine together the standard
synthetic 𝑋 chart with adaptive schemes. Khoo et al. [21]
proposed a synthetic double sampling chart that integrated
the double sampling (DS) 𝑋 chart and CRL chart and
they concluded that the synthetic DS chart is superior to
the synthetic or even the DS 𝑋 chart. Chen and Huang
[22] considered the variable sampling interval scheme as
an enhancement to their proposed synthetic chart in order
to further improve the chart’s performance. Lee and Lim
[23] proposed a VSSI-CRL synthetic control chart and they
concluded that it has better detection power than the CRL
synthetic chart or the VSSI chart in general. Costa and Rahim
[24] considered the synthetic chart based on the statistic 𝑇 to
monitor both the mean and variance. They found that their
proposed chart always detected process disturbances faster
than the joint 𝑋 and 𝑅 charts. Machado et al. [25] proposed
a synthetic control chart based on two sample variances
for monitoring the covariance matrix. The proposed chart
was thought to be more efficient than the chart based on
the generalized variance |𝑆|. In this work, the schemes that
consider both variable sampling interval and variable sample
size combined with run rules are applied to the standard
synthetic𝑋 chart for obtaining better detection capacity.

In this paper, an adaptive synthetic 𝑋 chart with a joint
sampling strategy combining variable sampling interval and
variable sample size is developed. A redefined running rule
scheme is adopted to further improve the performance of
the control chart. Compared with the work of Lee and Lim
(2005), different running rules are embedded in the proposed
synthetic chart. In our model, the chart sends an alarm not
only when the conforming run length is sufficiently small
but also when the measuring index outsides the control
limits. Undoubtedly the detection capability is enhanced, but
the problem becomes even more complicated. In this work,
we present a Markov chain model and use it to evaluate
the zero-state and steady-state average time to signal (ATS)
performance of the proposed chart. The numerical results
show that the proposed chart has achieved better detection
power than the traditional synthetic 𝑋 chart and CUSUM
chart in detecting small and moderate shifts in the process.

The rest of the paper is organized as follows: in the next
Section, the formulation of the proposed chart is developed;
then the design model is presented. In Section 3, the genetic
algorithm is used to solve the statistical designmodel; and the
obtained results are reported and discussed. Finally Section 4
concludes the paper.

2. Description of the Developed Chart

Assuming that the production process starts in in-control
(healthy) state, with the in-controlmean𝜇0 and the in-control

standard deviation 𝜎0, the one key quality characteristic 𝑋
is assumed to follow an identical and independent normal
distribution 𝑁(𝜇0, 𝜎20). When process shift occurs, the mean𝜇 will change: that is, 𝜇 = 𝜇0 + 𝛿𝜎0 (𝛿 ≥ 0), where 𝛿 is the
magnitude of the process shift. Since quality shifts are not
directly observable yet undesirable, the process is monitored
by a control chart. At each sampling instance, a sample is
taken and the sample statistic,𝑋, is computed and plotted on
the control chart. Then the control chart gives an indication
for the actual process condition. In this work, an adaptive
synthetic𝑋 chart is proposed to monitor the process and two
alternative combinations of the control chart parameters are
considered: a relaxed one and a tightened one. The relaxed
scheme uses sampling interval ℎ𝐿, sample size 𝑛𝑆, while the
respective parameter values for the tightened scheme are ℎ𝑆,𝑛𝐿, where ℎ𝐿 > ℎ𝑆 > 0, 𝑛𝐿 > 𝑛𝑆 > 0.

If we set 𝑚 as the lower limit of the CRL subchart and
set the constant 𝑘1 > 𝑘2 > 0 as the parameters of the 𝑋
subchart, then the lower control limit, upper control limit,
and the warning control limit of the adaptive synthetic𝑋 are
given by

UCL = 𝜇0 + 𝑘1𝜎𝑋,
UWL = 𝜇0 + 𝑘2𝜎𝑋,
LCL = 𝜇0 − 𝑘1𝜎𝑋,
LWL = 𝜇0 − 𝑘2𝜎𝑋,

(1)

where 𝜎
𝑋
is the in-control standard deviation of the sample

mean.
By referring to the graphical view of the chart in Figure 1,

the operation of the proposed chart is as follows:

(1) Set the control limits of the charts.
(2) A sample is taken and its mean (𝑋) is measured at

each inspection instance.
(3) If a sample produces a value between in the central

region, that is, (UWL, LWL), the process is in control.
The relaxed scheme used for next sampling is (𝑛𝑆, ℎ𝐿).

(4) If the sample mean lies outside the limits, that is,(UCL, +∞) or (−∞, LCL), the control chart gives a
signal. The process is declared as out-of-control and
an investigation and possible restoration take place.

(5) If the sample mean falls in the warning region, that
is, (UWL,UCL) or (LCL, LWL), then the CRL is
checked. In thiswork, CRL is defined as the number of
samples since the most recent previous sample mean
fell in the warning region or since sampling began if
no point fell in the warning region. It is obvious that
CRL is a larger-the-better characteristic.

(a) If CRL is larger than the lower control limit𝑚, where 𝑚 is a specified positive integer, the
process is still considered as in-control, but the
tightened sampling scheme (𝑛𝐿, ℎ𝑆) is used in
next sampling.
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Figure 1: The adaptive synthetic𝑋-bar chart.

(b) If CRL is smaller than the lower control limit𝑚,
then the process is signaled out-of-control, and
an investigation and possible restoration take
place. After that the control flow goes back to
Step (2) and the relaxed sampling plan is used.

It is worth noting that as 𝑚 increases, the adaptive
synthetic 𝑋 control chart behaves more and more like an
ordinary VSSI 𝑋 chart. The most important performance
metrics of control charts are average run length (ARL) and
average time to signal (ATS) in a long-run process [26]. ARL
is commonly studied under two cases in literatures: one when
process is in control (denoted by ARL0) and the other when
the process is out-of-control (denoted by ARL1). Usually,
the ARL0 of the chart is preferred to be long to avoid high
frequency of false alarms and ARL1 to be short to reduce the
number of produced nonconforming units. ATS is presented
by Tagaras [27], which is defined as the expected value of the
time from the start of the process to the time when the chart
indicates an out-of-control signal. Correspondingly, denote
ATS0 andATS1 as the average time to signal when the process
is in-control and out-of-control, respectively.

2.1. Computation of ARL and ATS of the Proposed Chart.
Assuming that a single assignable cause occurs at a random
time and results in a shift in the process mean of a known
magnitude 𝛿 (𝛿 > 0) so that the out-of-control mean value
is 𝜇1 = 𝜇0 + 𝛿𝜎0, the occurrence of the assignable cause
indicates that the process has gone out of control.TheMarkov
chain approach suggested by Davis and Woodall [28] is used
to compute the in-control and out-of-control average run
lengths in the process.

Denote 𝑝0
1
(𝑝1
1
) as the probability that a sample falls

beyond the control limits of𝑋 subchart when the last sample
falls in the central (warning) region. Then the detecting
power, 𝑝0

1
and 𝑝1

1
, of𝑋 subchart can be calculated as

𝑝0
1
= 1 − Φ (𝑘1 − 𝛿√𝑛𝑆) + Φ (−𝑘1 − 𝛿√𝑛𝑆) ,𝑝1
1
= 1 − Φ (𝑘1 − 𝛿√𝑛𝐿) + Φ (−𝑘1 − 𝛿√𝑛𝐿) , (2)

where Φ(⋅) is the cumulative distribution function of a
standard normal distribution function.

Denote 𝑝0
2
(𝑝1
2
) as the probability that a sample falls in

warning region of 𝑋 subchart when the last sample falls in
the central (warning) region. 𝑝0

2
and 𝑝1

2
are given by𝑝0

2
= Φ (𝑘1 − 𝛿√𝑛𝑆) − Φ (𝑘2 − 𝛿√𝑛𝑆)+ Φ (−𝑘2 − 𝛿√𝑛𝑆) − Φ (−𝑘1 − 𝛿√𝑛𝑆) ,𝑝1
2
= Φ (𝑘1 − 𝛿√𝑛𝐿) − Φ (𝑘2 − 𝛿√𝑛𝐿)+ Φ (−𝑘2 − 𝛿√𝑛𝐿) − Φ (−𝑘1 − 𝛿√𝑛𝐿) .

(3)

Denote 𝑝0
3
(𝑝1
3
) as the probability that a sample falls in

central region of𝑋 subchart when the last sample falls in the
central (warning) region. 𝑝0

3
and 𝑝1

3
can be calculated as𝑝0

3
= Φ (𝑘2 − 𝛿√𝑛𝑆) − Φ (−𝑘2 − 𝛿√𝑛𝑆) ,𝑝1
3
= Φ (𝑘2 − 𝛿√𝑛𝐿) − Φ (−𝑘2 − 𝛿√𝑛𝐿) . (4)

A Markov chain {𝑁(𝑖), 𝑖 ≥ 1} is constructed, where 𝑁(𝑖)
is the number of samples which fall in the central region
between the 𝑖th and the (𝑖 − 1)th sample which falls in the
warning region of the 𝑋 subchart. Then the state spaces of{𝑁(𝑖), 𝑖 ≥ 1} are {0, 1, 2, . . . , 𝑚 − 1,𝑚, 𝑆}, where state 𝑆
represents that the control chart sends out out-of-control
signal. Therefore, we can model the adaptive synthetic 𝑋
chart using a {𝑚 + 2,𝑚 + 2} transition probability matrix 𝑃
having the following structure:

𝑃 =
(((((((((((
(

0 𝑝1
3

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑝1
2
+ 𝑝1
10 0 𝑝0

3
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑝0

2
+ 𝑝0
1... d d

... ...... d 𝑝0
3

0 ...0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑝0
3

𝑝0
2
+ 𝑝0
1𝑝0

2
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑝0

3
𝑝0
10 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1

)))))))))))
)

= (𝑄 𝑟0𝑇 1) ,

(5)
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where 0 = (0, 0, . . . , 0)𝑇 and 𝑄 is the (𝑚 + 1,𝑚 + 1)matrix of
transient probabilities.The (𝑚+ 1, 1) vector 𝑟 = 1−𝑄 ⋅ 1 (i.e.,
the row probabilities must sum to 1) with 1 = (1, 1, . . . , 1)𝑇.
The expected average run length is given by

ARL1 = 𝑞𝑇 (𝐼 − 𝑄)−1 1, (6)

where 𝑞 is a (𝑚+1, 1) vector of initial probabilities associated
with the transient states, with 1 for the initial state and 0
elsewhere, that is, 𝑞 = (1, 0, . . . , 0)𝑇, and 𝐼 is a (𝑚 + 1,𝑚 + 1)
identity matrix.

The steady-state probability of the process is required due
to the uncertainty of the instantaneous probability of the
process in each state. 𝜋 = {𝜋0, 𝜋1, . . . , 𝜋𝑚} is represented as
the corresponding steady-state probability of the state space.
According to theMarkov theory, spreading the above matrix,
we obtain the following results:

𝜋0 = 1 − 𝑝0
31 − 𝑝0
3
+ 𝑝1
3

,
𝜋𝑖 = 𝑝1

3
(𝑝0
3
)𝑖−1 (1 − 𝑝0

3
)1 − 𝑝0

3
+ 𝑝1
3

, 𝑖 = 1, 2, . . . , 𝑚 − 1,
𝜋𝑚 = 𝑝1

3
(𝑝0
3
)𝑚−11 − 𝑝0
3
+ 𝑝1
3

.
(7)

Then when the magnitude of the process shift is 𝛿 (≥0), the expected average sampling interval 𝐸ℎ[𝛿] and the
expected average sample size 𝐸𝑛[𝛿] are calculated as𝐸ℎ [𝛿] = 𝜋0ℎ𝑆 + (𝜋1 + 𝜋2 + ⋅ ⋅ ⋅ + 𝜋𝑚) ℎ𝐿,𝐸𝑛 [𝛿] = 𝜋0𝑛𝐿 + (𝜋1 + 𝜋2 + ⋅ ⋅ ⋅ + 𝜋𝑚) 𝑛𝑆. (8)

The total expected average sample size of the process can
be expressed as𝐸𝑛 = 𝑝𝑐𝐸𝑛 [𝛿 = 0] + (1 − 𝑝𝑐) 𝐸𝑛 [𝛿 > 0] , (9)

where 𝑝𝑐 is the probability of the process in control at
arbitrary time.

Theout-of-control average run length,ARL1, is calculated
by substituting 𝛿 > 0, while the in-control average run length,
ARL0, is computed by substituting 𝛿 = 0. The ATS of the
adaptive synthetic𝑋 chart is given by

ATS = ARL × 𝐸ℎ [𝛿] . (10)

Similarly, ATS1 is calculated by substituting 𝛿 > 0, while
ATS0 is computed by substituting 𝛿 = 0.
2.2. Design Model. The statistical design of the proposed
synthetic 𝑋 chart can be conducted using the following
optimization model:

Objective function is

Min ATS1. (11)

Table 1: The optimal parameters and the values of ATS1.𝛿 (𝑛𝑆, 𝑛𝐿) (ℎ𝐿, ℎ𝑆) (𝑘1, 𝑘2) 𝑚 ATS1
0.1 (12, 14) (6.5031, 3.3638) (7.1368, 1.9826) 9 193.6936
0.3 (11, 12) (2.5894, 0.6658) (8.1090, 2.1697) 8 25.5154
0.5 (11, 15) (2.8284, 0.3193) (6.2454, 2.0591) 5 4.8198
0.6 (12, 14) (2.5849, 0.2366) (7.9035, 2.1941) 9 2.7954
0.8 (10, 13) (1.3651, 0.1589) (3.9953, 2.2805) 7 0.7449
1.0 (8, 12) (1.4749, 0.1375) (7.7022, 2.1316) 3 0.2966
1.5 (12, 14) (5.7517, 0.1009) (6.4527, 2.2539) 23 0.1031

Constraints function is

ATS0 ≥ 𝜏;ℎ𝐿 > ℎ𝑆 > 0;𝑛𝐿 > 𝑛𝑆 > 0;𝑘1 > 𝑘2 > 0;𝑛max ≥ 𝐸𝑛 > 0;𝑛𝑆, 𝑛𝐿, 𝑚 ∈ IN.
(12)

Design variable is𝑘1, 𝑘2, ℎ𝐿, ℎ𝑆, 𝑛𝐿, 𝑛𝑆, 𝑚, (13)

where 𝜏 and 𝑛max are, respectively, the allowed minimum in-
control average run length to signal and themaximumsample
size.The value of 𝜏 is usually decided by the quality assurance
(QA) engineer with regard to the false alarm rate.

3. Numerical Analysis

3.1. Optimization Algorithm. The established design model
for the control chart is a nonlinear programming model with
mixed continuous discrete variables, which is too complex
to be solved in optimality.Therefore, metaheuristic methods,
especially genetic algorithms (GA), were commonly used
to solve the problem. GA has been commonly used for its
adaptiveness and effectiveness. Successful applications of GA
in the designs of control charts can be found in Aparisi and
Garćıa-Dı́az [29] and He and Grigoryan [30]. In this study,
GA toolbox of theUniversity of Sheffield is developed to solve
the optimal statistic designs of the proposed chart.

3.2. The Statistical Performance. In this section, we evaluate
the statistical performances of the proposed chart. Table 1
shows the optimal ATS1 of the proposed synthetic 𝑋 chart;
moreover, each row in the table shows the optimal design
parameters.

From Table 1, it is found that the value of ATS1 of
the proposed chart decreases along with an increase in the
magnitude of the shift (𝛿). A significant change occurs when
the value of 𝛿 changes from small to moderate. That is to say,
the proposed chart is sensitive to the change of mean shift
when the process is out-of-control. On the other hand, when
the mean shift changes frommoderate to large, the detection
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Table 2: Comparison among the optimal ATS1 corresponding to the two charts.

Optimal value of ATS1 for each case
Cases 𝐸𝑛 = 3 𝐸𝑛 = 5 𝐸𝑛 = 9𝛿 Adap-Syn Trad-Syn Adap-Syn Trad-Syn Adap-Syn Trad-Syn
0.1 375.3452 847.1256 300.2754 700.4593 255.5710 603.5124
0.3 115.4521 211.3375 78.0624 144.7012 43.6432 61.6817
0.5 48.2578 103.8345 28.1089 50.0896 12.1607 16.0863
0.6 33.7869 67.7789 15.7966 21.2451 4.3920 8.0664
0.8 10.3149 42.0031 3.6467 10.0180 2.1909 4.7890
1.0 5.0379 20.1121 2.3129 3.4568 1.1089 1.2143
1.5 1.5287 4.2857 0.5903 0.6752 0.1151 0.2137
Notes: Adap-Syn and Trad-Syn represent the proposed adaptive synthetic𝑋 chart and the traditional synthetic𝑋 chart, respectively.

Table 3: Results of the proposed chart and CUSUM chart for comparison.

Optimal value of ATS1 for each case
Cases 𝐸𝑛 = 3 𝐸𝑛 = 5 𝐸𝑛 = 9𝛿 Adap-Syn CUSUM Adap-Syn CUSUM Adap-Syn CUSUM
0.1 375.3452 415.2016 300.2754 325.4593 255.5710 275.5124
0.3 115.4521 121.3375 78.0624 85.7012 43.6432 48.6817
0.5 48.2578 52.8345 28.1089 42.0896 12.1607 13.0863
0.6 33.7869 38.7789 15.7966 21.2451 4.3920 5.0664
0.8 10.3149 12.0031 3.6467 4.0180 2.1909 2.0890
1.0 5.0379 6.1121 2.3129 2.8568 1.1089 0.8143
1.5 1.5287 2.2857 0.5903 0.6752 0.1151 0.1037

power of the proposed chart is improved slightly, which is in
line with the actual situation.

In actual production, 100% sampling is not possible and
the assignable causes are not self-announced; therefore, the
average sample size, 𝐸𝑛, is usually an important matter to
QA engineer. In Table 2, we compare the optimal value of
ATS1 between the proposed synthetic𝑋 chart and traditional
synthetic 𝑋 chart in three cases (𝐸𝑛 = {3, 5, 9}). It is
reasonable that the optimal value of ATS1 decreases along
with an increase in the average sample size (𝐸𝑛). At the
same time, it can be noted that the proposed chart generally
achieved shorter ATS1 than the traditional synthetic chart,
showing that the variable sample size and sampling interval
scheme is helpful in improving the statistical performance of
the chart.

3.3. Comparison to CUSUM Chart. In this section, the pro-
posed chart is compared with the cumulative sum (CUSUM)
chart in terms of the average time to signal when process is
out-of-control. Woodall and Adams [31] recommended use
of the ARL approximation given by Siegmund for designing
a CUSUM chart. For a one-sided CUSUM with parameters 𝑙
and 𝑘, Siegmund gives

ARL𝑈 = 𝑒−2Δ𝑏 + 2Δ𝑏 − 12Δ2 (14)

for Δ ̸= 0, where Δ = (𝜇1 − 𝜇0)/𝜎 − 𝑘 for the upper one-side
CUSUM, and 𝑏 = 𝑙 + 1.166. Similarly, ARL𝐿 can be obtained

for the lower one-sided CUSUM. Then we can achieve the
ATS1 of a two-sided CUSUM chart as follows:

ATS1 = ARL𝑈 ⋅ ARL𝐿
ARL𝑈 + ARL𝐿

⋅ ℎ, (15)

where ℎ is the sampling interval.
Table 3 displays the comparison between the proposed

chart and CUSUM chart, and we can see that the proposed
chart always has the shorter ATS1 when the mean shift
is small; see 𝛿 = 0.1∼0.6. However, the opposite result is
achieved when the mean shift is large enough and simulta-
neously the sample size is great; see 𝛿 = 0.8∼1.5 and 𝐸𝑛 = 9.
In other words, the proposed chart is the better choice for QA
engineer if the production process is fragile and samples are
difficult to obtain; conversely, the CUSUM chart is superior
to the proposed chart.

A specific example to display the result can be found in
Figure 2. We can see that the traditional synthetic 𝑋 chart is
always theworst of the three toQA engineer.The gap between
the three is getting smaller and smaller with the increase of𝛿. When the value of 𝛿 exceeds a certain value, the CUSUM
chart is the better choice than the adaptive synthetic𝑋 chart.
The resultsmean that, when themean shift of process is small,
the detection power of the proposed chart is always superior
to traditional synthetic chart and theCUSUMchart; however,
when the mean shift of process changes from moderate to
large, CUSUM chart would be the better one.
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Figure 2: Comparison among ATS1 corresponding to the three
charts.

4. Conclusion

In this research, adaptive synthetic𝑋 charts which integrated
variable sample size and sampling interval 𝑋 charts and
CRL charts have been developed to control the state of
statistical control in service and management operation
process. The performances of these charts were evaluated by
determining their optimal statistical design and comparing it
with tradition synthetic 𝑋 chart and CUSUM chart schemes
commonly used in the literature. The optimal design was
obtained by genetic algorithm, which works to determine the
minimum ATS1 under the set of selected constraints. The
obtained results show that the proposed charts work better
than the tradition synthetic 𝑋 chart for all levels of mean
shifts and better than CUSUM chart when small to moderate
shifts in the mean of the controlled parameter are expected.
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