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In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact
multistage stochastic chance constrained programming (IMSCCP) model is proposed. The model integrates stochastic chance
constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization
framework to handle the uncertainties occurring in both constraints and objective.These uncertainties are expressed as probability
distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans,
and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system
risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a
hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid
algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The
results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance
constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.

1. Introduction

With the economic development and population growth, the
demands for water resources increase every year. Due to
unreasonable exploitation and utilization of water resources,
water pollution, and extreme weather conditions, more and
more countries and regions are faced with different degrees
of water shortage. Making the best use of limited water
resources premises the sustainable development of economy
and society [1]. In the past few decades, many researchers
have applied optimization techniques [2–7] to deal with
uncertainties in a number of system components and their
interrelationships within water resources systems [8]. Among
them, inexact multistage stochastic programming (IMSP)
is regarded as a significant method for water resources
management. For example, Li et al. [9] proposed an interval-
parameter multistage stochastic linear programming model
which incorporates inexact optimization and multistage
stochastic linear programming to manage water resources.

Zhou et al. [10] developed a factorial multistage stochastic
programming which is a hybrid methodology of factorial
analysis and IMSP to analyze the potential interrelationships
among a variety of uncertain parameters and their impacts
on system performance for water resources management.
Suo et al. [11] proposed an inventory-theory-based inex-
act multistage stochastic programming for water resources
management through introducing an inventory theory into
the framework of IMSP to provide reasonable transferring
schemes associated with various flow scenarios. IMSP was
also combined with other types of uncertainties, such as
fuzziness [12–14], to solve the water resources management
problems. However, the above models cannot assess the risks
in water resources management systems, to which chance
constrained programming (CCP) is an effective method to
resort to.

CCP, pioneered by Charnes and Cooper [15], provides a
method to handle uncertainties by specifying a confidence
level at which it is desired that the constraint holds [16],
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which has been applied in several areas [17, 18]. In water
resources management, using CCP is conducive to not
only making decisions of water allocation but also gaining
insights into the tradeoffs between economic objectives and
some policy factors for a water resource manager [19].
For instance, Liu et al. [1] provided a factorial multistage
stochastic programming with chance constraints to deal
with the issues of constraint-violation risks and interac-
tive uncertainties in water resources management systems.
However, this kind of CCP models can only be solved in
some special cases. Meanwhile, the models should firstly be
converted into deterministic equivalents and then be solved
by using solution methods of deterministic mathematical
programming [16] in the solution process. Complex chance
constrained programming models are hard to solve, such as
nonlinear models which contain multiply distributed data
[20]. In order to overcome the limitations, Liu [21] presented
a framework of CCP with the assumption that not only
uncertain constraints but also uncertain objective would hold
at different confidence levels provided by the decision-maker
as an appropriate safety margin and gave a hybrid algorithm
to solve the CCP for more cases. It is noticeable that the
choice of confidence levels makes the model flexible to more
situations. The CCP has been applied to many aspects of
system decision-making, such as project scheduling [22],
capital budgeting [23], capacitated location-allocation [24],
and redundancy-optimization [25]. Up to now, Liu [21]’s
CCP has not been applied in the optimization of water
resources management although this method is needed
because of the complexity of thewater resourcesmanagement
systems.

In our previous relevant research, [26] extended Liu [21]’s
CCP from probability space to Sugeno measure space, in
which Sugenomeasure was one of representative nonadditive
measures. Although the theoretical basis of the CCP was
discussed in detail, we did not apply the model to water
resources management. Paper [27], which managed water
supply risk by constructing a model of water option pricing,
did not refer to water resources allocation and assess the
risks by using CCP. As an extension of the previous efforts,
this study aims to develop an inexact multistage stochastic
chance constrained programming (IMSCCP) model, which
incorporates the CCP proposed by Liu [21] into the IMSP
framework for water resources management. The model can
tackle uncertainties in the objective and constraints which
present themselves as probability distributions and inter-
val with multiply distributed stochastic boundaries, analyze
various policy scenarios when the promised policy targets
are violated, and deal with the issue of risks presented as
stochastic constraints and stochastic objective with predeter-
mined confidence levels. A hypothetical case study of water
resourcesmanagementwithin three planning periods is given
to demonstrate the applicability of the method. Moreover, a
hybrid algorithm incorporating stochastic simulation, back
propagation (BP) neural network, and genetic algorithm
(GA) is proposed to solve the model. The developed method
obtains the results of the model in which the optimal value
represents the maximal net system benefit achieved with a
given confidence level subject to chance constrains.

2. Methodologies

2.1. Multistage Inexact Stochastic Programming Model. It
is important for a water resources manager to allocate
water to multiple users such as municipal, industrial, and
agricultural sectors from an unregulated reservoir over a
multiperiod planning horizon in an optimized way, which
could be formulated as maximizing the expected economic
revenue based on the water allocation in the region over
the planning horizon [28]. The manager promises a quantity
of water to each user. If the promised water is delivered,
net benefits will be brought to local economy; otherwise,
the deficient water must be obtained from alternative and
more expensive sources or the demand must be curtailed,
resulting in economic penalties on local economy [29].
Considering the randomness of the water flow and the
dynamic feature of the long-term water allocation plans,
the problem of water allocation can be formulated as the
following scenario-basedmultistage stochastic programming
model for water resources management under uncertainties
[9]:

max 𝑓 = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB𝑖𝑗𝑇𝑖𝑗 − 𝑛∑
𝑗=1

𝐸[ 𝑚∑
𝑖=1

𝐶𝑖𝑗𝐷𝑖𝑄𝑗]

s.t.
𝑚∑
𝑖=1

(𝑇𝑖𝑗 − 𝐷𝑖𝑄𝑗) ≤ 𝑄𝑗 + 𝜀(𝑗−1)𝑄𝑗−1 ,
𝑗 = 1, 2, . . . , 𝑛

𝜀(𝑗−1)𝑄𝑗−1
= [𝑄𝑗−1 − 𝑚∑

𝑖=1

(𝑇𝑖(𝑗−1) − 𝐷𝑖𝑄𝑗−1)] + 𝜀(𝑗−2)𝑄𝑗−2 ,
𝑗 = 1, 2, . . . , 𝑛

𝑇𝑖𝑗max ≥ 𝑇𝑖𝑗 ≥ 𝐷𝑖𝑄𝑗 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(1)

where 𝑓 is the net benefit of the water allocation system
($); NB𝑖𝑗 is the net benefit when per unit (m3) of water
is allocated to user 𝑖 in period 𝑗 ($/m3); 𝑇𝑖𝑗 is the fixed
amount of water allocation target promised to user 𝑖 in
period 𝑗 (m3); 𝑄𝑗 is the water flow in period 𝑗 which
is a random variable (m3); 𝐷𝑖𝑄𝑗 is the amount of water
shortage to user 𝑖 when the seasonal flow is 𝑄𝑗 (m3); 𝐶𝑖𝑗
is the loss when per unit (m3) of water is not allocated
to user 𝑖 in period 𝑗 ($/m3); 𝐸[⋅] is the expected value of
a random variable; 𝜀(𝑗−1)𝑄𝑗−1 is the surplus water inflow in
period 𝑗 (m3) according to 𝑄𝑗−1; 𝑇𝑖𝑗max is the amount of
maximum allowable allocation for user 𝑖 (m3); 𝑚 is the
number of water users; 𝑖 is the index of water user for𝑖 = 1, 2, 3, with 𝑖 = 1 for the municipality, 𝑖 = 2 for
the industrial user, and 𝑖 = 3 for the agricultural sector.
In the model, 𝐷𝑖𝑄𝑗 is the decision variable and 𝑓 is the
objective function. It is observed that model (1) reflects
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nonanticipativity, since a decisionmust bemade in each stage
without the knowledge of realizations of random variables in
future stages.

Let𝑄𝑗 take values of 𝑞𝑗𝑘 with probability𝑝𝑗𝑘 for scenarios
in each planning period (𝑗), where 𝑝𝑗𝑘 is the probability of
occurrence for scenario 𝑘 in period 𝑗 and ∑𝐾𝑗

𝑘=1
𝑝𝑗𝑘 = 1.

Then, we have 𝐸[∑𝑚𝑖=1 𝐶𝑖𝐷𝑖𝑄𝑖] = ∑𝑚𝑖=1∑𝐾𝑗𝑘=1 𝑝𝑗𝑘𝐶𝑖𝑗𝐷𝑖𝑗𝑘, 𝑗 =1, 2, . . . , 𝑛, where 𝐾𝑗 is the sum of scenarios in period 𝑗; 𝐷𝑖𝑗𝑘
is the amount of water allocation shortage to user 𝑖 when
the scenario 𝑘 occurs in period 𝑗. Then model (1) can be
reformulated as follows [9]:

max 𝑓 = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB𝑖𝑗𝑇𝑖𝑗 − 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶𝑖𝑗𝐷𝑖𝑗𝑘

s.t
𝑚∑
𝑖=1

(𝑇𝑖𝑗 − 𝐷𝑖𝑗𝑘) ≤ 𝑄𝑗𝑘 + 𝜀(𝑗−1)𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀(𝑗−1)𝑘
= [𝑄(𝑗−1)𝑘 − 𝑚∑

𝑖=1

(𝑇𝑖(𝑗−1) − 𝐷𝑖(𝑗−1)𝑘)] + 𝜀(𝑗−2)𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝑇𝑖𝑗max ≥ 𝑇𝑖𝑗 ≥ 𝐷𝑖𝑗𝑘 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗.

(2)

Considering that the uncertainties exist in variables and
coefficients, the fixed values of the parameters, such as 𝑇𝑖𝑗,
NB𝑖𝑗, 𝐶𝑖𝑗, and 𝑄𝑗𝑘, cannot be determined exactly. Thus, the
inexact multistage stochastic programming (IMSP) model,
which introduces interval parameters into model (2), is
proposed as follows [9]:

max 𝑓± = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB±𝑖𝑗𝑇±𝑖𝑗 −
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶±𝑖𝑗𝐷±𝑖𝑗𝑘

s.t
𝑚∑
𝑖=1

(𝑇±𝑖𝑗 − 𝐷±𝑖𝑗𝑘) ≤ 𝑞±𝑗𝑘 + 𝜀±(𝑗−1)𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀±(𝑗−1)𝑘
= [𝑞±(𝑗−1)𝑘 −

𝑚∑
𝑖=1

(𝑇±𝑖(𝑗−1) − 𝐷±𝑖(𝑗−1)𝑘)] + 𝜀±(𝑗−2)𝑘,
𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝑇±𝑖𝑗max ≥ 𝑇±𝑖𝑗 ≥ 𝐷±𝑖𝑗𝑘 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗.

(3)

2.2. Inexact Multistage Stochastic Chance Constrained Pro-
gramming Model. Models (1), (2), and (3) do not readily
assess the risks, and they only deal with uncertainties in the
right hand side such as the water flow 𝑄. It is difficult to
handle uncertainties in both the left and right hand sides
(i.e., 𝑇𝑖𝑗, NB𝑖𝑗, and 𝐶𝑖𝑗) [1] which are presented as interval
with stochastic normal distributed boundaries. In view of
the above considerations, Liu et al. [1] combined chance
constrained programming (CCP, initiated by Charnes and
Cooper [15]) with IMSP to propose the following inex-
act multistage stochastic programming model with chance
constraints to solve problems with the request that chance
constraints should hold at least with prescribed levels of
probability (i.e., confidence levels):

max 𝑓± = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB±𝑖𝑗𝑇±𝑖𝑗 −
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶±𝑖𝑗𝐷±𝑖𝑗𝑘

s.t Pr{ 𝑚∑
𝑖=1

(𝑇±𝑖𝑗 − 𝐷±𝑖𝑗𝑘) ≤ 𝑞±𝑗𝑘 + 𝜀±(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀±(𝑗−1)𝑘
= [𝑞±(𝑗−1)𝑘 −

𝑚∑
𝑖=1

(𝑇±𝑖(𝑗−1) − 𝐷±𝑖(𝑗−1)𝑘)] + 𝜀±(𝑗−2)𝑘,
𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝑇±𝑖𝑗max ≥ 𝑇±𝑖𝑗 ≥ 𝐷±𝑖𝑗𝑘 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗.

(4)

Model (4) can handle uncertainties presented as interval
with normally distributed boundaries. However, uncertain-
ties in the water resources management systems have more
diverse forms of performance besides normal distribution,
which suggests a need for models that can handle uncertain-
ties presented as interval with multiple distributed bound-
aries. And the confidence levels only in constraints may be
not enough to indicate the relationship between the economic
objective and the system risk. Moreover, a water resources
manager may want to obtain the maximum that the objective
function𝑓(x, 𝜉) achieveswith a given confidence level subject
to stochastic constraints with other confidence levels, which
means that the confidence levels are not only in constraints
but also in objective.

Liu [21] proposed a framework of nonlinear chance
constrained programming with confidence levels occurring
in constraints and objective and provided a stochastic sim-
ulation based genetic algorithm to solve the CCP. This CCP
model can be formulated as follows:



4 Scientific Programming

max 𝑓
s.t Pr {𝜉 | 𝑓 (x, 𝜉) ≥ 𝑓} ≥ 𝛼

Pr {𝜉 | 𝑔𝑗 (x, 𝜉) ≤ 0} ≥ 𝛽𝑗, 𝑗 = 1, 2, . . . , 𝑛,
(5)

where x is a decision vector; 𝜉 is a random vector; 𝛼 and 𝛽𝑗
are predetermined confidence levels for stochastic objective
and stochastic constraint(s), respectively; Pr{⋅} denotes the
probability of the event in {⋅}. This programming aims to
maximize 𝑓 that the objective function 𝑓(x, 𝜉) achieves with
at least probability of 𝛼 (max𝑓 is called 𝛼-optimistic value to𝑓(x, 𝜉)). x is feasible if and only if the probability measure of
the set {𝜉 | 𝑔𝑗(x, 𝜉) ≤ 0} is at least 𝛽𝑗 for 𝑗 = 1, 2, . . . , 𝑛.

By incorporating CCP [21] and multistage stochastic
programming (model (2)), a multistage stochastic chance
constrained programming model for water resources man-
agement could be formulated as follows:

max 𝑓
s.t Pr

{{{
𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB𝑖𝑗𝑇𝑖𝑗 − 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶𝑖𝑗𝐷𝑖𝑗𝑘 ≥ 𝑓}}}
≥ 𝛼
Pr{ 𝑚∑
𝑖=1

(𝑇𝑖𝑗 − 𝐷𝑖𝑗𝑘) ≤ 𝑞𝑗𝑘 + 𝜀(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀(𝑗−1)𝑘 = [𝑞(𝑗−1)𝑘 − 𝑚∑
𝑖=1

(𝑇𝑖(𝑗−1) − 𝐷𝑖(𝑗−1))] + 𝜀(𝑗−2)𝑘,
𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝑇𝑖𝑗max ≥ 𝑇𝑖𝑗 ≥ 𝐷𝑖𝑗𝑘 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗,

(6)

where 𝛼 and 𝛽𝑗𝑘 are predetermined confidence levels for
stochastic objective and stochastic constraint(s), respec-
tively. This programming aims to obtain the 𝛼-optimistic
value to the objective function of ∑𝑚𝑖=1∑𝑛𝑗=1NB𝑖𝑗𝑇𝑖𝑗 −
∑𝑚𝑖=1∑𝑛𝑗=1∑𝐾𝑗𝑘=1 𝑝𝑗𝑘𝐶𝑖𝑗𝐷𝑖𝑗𝑘. Obviously, model (6) gives pre-
determined confidence levels for constraints and objective,
which indicates more comprehensive risk assessment in the
water resources management systems.

Considering that the fixed values of the parameters in
model (6) cannot be determined exactly, an inexact multi-
stage stochastic chance constrained programming (IMSCCP)
model is proposed as follows:

max 𝑓±

s.t Pr
{{{
𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB±𝑖𝑗𝑇±𝑖𝑗 −
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶±𝑖𝑗𝐷±𝑖𝑗𝑘 ≥ 𝑓±}}}
≥ 𝛼
Pr{ 𝑚∑
𝑖=1

(𝑇±𝑖𝑗 − 𝐷±𝑖𝑗𝑘) ≤ 𝑞±𝑗𝑘 + 𝜀±(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘,
𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀±(𝑗−1)𝑘 = [𝑞±(𝑗−1)𝑘 −
𝑚∑
𝑖=1

(𝑇±𝑖(𝑗−1) − 𝐷±𝑖(𝑗−1))] + 𝜀±(𝑗−2)𝑘,
𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝑇±𝑖𝑗max ≥ 𝑇±𝑖𝑗 ≥ 𝐷±𝑖𝑗𝑘 ≥ 0,
𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗.

(7)

Let 𝑇±𝑖𝑗 = 𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗, where Δ𝑇𝑖𝑗 = 𝑇+𝑖𝑗 − 𝑇−𝑖𝑗 , 𝑖 =1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛. Model (7) could be replaced by
the following form:

max 𝑓±

s.t Pr
{{{
𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB±𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗) − 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶±i𝑗𝐷±𝑖𝑗𝑘 ≥ 𝑓±}}}
≥ 𝛼

Pr{ 𝑚∑
𝑖=1

(𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗 − 𝐷±𝑖𝑗𝑘) ≤ 𝑞±𝑗𝑘 + 𝜀±(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀±(𝑗−1)𝑘 = [𝑞±(𝑗−1)𝑘 −
𝑚∑
𝑖=1

(𝑇−𝑖(𝑗−1) + Δ𝑇𝑖(𝑗−1)𝑦𝑖(𝑗−1) − 𝐷±𝑖(𝑗−1))] + 𝜀±(𝑗−2)𝑘, 𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗
0 ≤ 𝑦𝑖𝑗 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛
𝑇±𝑖𝑗max ≥ 𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗 ≥ 𝐷±𝑖𝑗𝑘 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗.

(8)
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Next, we can change model (8) into two submodels
corresponding to the upper and lower bounds for the desired
objective function value.

Firstly, we formulate submodel (9) corresponding to the
upper bound of the objective function value; that is,

max 𝑓+

s.t Pr
{{{
𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB+𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗) − 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶−𝑖𝑗𝐷−𝑖𝑗𝑘 ≥ 𝑓+}}}
≥ 𝛼

Pr{ 𝑚∑
𝑖=1

(𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗 − 𝐷−𝑖𝑗𝑘) ≤ 𝑞+𝑗𝑘 + 𝜀+(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗

𝜀+(𝑗−1)𝑘 = [𝑞+(𝑗−1)𝑘 −
𝑚∑
𝑖=1

(𝑇−𝑖(𝑗−1) + Δ𝑇𝑖(𝑗−1)𝑦𝑖(𝑗−1) − 𝐷−𝑖(𝑗−1))] + 𝜀+(𝑗−2)𝑘, 𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗
0 ≤ 𝑦𝑖𝑗 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛
𝑇+𝑖𝑗max ≥ 𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗 ≥ 𝐷−𝑖𝑗𝑘 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗,

(9)

where 𝐷−𝑖𝑗𝑘 and 𝑦𝑖𝑗 are the decision variables and max𝑓+
is the 𝛼-optimistic value to the net system benefit
∑𝑚𝑖=1∑𝑛𝑗=1NB+𝑖𝑗(𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗) − ∑𝑚𝑖=1∑𝑛𝑗=1∑𝐾𝑗𝑘=1 𝑝𝑗𝑘𝐶−𝑖𝑗𝐷−𝑖𝑗𝑘. In
submodel (9), the optimal solutions are denoted by 𝐷−𝑖𝑗𝑘opt
and 𝑦𝑖𝑗opt, and the optimal value is denoted by 𝑓+opt.

Secondly, submodel (10) corresponding to the lower
bound of the objective function value can be formulated as
follows:

max 𝑓−

s.t Pr
{{{
𝑚∑
𝑖=1

𝑛∑
𝑗=1

NB−𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗opt) − 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐾𝑗∑
𝑘=1

𝑝𝑗𝑘𝐶+𝑖𝑗𝐷+𝑖𝑗𝑘 ≥ 𝑓+opt}}}
≥ 𝛼

Pr{ 𝑚∑
𝑖=1

(𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗opt − 𝐷+𝑖𝑗𝑘) ≤ 𝑞−𝑗𝑘 + 𝜀−(𝑗−1)𝑘} ≥ 𝛽𝑗𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗
𝜀−(𝑗−1)𝑘 = [𝑞−(𝑗−1)𝑘 −

𝑚∑
𝑖=1

(𝑇−𝑖(𝑗−1) + Δ𝑇𝑖(𝑗−1)𝑦𝑖(𝑗−1)opt − 𝐷+𝑖(𝑗−1))] + 𝜀−(𝑗−2)𝑘, 𝑗 = 2, 3, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗
𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗opt ≥ 𝐷+𝑖𝑗𝑘 ≥ 𝐷−𝑖𝑗𝑘opt, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝐾𝑗,

(10)

where 𝐷+𝑖𝑗𝑘 is the decision variable and max𝑓− is the 𝛼-
optimistic value to the net system benefit∑𝑚𝑖=1∑𝑛𝑗=1NB−𝑖𝑗(𝑇−𝑖𝑗 +
Δ𝑇𝑖𝑗𝑦𝑖𝑗opt) − ∑𝑚𝑖=1∑𝑛𝑗=1∑𝐾𝑗𝑘=1 𝑝𝑗𝑘𝐶+𝑖𝑗𝐷+𝑖𝑗𝑘. In submodel (10), the
optimal solution is denoted by 𝐷+𝑖𝑗𝑘opt and the optimal value

is denote by 𝑓−opt.
Thirdly, the real allocation of water to user 𝑖 when the

scenario 𝑘 occurs in period 𝑗 can be calculated by 𝐴±𝑖𝑗𝑘opt =
𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗opt − 𝐷±𝑖𝑗𝑘opt.

Finally, the optimized interval solution for the decision
variable𝐷±𝑖𝑗𝑘opt = [𝐷−𝑖𝑗𝑘opt, 𝐷+𝑖𝑗𝑘opt] and the real interval alloca-
tion of water𝐴±𝑖𝑗𝑘opt = [𝐴−𝑖𝑗𝑘opt, 𝐴+𝑖𝑗𝑘opt] can be obtained, while
the optimized interval objective value 𝑓±opt = [𝑓−opt, 𝑓+opt] can
be generated through the variation of𝐷±𝑖𝑗𝑘opt.
3. Case Study

In this section, the IMSCCP model is applied to the water
resources management systems. Just as the statement for
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the hypothetical problem described in Huang and Loucks
[30], a water resources manager shoulders the responsibility
of delivering water from an unregulated reservoir to three
sectors, that is, municipality, industry, and agriculture,
during three periods. All users want to know allocated water
amount that they can expect over the three periods. If the
allocated water satisfies the demand of the user, per unit
water will gain net benefit for the local economy. Otherwise,
the user will spend more to obtain water from other
reservoirs or curtail their expansion plans, which means
per unit water deficiency will gain penalty. Table 1 provides

the water allocation targets in the three planning periods.
Tables 2 and 3 present the distribution of the stream flows in
the three periods. Table 4 shows the related economic data.
Obviously, the boundaries of the data in Tables 3 and 4 are
random variables satisfying different distribution forms. The
objective is to obtain 90%-optimistic value to the net system
benefit while the constraints of water availability hold with
at least a probability of 95% over the planning horizon.

Based on the information shown in Tables 1–4, the
IMSCCP model for water resources management can be
formulated as follows:

max 𝑓±

s.t Pr
{{{
3∑
𝑖=1

3∑
𝑗=1

NB±𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗) − 3∑
𝑖=1

3∑
𝑘=1

𝑝1𝑘𝐶±𝑖1𝐷±𝑖1𝑘 −
3∑
𝑖=1

9∑
𝑘=1

𝑝2𝑘𝐶±𝑖2𝐷±𝑖2𝑘 −
3∑
𝑖=1

27∑
𝑘=1

𝑝3𝑘𝐶±𝑖3𝐷±𝑖3𝑘 ≥ 𝑓±}}}
≥ 𝛼

Pr{ 3∑
𝑖=1

(𝑇−𝑖1 + Δ𝑇𝑖1𝑦𝑖1 − 𝐷±𝑖1𝑘) ≤ 𝑞±1𝑘} ≥ 𝛽1𝑘, 𝑘 = 1, 2, 3

Pr{ 3∑
𝑖=1

(𝑇−𝑖2 + Δ𝑇𝑖2𝑦𝑖2 − 𝐷±𝑖2𝑘) ≤ 𝑞±2𝑘 + 𝜀±1𝑘} ≥ 𝛽2𝑘, 𝑘 = 1, 2, . . . , 9

Pr{ 3∑
𝑖=1

(𝑇−𝑖3 + Δ𝑇𝑖3𝑦𝑖3 − 𝐷±𝑖3𝑘) ≤ 𝑞±2𝑘 + 𝜀±2𝑘} ≥ 𝛽3𝑘, 𝑘 = 1, 2, . . . , 27

𝜀±1𝑘 = 𝑞±1𝑘 −
3∑
𝑖=1

(𝑇−𝑖1 + Δ𝑇𝑖1𝑦𝑖1 − 𝐷±𝑖1) , 𝑘 = 1, 2, . . . , 9

𝜀±2𝑘 = [𝑞±2𝑘 −
3∑
𝑖=1

(𝑇−𝑖2 + Δ𝑇𝑖2𝑦𝑖2 − 𝐷±𝑖2)] + 𝜀±1𝑘, 𝑘 = 1, 2, . . . , 9
0 ≤ 𝑦𝑖𝑗 ≤ 1, 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3
𝑇±𝑖1max ≥ 𝑇−𝑖1 + Δ𝑇𝑖1𝑦𝑖1 ≥ 𝐷±𝑖1𝑘 ≥ 0, 𝑖 = 1, 2, 3, 𝑘 = 1, 2, 3
𝑇±𝑖2max ≥ 𝑇−𝑖2 + Δ𝑇𝑖2𝑦𝑖2 ≥ 𝐷±𝑖2𝑘 ≥ 0, 𝑖 = 1, 2, 3, 𝑘 = 1, 2, . . . , 9
𝑇±𝑖3max ≥ 𝑇−𝑖3 + Δ𝑇𝑖3𝑦𝑖3 ≥ 𝐷±𝑖3𝑘 ≥ 0, 𝑖 = 1, 2, 3, 𝑘 = 1, 2, . . . , 27.

(11)

Apparently, model (11) is different from the exiting
chance constraint programming models for water resources
management which transform the original chance con-
straints into deterministic equivalents via the theories
provided by Charnes et al. [31]. In order to solve this
model, a hybrid algorithm which consists of stochastic
simulation, BP neural network, and GA is proposed as
follows.

Hybrid Algorithm. In order to solve the model, a hybrid
algorithm, which incorporates stochastic simulation, back
propagation (BP) neural network, and genetic algorithm
(GA), is proposed. At first, model (9) and model (10)

should be solved by the hybrid algorithm. In the solution
process, stochastic simulation is used to generate input-
output data, BP neural network is used to approximate
the functions according to the generated input-output
data, and GA is used to enhance the optimization pro-
cess and obtain a solution to the optimization problem.
The flowchart figure of the hybrid algorithm is shown in
Figure 1.

Then, the optimized water allocation target and the
real allocation of water are achieved. Finally, we obtain
the optimal solutions and the optimal value of the model.
The concrete step of the algorithm can be summarized as
follows.
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Yes

Generate input-output data
by stochastic simulation

Construct a BP neural
network

Initialize the BP neural
network

Give system modeling

Train the BP neural
network

Initialize a certain number
of chromosomes

Calculate the objective values
of these chromosomes

Select the chromosomes

Update the chromosomes by 
crossover and mutation operations

Report the best
chromosome

Meet the requirement for termination

Meet the requirement for termination

No

No

Yes

Figure 1: The flowchart figure of hybrid algorithm.

Table 1: Water allocation targets (106m3).
Water allocation targets Time periods𝑡 = 1 𝑡 = 2 𝑡 = 3
Municipality (𝑖 = 1) [2, 3] [2.5, 3.5] [3, 4]
Industrial sector (𝑖 = 2) [2.5, 4] [3.5, 5.5] [4, 6]
Agriculture sector (𝑖 = 3) [3.5, 5.5] [4, 6] [4, 6.5]

Step 1. Firstly, give systemmodeling of model (9). Generate a
training set of input-output data for the following uncertain
functions:

𝑈𝑖𝑗𝑘 (𝑦𝑖𝑗, 𝐷−𝑖𝑗𝑘) = max
{{{
𝑓+ |

Pr
{{{
3∑
𝑖=1

3∑
𝑗=1

NB+𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗) − 3∑
𝑖=1

3∑
𝑘=1

𝑝1𝑘𝐶−𝑖1𝐷−𝑖1𝑘

− 3∑
𝑖=1

9∑
𝑘=1

𝑝2𝑘𝐶−𝑖2𝐷−𝑖2𝑘 −
3∑
𝑖=1

27∑
𝑘=1

𝑝3𝑘𝐶−𝑖3𝐷−𝑖3𝑘 ≥ 𝑓+}}}
≥ 𝛼}}}

,

𝑈𝑖1𝑘 (𝑦𝑖1, 𝐷−𝑖1𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖1 + Δ𝑇𝑖1𝑦𝑖1 − 𝐷−𝑖1𝑘)

≤ 𝑞+1𝑘} , 𝑘 = 1, 2, 3,

𝑈𝑖2𝑘 (𝑦𝑖2, 𝐷−𝑖2𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖2 + Δ𝑇𝑖2𝑦𝑖2 − 𝐷−𝑖2𝑘) ≤ 𝑞+2𝑘
+ 𝜀+1𝑘} , 𝑘 = 1, 2, . . . , 9,

𝑈𝑖3𝑘 (𝑦𝑖3, 𝐷−𝑖3𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖3 + Δ𝑇𝑖3𝑦𝑖3 − 𝐷−𝑖3𝑘) ≤ 𝑞+2𝑘
+ 𝜀+2𝑘} , 𝑘 = 1, 2, . . . , 27

(12)

by stochastic simulation (the basic principle could be seen in
Liu [21]).

Secondly, construct a BP neural network to approximate
the functions according to the generated input-output data
and then initialize and train the BP neural network.

Thirdly, initialize a certain number of chromosomes
according to the distribution function and check the feasibil-
ity of these chromosomes.

Fourthly, calculate the values of the objective function as
fitness value by the trained BP neural network.



8 Scientific Programming

Table 2: Seasonal flows in the three planning periods (106m3).
Time periods Seasonal flows

Low flow (𝑗 = 1) Medium flow (𝑗 = 2) High flow (𝑗 = 3)
𝑡 = 1 [3.5, 4.5] [6, 8] [12, 15]𝑡 = 2 [5, 6] [7, 10] [13, 17]𝑡 = 3 [3.5, 4.5] [7.5, 11] [13.5, 17.5]
Probability 0.2 0.6 0.2

Table 3: The distribution forms of the boundaries of seasonal flows in the three planning periods (106m3).
Time periods Seasonal flows

Low flow (𝑗 = 1) Medium flow (𝑗 = 2) High flow (𝑗 = 3)
𝑡 = 1 [𝑁(3.5, 0.12),𝑁(4.5, 0.12)] [𝑁(6, 0.12),𝑁(8, 0.12)] [𝑁(12, 0.12),𝑁(15, 0.12)]𝑡 = 2 [𝑁(5, 0.12),𝑁(6, 0.12)] [𝑁(7, 0.12),𝑁(10, 0.12)] [𝑁(13, 0.12),𝑁(17, 0.12)]𝑡 = 3 [𝑁(3.5, 0.12),𝑁(4.5, 0.12)] [𝑁(7.5, 0.12),𝑁(11, 0.12)] [𝑁(13.5, 0.12),𝑁(17.5, 0.12)]
Note.𝑁(𝜇, 𝜎2) represents a normally distributed random variable with mean 𝜇 and standard deviation 𝜎.

Fifthly, select the chromosomes by running a standard
scheme of the roulette wheel.

Sixthly, update the chromosomes by crossover and muta-
tion operations, test the feasibility of chromosome offspring,
and obtain a feasible new population.

Seventhly, choose the chromosome which has the max-
imal fitness while the function values of 𝑈𝑖𝑗𝑘(𝑦𝑖1, 𝐷−𝑖𝑗𝑘) are
greater than 𝛽𝑗𝑘.

Eighthly, repeat substep 5 to substep 7 for a given number
of cycles.

Ninthly, report the best chromosome. The best solutions
obtained in the above way are denoted by 𝐷−𝑖𝑗𝑘opt and 𝑦𝑖𝑗opt,
and the optimal value is denoted by 𝑓+opt.
Step 2. Based on the optimal solutions obtained by Step 1,
system modeling of model (10) is given. Generate a training
set of input-output data for the following uncertain functions:

𝐺𝑖𝑗𝑘 (𝐷+𝑖𝑗𝑘) = max
{{{
𝑓− |

Pr
{{{
3∑
𝑖=1

3∑
𝑗=1

NB−𝑖𝑗 (𝑇−𝑖𝑗 + Δ𝑇𝑖𝑗𝑦𝑖𝑗opt)

− 3∑
𝑖=1

3∑
𝑘=1

𝑝1𝑘𝐶+𝑖1𝐷+𝑖1𝑘 −
3∑
𝑖=1

9∑
𝑘=1

𝑝2𝑘𝐶+𝑖2𝐷+𝑖2𝑘

− 3∑
𝑖=1

27∑
𝑘=1

𝑝3𝑘𝐶+𝑖3𝐷+𝑖3𝑘 ≥ 𝑓−}}}
≥ 𝛼}}}

,

𝐺𝑖1𝑘 (𝐷+𝑖1𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖1 + Δ𝑇𝑖1𝑦𝑖1opt − 𝐷+𝑖1𝑘) ≤ 𝑞−1𝑘} ,
𝑘 = 1, 2, 3,

𝐺𝑖2𝑘 (𝐷+𝑖2𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖2 + Δ𝑇𝑖2𝑦𝑖2opt − 𝐷+𝑖2𝑘) ≤ 𝑞−2𝑘
+ 𝜀−1𝑘} , 𝑘 = 1, 2, . . . , 9,

𝐺𝑖3𝑘 (𝐷+𝑖3𝑘) = Pr{ 3∑
𝑖=1

(𝑇−𝑖3 + Δ𝑇𝑖3𝑦𝑖3opt − 𝐷+𝑖3𝑘) ≤ 𝑞−2𝑘
+ 𝜀−2𝑘} , 𝑘 = 1, 2, . . . , 27

(13)

by stochastic simulation. The remaining substeps are similar
to the substeps in Step 1. Finally, report the best chromosome.
The optimal solution obtained in the above way is𝐷+𝑖𝑗𝑘opt and
the optimal value is 𝑓−opt.
Step 3. Achieve the optimized water allocation target 𝑇±𝑖𝑗opt =𝑇−𝑖𝑗+Δ𝑇𝑖𝑗𝑦𝑖𝑗opt and the real allocation of water𝐴±𝑖𝑗𝑘opt = 𝑇±𝑖𝑗opt−𝐷±𝑖𝑗𝑘opt.
Step 4. Synthesize the two submodels. The optimal solutions
can be summarized as 𝐷±𝑖𝑗𝑘opt = [𝐷−𝑖𝑗𝑘opt, 𝐷+𝑖𝑗𝑘opt] and the op-
timal value can be summarized as 𝑓±opt = [𝑓−opt, 𝑓+opt].
4. Results and Discussions

The demands and deficits for water are related to water
availability, since the economic benefit will be obtained if
the demands are satisfied, while the economic penalties will
be generated if the deficits occur. Table 1 provides water
allocation targets in the three planning periods. Tables 2 and
3 present the information regarding seasonal flows under
different probabilities. Tables 1–3 derive from [1]. In the
case of insufficient water resources, the water for municipal
sector should be delivered preferentially since the highest
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Table 4: Net benefit and penalty ($/m3).

Time period𝑡 = 1 𝑡 = 2 𝑡 = 3
Net benefit when water demand is satisfied

Municipality [𝑈(90, 91), 𝑈(110, 111)] [𝑈(95, 96), 𝑈(115, 116)] [𝑈(100, 101), 𝑈(130, 131)]
Industrial sector [𝑁(45, 0.12),𝑁(50, 0.12)] [𝑁(50, 0.12),𝑁(60, 0.12)] [𝑁(55, 0.12),𝑁(70, 0.12)]
Agricultural sector [𝑁(30, 0.12),𝑁(35, 0.12)] [𝑁(35, 0.12),𝑁(42, 0.12)] [𝑁(40, 0.12),𝑁(58, 0.12)]

Penalty when water is not delivered
Municipality [𝑈(200, 201), 𝑈(250, 251)] [𝑈(220, 221), 𝑈(275, 276)] [𝑈(240, 241), 𝑈(300, 301)]
Industrial sector [𝑁(60, 0.12),𝑁(85, 0.12)] [𝑁(70, 0.12),𝑁(95, 0.12)] [𝑁(80, 0.12),𝑁(110, 0.12)]
Agricultural sector [𝑁(50, 0.12),𝑁(70, 0.12)] [𝑁(55, 0.12),𝑁(75, 0.12)] [𝑁(60, 0.12),𝑁(90, 0.12)]

Note.𝑈(𝑎, 𝑏) represents a uniform distributed random variable and𝑁(𝜇, 𝜎2) represents a normally distributed random variable.

Table 5: Solutions for the first planning period (𝛼 = 0.9, 𝛽 = 0.95).
Scenario symbol (𝑖𝑗𝑘) User Water flow level Probability (%) Water targets (106m3) Water shortage (106m3) Water allocation

(106m3)
111 Municipal L 20 2.644 [1.105, 1.174] [1.470, 1.539]
211 Industrial L 20 3.615 [3.342, 3.353] [0.262, 0.273]
311 Agricultural L 20 4.000 [3.524, 3.769] [0.231, 0.476]
112 Municipal M 60 2.644 [2.116, 2.348] [0.296, 0.528]
212 Industrial M 60 3.615 [2.469, 2.531] [1.084, 1.146]
312 Agricultural M 60 4.000 [0.889, 2.132] [1.868, 3.111]
113 Municipal H 20 2.644 [1.200, 1.328] [1.316, 1.444]
213 Industrial H 20 3.615 [2.467, 3.159] [0.456, 1.148]
313 Agricultural H 20 4.000 [2.239, 3.411] [0.589, 1.761]
𝑦11 opt = 0.644, 𝑦21 opt = 0.743, and 𝑦31 opt = 0.250.

benefit will be brought when the municipal water demand
is satisfied, while the highest penalty will be produced if the
promised water is not delivered, followed by the industrial
and agricultural sectors which correspond to lower benefits
and penalties (see Table 4).

The solutions shown in Tables 5–7 ensure that the 90%
optimistic value to the net system benefit could be obtained
subject to the chance constraints with a confidence level
of 95%. Therefore, the confidence levels for the net system
benefit and the chance constraints during the three planning
periods are set to 𝛼 = 0.9 and 𝛽𝑗𝑘 = 0.95 for 𝑘 = 1, 2, . . . , 𝐾𝑗,𝑗 = 1, 2, 3. In solution process by using hybrid algorithm,
the maximum number of iterations, the learning rate, the
momentum term, and the tolerance criterion for the BP
neural network are set to be 20000, 0.01, 0.9, and 0.00001,
respectively. The population size, the number of generations,
the mutation rate, and the crossover rate of GA are set to be
30, 300, 0.1, and 0.7, respectively. The solutions indicate that𝑦11 opt = 0.644, 𝑦21 opt = 0.743, 𝑦31 opt = 0.250, 𝑦12 opt = 0.449,𝑦22 opt = 0.281, 𝑦31 opt = 0.182, 𝑦13 opt = 0.212, 𝑦23 opt = 0.211
and 𝑦33 opt = 0.375. Thus, the optimized allocated targets are𝑇±11 opt = 2.644, 𝑇±21 opt = 3.615, 𝑇±31 opt = 4.000, 𝑇±12 opt = 2.949,𝑇±22 opt = 4.062, 𝑇±32 opt = 4.363, 𝑇±13 opt = 3.212, 𝑇±23 opt = 4.423,
and 𝑇±33 opt = 4.938. These targets would be promised to the
three users in the first stage. Obviously, the water manager’s
decisions should balance the net benefit and the risk because

high net benefit would be brought if the promised water is
delivered and high penalties would occur if the demand for
water is not achieved.

Table 5 indicates the optimized solutions under 3 sce-
narios for the first planning period. For example, 𝐷±111 opt =[1.105, 1.174], 𝐷±112 opt = [2.116, 2.348], and 𝐷±113 opt =[1.200, 1.328] are water shortages for the municipal sector(𝑗 = 1) when the water flow level is low, medium, and high
with probability of 20%, 60%, and 20%, respectively. Accord-
ingly, the water allocations are 𝐴±111 opt = [1.470, 1.539],𝐴±112 opt = [0.296, 0.528], and 𝐴±113 opt = [1.316, 1.444].

Table 6 indicates the optimized solutions under 9 sce-
narios for the second planning period. Take water shortages
and water allocations of the industrial sector: for example,(𝑗 = 2). 𝐷±224 opt = [1.940, 3.328], 𝐷±225 opt = [1.566, 2.654],
and 𝐷±226 opt = [3.111, 3.642] denote water shortages for the
industrial sector when the water flow level in the second
period is low, medium, and high following the medium
flow in the previous period with joint probability of 12%,
36%, and 12%, respectively. Accordingly, the water allocations
are 𝐴±224 opt = [0.734, 2.122], 𝐴±225 opt = [1.408, 2.496], and𝐴±226 opt = [0.420, 0.951].

Table 7 provides optimized water allocation schemes
under 27 scenarios for the third planning period. For exam-
ple, 𝐷±1322 opt = [2.553, 2.817], 𝐷±2322 opt = [4.047, 4.256],
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Table 6: Solutions for the second planning period (𝛼 = 0.9, 𝛽 = 0.95).
Scenario
symbol
(𝑖𝑗𝑘) User Water flow

level
Probability

(%)
Associated
water flow

Associated
probability

(%)

Water target
(106m3) Water shortage

(106m3) Water allocation
(106m3)

121 Municipal L 20 L-L 4 2.949 [0.899, 1.683] [1.266, 2.050]
221 Industrial L 20 L-L 4 4.062 [0.050, 0.764] [3.298, 4.012]
321 Agricultural L 20 L-L 4 4.363 [3.032, 3.452] [0.911, 1.331]
122 Municipal M 60 L-M 12 2.949 [0.369, 2.649] [0.300, 2.580]
222 Industrial M 60 L-M 12 4.062 [1.641, 3.174] [0.888, 2.421]
322 Agricultural M 60 L-M 12 4.363 [3.968, 4.155] [0.208, 0.395]
123 Municipal H 20 L-H 4 2.949 [0.710, 1.032] [1.917, 2.239]
223 Industrial H 20 L-H 4 4.062 [0.408, 1.328] [2.734, 3.654]
323 Agricultural H 20 L-H 4 4.363 [1.334, 3.588] [0.775, 3.029]
124 Municipal L 20 M-L 12 2.949 [2.910, 2.931] [0.018, 0.039]
224 Industrial L 20 M-L 12 4.062 [1.940, 3.328] [0.734, 2.122]
324 Agricultural L 20 M-L 12 4.363 [3.400, 3.948] [0.415, 0.963]
125 Municipal M 60 M-M 36 2.949 [2.941, 2.947] [0.002, 0.008]
225 Industrial M 60 M-M 36 4.062 [1.566, 2.654] [1.408, 2.496]
325 Agricultural M 60 M-M 36 4.363 [0.159, 3.291] [1.072, 4.204]
126 Municipal H 20 M-H 12 2.949 [2.381, 2.774] [0.175, 0.568]
226 Industrial H 20 M-H 12 4.062 [3.111, 3.642] [0.420, 0.951]
326 Agricultural H 20 M-H 12 4.363 [1.318, 3.148] [1.215, 3.045]
127 Municipal L 20 H-L 4 2.949 [2.534, 2.669] [0.280, 0.415]
227 Industrial L 20 H-L 4 4.062 [1.557, 1.709] [2.353, 2.505]
327 Agricultural L 20 H-L 4 4.363 [3.310, 4.033] [0.330, 1.053]
128 Municipal M 60 H-M 12 2.949 [2.755, 2.821] [0.128, 0.194]
228 Industrial M 60 H-M 12 4.062 [3.088, 3.617] [0.445, 0.974]
328 Agricultural M 60 H-M 12 4.363 [0.374, 0.883] [3.480, 3.989]
129 Municipal H 20 H-H 4 2.949 [0.557, 1.088] [1.861, 2.392]
229 Industrial H 20 H-H 4 4.062 [0.678, 2.590] [1.472, 3.384]
329 Agricultural H 20 H-H 4 4.363 [0.402, 3.609] [0.754, 3.961]
𝑦12 opt = 0.449, 𝑦22 opt = 0.281, and 𝑦31 opt = 0.182.

and 𝐷±3322 opt = [0.542, 4.078] indicate the water shortages
for industrial, agricultural, and municipal sectors with the
corresponding water allocations 𝐴±1333 opt = [0.395, 0.659],𝐴±2322 opt = [0.167, 0.376], and 𝐴±3322 opt = [0.860, 4.396]
respectively, when the water flows are high-medium-low
during the entire planning horizon with joint probability of
2.4%.

The optimal value (𝑓±opt = [154.335, 235.704]) represents
the 90% optimistic value to the net system benefit subject to
the chance constraints with a confidence level of 95%, which
provides two extreme values over the planning horizon.
Planning for a lower system benefit would be associated with
a lower risk of violating the water allocation constraints;
conversely, the desire for a higher benefit would correspond
to a higher possibility of violating the constraints [9]. When
the actual value of each variable fluctuates between its
lower and upper bounds, the 90% optimistic values to the
net system benefit would change correspondingly between

154.335 and 235.704, which reflects the balance between the
system profit and the chance constraints.

In the hypothetical case, the water resource is an unregu-
lated reservoir and the uncertainties in the water resources
management are expressed as interval with uniform dis-
tributed and normally distributed boundaries. However, real-
world water resources systems are more complex than the
hypothetical case presented, since the water allocated to the
users is from regulated reservoir(s), and the representation
of the uncertainties in the input may be more diversified.
Nevertheless, the hypothetical case still reflects the basic
scene and principles and contains main information in the
real water resources management systems. Simple as it is, the
case is sufficient to study the characteristics and optimization
problems of real-world water resources systems. For the
real water resources management problems which contain
data with multiply distributed (e.g., Gamma, Lognormal)
stochastic boundaries, they can also be dealt with through
establishing the appropriate IMSCCP model and adding
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Table 7: Solutions for the third planning period (𝛼 = 0.9, 𝛽 = 0.95).
Scenario
symbol
(𝑖𝑗𝑘) User Water flow

level
Probability

(%)
Associated
water flow

Associated
probability

(%)

Water targets
(106m3) Water shortage

(106m3) Water allocation
(106m3)

131 Municipal L 20 L-L-L 0.8 3.212 [2.543, 2.696] [0.516, 0.669]
231 Industrial L 20 L-L-L 0.8 4.423 [1.114, 3.435] [0.988, 3.309]
331 Agricultural L 20 L-L-L 0.8 4.938 [4.929, 4.935] [0.003, 0.009]
132 Municipal M 60 L-L-M 2.4 3.212 [0.410, 1.275] [1.937, 2.802]
232 Industrial M 60 L-L-M 2.4 4.423 [1.376, 3.065] [1.358, 3.047]
332 Agricultural M 60 L-L-M 2.4 4.938 [3.665, 4.086] [0.852, 1.273]
133 Municipal H 20 L-L-H 0.8 3.212 [1.450, 1.573] [1.639, 1.762]
233 Industrial H 20 L-L-H 0.8 4.423 [0.144, 4.207] [0.216, 4.279]
333 Agricultural H 20 L-L-H 0.8 4.938 [3.899, 4.276] [0.662, 1.039]
134 Municipal L 20 L-M-L 2.4 3.212 [2.658, 2.876] [0.336, 0.554]
234 Industrial L 20 L-M-L 2.4 4.423 [2.895, 3.297] [1.126, 1.528]
334 Agricultural L 20 L-M-L 2.4 4.938 [1.394, 4.583] [0.355, 3.544]
135 Municipal M 60 L-M-M 7.2 3.212 [3.171, 3.199] [0.013, 0.041]
235 Industrial M 60 L-M-M 7.2 4.423 [0.876, 3.090] [1.333, 3.547]
335 Agricultural M 60 L-M-M 7.2 4.938 [0.782, 2.813] [2.125, 4.156]
136 Municipal H 20 L-M-H 2.4 3.212 [2.023, 2.385] [0.827, 1.189]
236 Industrial H 20 L-M-H 2.4 4.423 [2.709, 3.584] [0.839, 1.714]
336 Agricultural H 20 L-M-H 2.4 4.938 [2.682, 3.085] [1.853, 2.256]
137 Municipal L 20 L-H-L 0.8 3.212 [2.037, 3.022] [0.190, 1.175]
237 Industrial L 20 L-H-L 0.8 4.423 [2.642, 3.314] [1.109, 1.781]
337 Agricultural L 20 L-H-L 0.8 4.938 [1.762, 2.322] [2.616, 3.176]
138 Municipal M 60 L-H-M 2.4 3.212 [0.929, 2.366] [0.846, 2.283]
238 Industrial M 60 L-H-M 2.4 4.423 [1.283, 1.894] [2.529, 3.140]
338 Agricultural M 60 L-H-M 2.4 4.938 [3.712, 4.480] [0.458, 1.226]
139 Municipal H 20 L-H-H 0.8 3.212 [2.564, 3.084] [0.128, 0.648]
239 Industrial H 20 L-H-H 0.8 4.423 [4.098, 4.263] [0.160, 0.325]
339 Agricultural H 20 L-H-H 0.8 4.938 [3.183, 4.010] [0.928, 1.755]
1310 Municipal L 20 M-L-L 2.4 3.212 [1.780, 2.296] [0.916, 1.432]
2310 Industrial L 20 M-L-L 2.4 4.423 [1.078, 3.080] [1.343, 3.345]
3310 Agricultural L 20 M-L-L 2.4 4.938 [4.624, 4.856] [0.082, 0.314]
1311 Municipal M 60 M-L-M 7.2 3.212 [1.169, 3.032] [0.180, 2.043]
2311 Industrial M 60 M-L-M 7.2 4.423 [2.145, 3.887] [0.536, 2.278]
3311 Agricultural M 60 M-L-M 7.2 4.938 [3.619, 4.577] [0.361, 1.319]
1312 Municipal H 20 M-L-H 2.4 3.212 [1.509, 2.804] [0.408, 1.703]
2312 Industrial H 20 M-L-H 2.4 4.423 [0.905, 2.582] [1.841, 3.518]
3312 Agricultural H 20 M-L-H 2.4 4.938 [2.117, 2.380] [2.558, 2.821]
1313 Municipal L 20 M-M-L 7.2 3.212 [0.628, 2.264] [0.948, 2.584]
2313 Industrial L 20 M-M-L 7.2 4.423 [2.505, 2.865] [1.558, 1.918]
3313 Agricultural L 20 M-M-L 7.2 4.938 [4.341, 4.492] [0.446, 0.597]
1314 Municipal M 60 M-M-M 21.6 3.212 [1.192, 3.049] [0.163, 2.020]
2314 Industrial M 60 M-M-M 21.6 4.423 [1.062, 2.988] [1.435, 3.361]
3314 Agricultural M 60 M-M-M 21.6 4.938 [1.389, 3.794] [1.144, 3.549]
1315 Municipal H 20 M-M-H 7.2 3.212 [1.946, 2.103] [1.109, 1.266]
2315 Industrial H 20 M-M-H 7.2 4.423 [1.948, 3.230] [1.193, 2.475]
3315 Agricultural H 20 M-M-H 7.2 4.938 [2.309, 2.817] [2.121, 2.629]
1316 Municipal L 20 M-H-L 2.4 3.212 [1.733, 2.390] [0.822, 1.479]
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Table 7: Continued.

Scenario
symbol
(𝑖𝑗𝑘) User Water flow

level
Probability

(%)
Associated
water flow

Associated
probability

(%)

Water targets
(106m3) Water shortage

(106m3) Water allocation
(106m3)

2316 Industrial L 20 M-H-L 2.4 4.423 [1.409, 4.280] [0.143, 3.014]
3316 Agricultural L 20 M-H-L 2.4 4.938 [4.207, 4.583] [0.355, 0.731]
1317 Municipal M 60 M-H-M 7.2 3.212 [2.431, 2.657] [0.555, 0.781]
2317 Industrial M 60 M-H-M 7.2 4.423 [1.526, 2.959] [1.464, 2.897]
3317 Agricultural M 60 M-H-M 7.2 4.938 [1.660, 3.432] [1.506, 3.278]
1318 Municipal H 20 M-H-H 2.4 3.212 [0.980, 1.552] [1.660, 2.232]
2318 Industrial H 20 M-H-H 2.4 4.423 [2.041, 3.262] [1.161, 2.382]
3318 Agricultural H 20 M-H-H 2.4 4.938 [2.407, 3.482] [1.456, 2.531]
1319 Municipal L 20 H-L-L 0.8 3.212 [0.145, 1.877] [1.335, 3.067]
2319 Industrial L 20 H-L-L 0.8 4.423 [1.486, 2.048] [2.375, 2.937]
3319 Agricultural L 20 H-L-L 0.8 4.938 [3.269, 4.521] [0.417, 1.669]
1320 Municipal M 60 H-L-M 2.4 3.212 [1.494, 2.802] [0.410, 1.718]
2320 Industrial M 60 H-L-M 2.4 4.423 [0.358, 0.565] [3.858, 4.065]
3320 Agricultural M 60 H-L-M 2.4 4.938 [3.166, 4.801] [0.137, 1.772]
1321 Municipal H 20 H-L-H 0.8 3.212 [1.058, 2.266] [0.946, 2.154]
2321 Industrial H 20 H-L-H 0.8 4.423 [0.087, 4.299] [0.124, 4.336]
3321 Agricultural H 20 H-L-H 0.8 4.938 [2.032, 4.546] [0.392, 2.906]
1322 Municipal L 20 H-M-L 2.4 3.212 [2.553, 2.817] [0.395, 0.659]
2322 Industrial L 20 H-M-L 2.4 4.423 [4.047, 4.256] [0.167, 0.376]
3322 Agricultural L 20 H-M-L 2.4 4.938 [0.542, 4.078] [0.860, 4.396]
1323 Municipal M 60 H-M-M 7.2 3.212 [0.811, 2.625] [0.587, 2.401]
2323 Industrial M 60 H-M-M 7.2 4.423 [2.370, 2.910] [1.513, 2.053]
3323 Agricultural M 60 H-M-M 7.2 4.938 [2.874, 4.022] [0.916, 2.064]
1324 Municipal H 20 H-M-H 2.4 3.212 [3.097, 3.119] [0.093, 0.115]
2324 Industrial H 20 H-M-H 2.4 4.423 [2.321, 3.201] [1.222, 2.102]
3324 Agricultural H 20 H-M-H 2.4 4.938 [3.064, 3.905] [1.033, 1.874]
1325 Municipal L 20 H-H-L 0.8 3.212 [1.332, 2.673] [0.539, 1.880]
2325 Industrial L 20 H-H-L 0.8 4.423 [0.597, 4.261] [0.162, 3.826]
3325 Agricultural L 20 H-H-L 0.8 4.938 [1.108, 4.456] [0.482, 3.830]
1326 Municipal M 60 H-H-M 2.4 3.212 [2.482, 2.676] [0.536, 0.730]
2326 Industrial M 60 H-H-M 2.4 4.423 [0.553, 1.948] [2.475, 3.870]
3326 Agricultural M 60 H-H-M 2.4 4.938 [1.731, 2.663] [2.275, 3.207]
1327 Municipal H 20 H-H-H 0.8 3.212 [0.865, 0.866] [2.346, 2.347]
2327 Industrial H 20 H-H-H 0.8 4.423 [0.790, 4.205] [0.218, 3.633]
3327 Agricultural H 20 H-H-H 0.8 4.938 [3.320, 3.577] [1.361, 1.618]
𝑦13 opt = 0.212, 𝑦23 opt = 0.211, and 𝑦33 opt = 0.375; 𝛼-optimistic value to the net system benefit: 𝑓

±

opt = [154.335, 235.704].

corresponding variables or data in themodel.Then themodel
could be solved by the hybrid algorithm.

5. Conclusions

An inexact multistage stochastic chance constrained pro-
gramming (IMSCCP) model is provided for water resources
management, which integrates stochastic CCP proposed by
Liu [21], multistage stochastic programming, and inexact

stochastic programming. Compared with the existing IMSP
with chance constraints, the IMSCCP model proposed in
this study contains stochastic variables in the objective
function or inexact data with multiply distributed stochastic
boundaries. Then the IMSCCP model could be solved by
using the hybrid algorithm.After solving the IMSCCPmodel,
the maximum, which is the optimistic value to the net
system benefit with a predetermined confidence level, could
be obtained subject to the chance constraints with other
confidence levels.
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Considering more real-world situations in the water
resources management systems, such as water distribution
from regulated reservoir(s), the expansion and development
of the reservoir(s), and more uncertainties existing in many
system components, further studies can resort to nonlinear
programming combined with other uncertain variables such
as fuzzy variable and 𝑔𝜆 variable to solve the water resources
management problems andhandlemore uncertainties.More-
over, research efforts might also be devoted to the wide
application of IMSCCP model in the areas of ecological
water requirement system management, waste management
planning, electric-power system planning, and so on.
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