
Research Article
MPI to Coarray Fortran: Experiences with a CFD Solver for
Unstructured Meshes

Anuj Sharma and Irene Moulitsas

School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

Correspondence should be addressed to Anuj Sharma; a.sharma@cranfield.ac.uk

Received 5 March 2017; Accepted 20 June 2017; Published 28 September 2017

Academic Editor: Can Özturan

Copyright © 2017 Anuj Sharma and Irene Moulitsas. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

High-resolution numerical methods and unstructuredmeshes are required inmany applications of Computational FluidDynamics
(CFD). These methods are quite computationally expensive and hence benefit from being parallelized. Message Passing Interface
(MPI) has been utilized traditionally as a parallelization strategy. However, the inherent complexity of MPI contributes further
to the existing complexity of the CFD scientific codes. The Partitioned Global Address Space (PGAS) parallelization paradigm
was introduced in an attempt to improve the clarity of the parallel implementation. We present our experiences of converting
an unstructured high-resolution compressible Navier-Stokes CFD solver from MPI to PGAS Coarray Fortran. We present the
challenges, methodology, and performance measurements of our approach using Coarray Fortran. With the Cray compiler, we
observe Coarray Fortran as a viable alternative toMPI.We are hopeful that Intel and open-source implementations could be utilized
in the future.

1. Introduction

1.1. Motivation. While it is the dominant communication
paradigm, Message Passing Interface (MPI) has received
its share of criticism in the High-Performance Computing
(HPC) community. It provides a complex interface to parallel
programming, which is mostly underutilised by researchers
whose primary skill is not software development. Mainte-
nance and modernization of parallel codes written with MPI
also require more person-hours and associated funding costs
compared to the serial counterpart [1].

In parallel programming, details of communication
strategies should not overbear the researchers, to avoid
shifting their focus from the core research objective. Unfortu-
nately, it has been observed that hardware advancements do
not come hand in hand with better performances. Scientific
codes utilizing the MPI paradigm have to be modified
in order to achieve the best possible performance gains.
With the goal of Exascale computing, both the underlying
hardware and the software tools available should support
the scientific numerical codes so that they are efficiently
adaptable to future computing platforms. Discussing the

efficiency of a scientific code is a twofold matter and it
should involve both the effort put during the development
or reengineering phase, as well as the performance gains
observed later.

Recently, Partitioned Global Address Space (PGAS)
based parallel programming languages have been gaining
popularity. Several languages such as Unified Parallel C
(UPC), Coarray Fortran, Fortress, Chapel, and X10 are based
on the PGAS paradigm. In comparison to many of its
competitors, Coarray Fortran is relatively mature and has
undergone considerable research [2]. It provides a natural
syntax to Fortran programmers and generates a lucid code.

1.2. Related Work. Coarray Fortran was originally a small
syntactic extension (F−) to the Fortran programming lan-
guage, which enabled parallel programming. It is now part
of the Fortran programming language since the adoption of
the Fortran 2008 standards. Some features, such as collective
intrinsic routines, teams, and error handling of failed images,
were left out in Fortran 2008 standards. With the acceptance
of the technical specification document, they will become
standard in Fortran 2015 [3].

Hindawi
Scientific Programming
Volume 2017, Article ID 3409647, 12 pages
https://doi.org/10.1155/2017/3409647

https://doi.org/10.1155/2017/3409647

2 Scientific Programming

Like other PGAS languages, Coarray Fortran provides
language constructs equivalent to one-sided communica-
tion during run-time. This feature improves productivity
and could also harness the communication features of the
underlying hardware. Some studies have been performed to
quantify the effort and performance of such PGAS languages,
most notably in the PRACE-PP (Partnership for Advanced
Computing in Europe-Preparatory Phase) project. It involved
the development of three benchmark cases by different
researchers and collecting the feedback of development time
(effort) and performance [2]. While Chapel and X10 were
found to be immature, UPC and Coarray Fortran were
recommended due to their performance, low development
time, and relative maturity.

Coarray Fortran is today supported by Cray with
extended features and by Intel with compatibility with
Fortran standards [4]. Open-source compilers are also in
different development stages, such as the GCC compiler
(OpenCoarrays [5]) and OpenUH [6].

Over the years many benchmark studies have been
performed [7–12] to investigate the performance of Coar-
ray Fortran in comparison to MPI. In [7] Numrich et
al. suggest MPI has high bandwidth, but high latency for
messages. In contrast, Coarray Fortran has low bandwidth
and low latency for messages. This behavior is dependent
upon support for remote direct access, by the underlying
hardware architecture. The overall performance comparison
of MPI and Coarray Fortran is murky with contradicting
results, such as, for example, by [7, 8]. The contradiction in
the better performance could be attributed to the different
communication requirements of various scientific codes.
Other studies have focused on individual aspects of parallel
programming, that is, memory layout [9], use of derived
data types [9], buffered/unbuffered data transfer [10], object-
oriented programming [13], and collective communication
constructs [11]. One-sided communication with Coarray
Fortran has also shown promising result for heterogeneous
load balancing on the Intel Xeon Phi architecture [14].

1.3. Objective. Computational FluidDynamics (CFD) studies
of complex flows in awide range of applications certainly ben-
efit from parallelization due to the high computational costs
of the numerical methods employed. Recent performance
studies in the literature have only focused on numerical
codes with structured meshes. These codes have natural,
geometry driven, grid partitioning, and regular communi-
cation patterns. In many scientific domains, where complex
geometries are involved, unstructured meshes are the norm.
These meshes lead to nonintuitive mesh partitionings, have
greater load imbalances, and suffer from nonregular com-
munication patterns. When higher-order numerical schemes
are required, the complexity of the communication patterns
and associated data structures increases even more. In our
study, we present our experience of converting a scientific
numerical CFD code with unstructured meshes and higher-
order numerical schemes from MPI to Coarray Fortran for
parallel communication.

Real :: i(5), j(5)[*], k(5)[4,*], l[*]

real, codimension[*] :: m

Listing 1: Coarray declaration.

2. Overview

2.1. Coarray Fortran. Coarray Fortran is based on the Single
Program Multiple Data (SPMD) model of parallel pro-
gramming [15, 16]. A set of independent instances of the
program, called images, executes simultaneously on different
processors. The number of images can be chosen at compile
or run-time and has a unique index (1 to number-of-
processors). Fortran standards provide two intrinsic func-
tions - this image() and num images() to retrieve the
image index and the total number of images, respectively.

2.1.1. Coarrays. A coarray is similar to an array in Fortran,
that is, a collection of data objects, with an exception that
it can be accessed by other images as well. In comparison,
a regular array is private to the parent image. Coarrays are
declared using an additional trailing subscript in square
brackets, [], referred as codimensions. A coarray has corank,
coshape, and cobounds similar to corresponding terms for an
array. Intrinsic functions to find lower and upper cobounds
are lcobound, ucobound. Examples for different types of
valid coarray declaration are shown in Listing 1.While i is not
a coarray; j, k, l, and m are coarrays. j and k are coarray of an
array (with 5 elements). l and m are scalar coarrays.The upper
cobound of the last codimension for a coarray is always defined
as ∗, whose value is dependent upon the number of images
specified during execution. In Listing 1, the upper cobound of
j, l, and m would be equal to number of images, while the
upper cobound of k would be equal to num image()/4.

2.1.2. Allocatable Coarrays. An allocatable coarray could be
used to define the codimensions at run-time (see Listing 2).
Coboundsmust be specified, and upper cobound should be ∗.
Deallocate statement is similar to that of an allocatable array
in Fortran language. To declare an allocatable coarray, the
code in Listing 2 can be used.

Also, the same allocate statement should be executed
by all images (same bounds and cobounds); thus coarrays
cannot have different sizes for different images. This lim-
itation is not significant if the data arrays that are used
for communication are of equal length on all the images,
such as in structured mesh applications. With unstructured
meshes and especially with higher-order numerical schemes
such as WENO (Weighted Essentially Nonoscillatory), the
length of communication array varies widely. To overcome
this limitation, derived data types could be used as shown in
Listing 3.

2.1.3. Communication: Push versus Pull. Data is remotely
accessed using codimensions without the conventional send

Scientific Programming 3

real, allocatable :: o[:,:]

⋅ ⋅ ⋅
allocate(o) !Not allowed - coubounds should be specified

allocate(o[2,3]) ! Not allowed - upper cobound should be *

allocate(o[2,*]) ! Allowed

⋅ ⋅ ⋅
deallocate(o)

Listing 2: Coarray declaration of an allocatable coarray.

type CoData

integer :: myrank

real, allocatable :: sol(:)

end type

⋅ ⋅ ⋅
type (CoData), allocatable :: Image[:]

⋅ ⋅ ⋅
allocate(Image[*]) !Allocate derived data type for all

images

⋅ ⋅ ⋅
allocate(Image%sol(storeSize)) !storeSize could have

different values on all images

⋅ ⋅ ⋅
deallocate(Image)

Listing 3: Coarray declaration of an allocatable, derived data object coarray.

and receivemessages used inMPI. To copy data from another
image using a coarray, either pull or push approach can be
used. In the pull approach, data is received from another
image. That is, to copy from the next image, one could use
Listing 4.

Note that a coarray reference without [] indicates a
reference to the variable in the current image. Similarly, to
push some data to the next image, one may use Listing 5.

Similarly, for an allocatable, derived data type coarray,
one may use the Listing 6 to push data to the next image.
Usually, the choice between push and pull approach is based
on the algorithm used.

2.1.4. Synchronization. As the images run asynchronously,
care must be taken to maintain correct execution order
by specifying explicit synchronization statements. All the
participant images must execute this statement before any
image can proceed forward. Synchronization statements are
sync all (to synchronize all images) and sync images (for
selective synchronization). Implicit synchronization takes
place during allocation and deallocation of allocatable coar-
rays.

2.2. CFD Solver. Our CFD solver is an unstructured mesh,
finite volume Navier-Stokes solver for compressible flows,
supporting mixed element meshes. In certain situations, the
compressible nature of the fluid results in shock waves, with a

sharp interface between regions of distinct properties such as
density and pressure.These flows are commonly encountered
in aerospace applications. To avoid prediction of a diffused
interface and to predict the shock strength accurately using
a CFD solver, higher-order numerical schemes are essential
[17].

In a cell-centered finite volume solver, such as ours,
the cell volume averaged solution (with either conserved
or characteristic variable) is stored at the center of the
cells in the mesh. If these cell-averaged values are used
for the intercell flux calculations in the iterative solver to
determine the solution at next time step or iteration, then
first-order spatial accuracy is achieved. For greater accuracy,
conservative and higher-order reconstruction polynomial is
used.The neighboring cells which are used for calculating the
reconstruction polynomial define the zone of influence and
are collectively known as the stencil.The order of accuracy of
the reconstruction is dependent upon the size of the stencil,
while the reconstruction provides greater accuracy in the
regions with smooth solutions; near sharp discontinuities
such polynomials are inherently oscillatory [18–20].

In the traditional Total Variation Diminishing (TVD)
schemes, the oscillatory nature of the polynomial near a
discontinuity is kept under control by using slope or flux
limiters. Thus, resulting schemes, such as MUSCL scheme
(Monotonic Upstream-Centered Scheme for Conservation
Laws), have higher-order accuracy in the region with smooth

4 Scientific Programming

if(this image().ne. num images()) then

j(:) = j(:)[this image()+1]

end if

Listing 4: Coarray communication: pull approach.

if(this image().ne. num images()) then

j(:)[this image()+1] = j(:)

end if

Listing 5: Coarray communication: push approach.

solutions while accuracy is lowered in regions with sharp or
discontinuous solution.

The WENO scheme aims to provide higher-order accu-
racy throughout the domain by usingmultiple reconstruction
polynomials with solution adaptive nonlinear weighting.
The WENO scheme uses one central stencil and several
directional stencils to construct the reconstruction polyno-
mial. Higher weighting is given to smoother reconstruction
polynomial among the directional stencils, and the highest
weighting is given to the central stencil. The nonlinear
weights are thus solution adaptive.

Details of the implementation of the CFD solver are
provided in [19]. The MPI version of the solver has been
used in previous studies for solving Euler equations [18] and
compressible Navier-Stokes equations [19].

3. Conversion to Coarray Fortran

TheMPI version of the code uses different derived data types
to store the values of the solution variables and the associated
mesh data. Since the code uses unstructured meshes and
the WENO scheme, it has inherent load imbalance due to
stencils of varying lengths. To accommodate the imbalanced
memory storage, derived data type coarrays with allocatable
components are essential; according to the Fortran 2008
standard, coarrays of standard data types must have the same
size on all the images.

For simplicity, a generic naming scheme in the following
text to explain the modifications required in the code to
incorporate communication with Coarray Fortran.

Let us say, in an image or a process, the child data (i.e., the
allocatable array) which should be sent is SendData and the
parent data (i.e., the allocatable array of derived data type)
holding many such SendData is SendArray. Similarly, let
the array names for the receiving child data and parent data
type be ReceiveData and ReceiveArray.

In the MPI version, every process has its SendArray
and ReceiveArray which also hold the process numbers to
which the data is to be sent, and from which process the data
is to be received. The memory location at which data is to
be sent is not stored in the sending process. In the combined

send receiveMPI subroutine, MPI SendRecv, a process sends
data as amessage which is received by another process, which
decides where the data is to be saved (see Figure 1).

In the MPI version, respective SendData is sent to all
the receivers among all the processes. When this data is
received, the received data is stored in ReceiveData by all
the receiving processes.

3.1. Construction of Communication Array. To incorporate
the Coarray Fortran communication, with minimal changes
to the original data structure and to avoid any additional
memory copies before and after communication, an addi-
tional communication array was created.

Since push communication was needed in the Coarray
Fortran version as well, the location of the ReceiveData in
ReceiveArray should be known to the sender. To store this
location, an additional array was created, referenced in the
code as CommArr *, where ∗ denotes a number specified to
set different variable apart. For this discussion, let us give it a
generic name, CommArr, and call it as communication array.

An initialization subroutine is called once before the
communication subroutine to find the ReceiveData loca-
tion for a receiving image. This information is stored in
every sender image. Communication with Coarray Fortran
becomes simpler once the CommArr is set up. A sender image
nowdirectly transfers data to a receiver image’smemory using
Coarray Fortran syntax (see Figure 2).

3.2.Working of the CommunicationArray. CommArr provides
connectivity between the SendArray of the sender image
and ReceiveArray of the receiving images. Along with
other data, SendArray also stores the index of the receiving
image. Thus, it also serves as an input for the CommArr
array, which stores the position at which receive image has
allocated memory for receiving the data. Since Fortran 2008
standard requires same coarray bounds, CommArr has an
upper bound equal to the number of processes, and empty
values in CommArr are filled with −1.

Figure 3 explains the working of communication array
using two examples shown by solid and dashed lines. In the
first example, Image 1 needs to send data to Images 2, 3, and

Scientific Programming 5

if(this image().ne. num images()) then

Image[this image()+1]%sol(:) = Image%sol(:)

end if

Listing 6: Coarray communication: push approach with a derived data type coarray.

4. While sending data to Image 3, Image 1 uses CommArr. At
location 3, CommArr of Image 1 stores 1. This is the location
at which data need to be sent to the receiving Image 3. In the
second example, Image 3 sends data to Image 4. CommArr of
Image 3 store 2 at position 4. 2 is the position at which the
receiving Image 4 will receive the data.

4. Tests

4.1. Physical Case. A 2D, external flow, test case was chosen
for validation and performance measurements. In this test
case, air flow over RAE2822 aerofoil in steady, turbulent
conditions was modeled in the transonic regime. The com-
putational domain boundaries were fixed 300 chord lengths
away, and an unstructured mixed mesh was created which
contained quadrilaterals in the boundary layer near the aero-
foil and triangular element away from it. The resultant mesh
had 52378 cells, 39120 quadrilateral cells, and 13258 triangular
cells. The free-stream conditions at the inlet correspond to
Case 6 in the experimental results from literature [21].

Re = 6.5 × 106;

𝑀 = 0.725;

𝛼 = 2.92.

(1)

Here, Re is the Reynolds number,𝑀 is theMach number,
and 𝛼 is the angle of attack. The free-stream conditions in
the original literature [21] are not corrected for the wind
tunnel effects. Including the wind tunnel effect results in the
following free-stream conditions [22].

Re = 6.5 × 106;

𝑀 = 0.729;

𝛼 = 2.31.

(2)

Subsonic boundary conditions were employed on the outer
domain, while no-slip boundary conditions were employed
on the aerofoil.

The third-order WENO scheme, denoted as WENO-
3, was used for achieving higher-order accuracy. For the
WENO-3 scheme, the central and the directional stencils for
a triangular mesh element are shown in Figure 4. The zone
of influence from the four stencils is shown in Figure 5. This
zone of influence is considerably larger than the traditional
second-order numerical schemes, which contributes toward
the computational and communication costs.

4.2. Hardware and Compiler. Two HPC facilities were used
in our study, ASTRAL and ARCHER. ASTRAL is an SGI,
Intel processor based, cluster owned by Cranfield University.
ARCHER, the UK’s national supercomputing facility, is a
Cray XC30 system.

ASTRAL has 80 physical compute nodes. Each compute
node has two 8-core E5-2260 series processor and 8GBRAM
per core (i.e., 128GB per node). Hyperthreading is disabled.
A 34 TB parallel file storage system (Panasas) is connected to
all the nodes. Infiniband QDR connectivity exists among all
nodes and to the storage appliance. The operating system is
Suse Linux 11.2.

ARCHER has a total of 4920 compute nodes. Each
standard compute node (4544 nodes out of the total 4920
nodes) contains two 12-core E5-2697 v2 (Ivy Bridge) series
processors and a total of 64GBRAM per node. Each proces-
sor can support two hyperthreads, but they were not used.
The compute nodes are connected with a parallel Lustre
filesystem.The Cray Aries interconnect links all the compute
nodes. A stripped-down version of the CLE, Compute Node
Linux (CNL), is run on the compute nodes to reduce the
memory footprint and overheads of the full OS.

Intel Fortran compiler 15.0.3 and Intel MPI version
5.0 Update 3 were used on ASTRAL and Cray compiling
environment 8.3.3 was used on ARCHER.

The compiler flags used on ASTRAL were -i4 -r8 -O2

-fp-model source.
The compiler flags used on ARCHER were -s interger32

-s real64 -e0 -ea -eQ -ez -hzero -eh -eZ.

5. Results

5.1. Clarity. Coarray Fortran uses a simpler and user-friendly
syntax, which results in a cleaner code in comparison toMPI.

To demonstrate the clarity obtainedwith theCoarray For-
tran, we have presented one communication subroutine from
our code in Listing 7 (MPI) and Listing 8 (Coarray Fortran).
For simplicity, only the source code for the communication is
shown.

This subroutine is used for communicating the recon-
structed, boundary extrapolated values of each Gaussian
quadrature point of the neighboring halo cells. The derived
data type (iexboundhir and iexboundhis) used for the
communication has the following declaration shown in
Listing 9.

The resultant code is also much easier to understand,
while preserving the functionality.

6 Scientific Programming

subroutine exhboundhigher(n, iexchanger, iexchanges,

iexboundhir, iexboundhis, itestcase, numberofpoints2,

isize)

...

if (itestcase .eq. 4) then

do i=0, isize-1

if (i .ne. n) then

do k=1, indl

if (iexboundhir(k)%procid .eq. i) then

do j=1, tndl

if (iexboundhir(k)%procid .eq. iexboundhis(j)

%procid) then

call mpi sendrecv(iexboundhis(j)%facesol

(1:iexchanges(j)%muchtheyneed(1), 1:1,

1:numberofpoints2, 1:5), &

iexchanges(j)%muchtheyneed(1)*1*

numberofpoints2*5,

mpi double precision, iexboundhis(j)%
procid, n, &

iexboundhir(k)%facesol(1:iexchanger(k)%
muchineed(1), 1:1, 1:numberofpoints2,

1:5), &

iexchanger(k)%muchineed(1)*1*

numberofpoints2*5,

mpi double precision, iexboundhir(k)%
procid, &

iexboundhir(k)%procid, icommunicator,

status, ierror)

call mpi sendrecv(iexboundhis(j)%facesolv

(1:iexchanges(j)%muchtheyneed(1), 1:1,

1:numberofpoints2, 1:8), &

iexchanges(j)%muchtheyneed(1)*1*

numberofpoints2*8,

mpi double precision, iexboundhis(j)%
procid, n, &

iexboundhir(k)%facesolv(1:iexchanger(k)%
muchineed(1), 1:1, 1:numberofpoints2,

1:8), &

iexchanger(k)%muchineed(1)*1*

numberofpoints2*8,

mpi double precision, iexboundhir(k)%
procid, &

iexboundhir(k)%procid, icommunicator,

status, ierror)

end if

end do

end if

end do

end if

end do

end if

...

end subroutine exhboundhigher

Listing 7: exhboundhigher subroutine from theMPI version of the code. Note that only the code responsible for communication is shown.

Scientific Programming 7

subroutine exhboundhigher (n, iexchanger, iexchanges,

iexboundhir, iexboundhis, itestcase, numberofpoints2,

isize)

⋅ ⋅ ⋅
if (itestcase .eq. 4) then

do i=1, tndl

! add +1 since coarray images are mpi ranks+1

j = iexchanges(i)%procid + 1

iexboundhir(CommArr1(j))[j]%facesol(:,:,:,:) =

iexboundhis(i)%facesol(:,:,:,:)

end do

do i=1, tndl

! add +1 since coarray images are mpi ranks+1

j = iexchanges(i)%procid + 1

iexboundhir(CommArr1(j))[j]%facesolv(:,:,:,:) =

iexboundhis(i)%facesolv(:,:,:,:)

end do

end if

sync all

⋅ ⋅ ⋅
end subroutine exhboundhigher

Listing 8: exhboundhigher subroutine from the Coarray Fortran version of the code. Note that only the code responsible for
communication is shown.

type exchange boundhi

integer :: procid, fast

integer :: howmany

real, allocatable, dimension(:,:,:,:) :: facesol, quadp,

vert

real, allocatable, dimension(:,:,:) :: wquad, angles

real, allocatable, dimension(:,:) :: triap, normals

real, allocatable, dimension(:,:,:,:) :: facesolv

end type exchange boundhi

Listing 9: Derived data type of iexboundhir and iexboundhis variables in the code.

5.2. Validation. To validate the numerical predictions from
the CFD code the experimental measurements [21] and CFD
predictions [22] from the literature were used. This compar-
ison was made for both the version of the code, with MPI
communication and with Coarray Fortran communication.

The pressure coefficient profile over the aerofoil for the
WENO-3 scheme along with the reference results is shown
in Figure 6. The pressure coefficient is negative on the top
surface of the aerofoil. It corresponds to the pressure less than
the free-stream pressure. Pressure coefficient was calculated
using

𝐶𝑝 =
𝑝 − 𝑝∞
(1/2) 𝜌∞𝑉

2
∞

, (3)

where 𝐶𝑝 is the pressure coefficient, 𝑝 is pressure, 𝜌 is the
fluid density, 𝑉 is the velocity, and subscript ∞ represents
free-stream values.

The sharp dip in pressure coefficient, near 𝑥/𝑐 = 0.55 (𝑥
is the distance over the aerofoil and 𝑐 is the chord), represents

the shockwave (i.e., sudden change in the value of pressure
and density). It can also be seen in Figure 7, which shows the
Mach number contours over the aerofoil obtained with the
WENO-3 scheme. Mach number 1 represents a shock wave.

It can be observed that the predictions with theWENO-3
scheme are more accurate in predicting the shock location,
compared to the WIND code. The WIND code uses second-
order finite difference scheme; thus greater errors may be
expected. The MPI and Coarray Fortran version of our code
provides the same predictions, which reassures that errors
were not introduced during the conversion process.

5.3. Performance. To compare the performance of MPI and
Coarray Fortran communication in the code, the validation
test case was run for 1000 iterations. These tests were
performed on ASTRAL (Intel compiler) and ARCHER (Cray
compiler), and the elapsed timewasmeasured for the iterative
calculations excluding any initialization and savefile outputs.

8 Scientific Programming

ReceiveArray(:)

SendArray(:)

ReceiveArray(:)

SendData(:,:)

ReceiveData(:,:)

Origin Target MPI: SendRecv

SendArray(:)

Figure 1: Schematic of data exchange process using MPI.

ReceiveArray(:)

SendArray(:)

ReceiveArray(:)

SendArray(:)

SendData(:,:)

ReceiveData(:,:)

Origin Target
CommArr(:) Coarray Fortran

Figure 2: Schematic of data exchange process using Coarray Fortran.

ReceiveArray(:)

SendArray(:)

CommArr(SendArray(:))

1 2 3 4

22

2 2 2

2

2

2

3

33

3

33

33

44

44 1

1

1

11

1

1 1 1 1 −1−1−1 −1 −1 −1

Figure 3: Working of CommArr in the Coarray Fortran version of the code.

Scientific Programming 9

0.8

0.6

0.4

0.2

0

Y

0 0.2 0.4 0.6 0.8 1

X

Stencil 1

0.8

0.6

0.4

0.2

0

Y

0 0.2 0.4 0.6 0.8 1

X

0.8

0.6

0.4

0.2

0

Y

0 0.2 0.4 0.6 0.8 1

X

Stencil 3

0.8

0.6

0.4

0.2

0

Y

0 0.2 0.4 0.6 0.8 1

X

Stencil 4Stencil 2

Figure 4: Central (stencil 1) and directional stencils (stencil 2, stencil 3, and stencil 4) for a triangular mesh element.

Since the most time-consuming part of the simulation is the
iterative solver, the initialization and savefile output time can
be neglected.

Figure 8 shows the execution time measured for MPI
and Coarray Fortran version of the solver on ASTRAL (Intel
compiler) and ARCHER (Cray compiler). On ASTRAL the
data points correspond to 𝑁 = 8, 16 (one-node), 32, 64,
and 128 cores. On ARCHER the data points correspond to
𝑁 = 12, 24 (one-node), 48, 96, 192, and 384 cores.

On ASTRALwith the Intel compiler, the Coarray Fortran
version of the code is slower than MPI. Since the Coarray

Fortran implementation of Intel is based on MPI-3 remote
memory access calls, it is subject to overheads over MPI.
These overheads are so big that any performance gains—by
replacing the blocking send and receive commands in the
MPI version to nonblocking remote access calls in the Coar-
ray Fortran version—are wiped out. An interesting result to
note is that a sudden performance degradation occurs when
communication takes place among images in multiple nodes.

Haveraaen et al. [23] observed that, even for large
messages, the Intel compiler was performing element-wise
transfer when Coarray Fortran was used for communication.

10 Scientific Programming

0.8

0.6

0.4

0.2

0

Y

0 0.2 0.4 0.6 0.8 1

X

Figure 5: Combined stencil for the triangular mesh element.

−1.5

−1

−0.5

0

0.5

1

1.5

C
p

0 0.2 0.4 0.6 0.8 1

x/c

WENO-3: MPI
WENO-3: Coarray Fortran

WIND code
Experiment:
Cook et al. (1979)

Figure 6: Pressure coefficient over the RAE 2822 airfoil surface
for the code compared with experimental and CFD results from
literature. Note: some points in CFD results are omitted for clarity.

Their observation was based on the analysis of the assembly
code of their program. Using Trace analysis, we also observed
that the majority of communication time in each process
is spent between MPI Win lock and MPI Win unlock calls,
when internode communication is invoked. Thus, it could
be concluded that the implementation of the Intel compiler
is quite inefficient, with possible bugs that greatly reduce
the performance when parallelization is performed using
Coarray Fortran.

In contrast, on ARCHER with the Cray compiler, the
performance of Coarray Fortran version of the code is mostly

X

Y

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

Mach

WENO-3

0.
6

0.
7

0.7

0.8

0.8

0.
9

0.9

1 1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2number:

Figure 7: Mach number contour over the RAE 2822 airfoil.

N

Ti
m

e (
s)

0

50

100

150

200

250

300

101 102 103

MPI-ASTRAL
MPI-ARCHER

Coarray Fortran-ASTRAL
Coarray Fortran-ARCHER

Figure 8: Performance results for the solver.

similar (till 96 cores) or in some cases (192 and 384 cores)
better than the MPI version. Also, the execution time is
lower on ARCHER due to the faster architecture compared
to ASTRAL. For shorter messages, Coarray Fortran has
lower overheads compared to MPI; this translated into the
better performance when higher cores were used with the
Coarray Fortran version. Also, the extraredirection due to the
communication array did not adversely affect the results in
comparison to the other gains.

Open-source compilers such as GCC (with OpenCoar-
rays) and OpenUH have been used in other benchmark stud-
ies to demonstrate the performance of their Coarray Fortran

Scientific Programming 11

implementation in comparison to the MPI implementations.
During our study, we found that the code featured in Listing
8 is not supported by the open-source implementations.

6. Conclusions

Coarray Fortran provides a simpler and a more productive
alternative to MPI for parallelization. With minimal code
modifications, even codes with unstructured meshes can be
parallelized with Coarray Fortran. The increased readability
of the resultant code enhances the productivity. Based on
the performance and the level of current development, we
found the Cray compiler to be suitable for development with
Coarray Fortran. The performance with Cray compiler was
similar or better than MPI in the tests. With Intel compiler,
significant performance degradationwas observed, especially
on internode communication. It may be attributed to the
inefficient implementation and possible bugs. While com-
mercial compilers support all the features of Coarrays Fortran
specified in the Fortran 2008 standard, some limitations
still exist with the open-source implementations, such as
OpenCoarrays (GCC) and OpenUH. We are hopeful that
these limitations will be resolved soon in future versions.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work used the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk).The authors also thankDr.
Panagiotis Tsoutsanis and Dr. Antonios Foivos Antoniadis
from Cranfield University for their insightful discussions.

References

[1] L. Hochstein, J. Carver, F. Shull et al., “Parallel programmer
productivity: a case study of novice parallel programmers,” in
Proceedings of the ACM/IEEE 2005 Supercomputing Conference,
SC’05, usa, November 2005.

[2] I. Christadler, G. Erbacci, and A. D. Simpson, “Performance
and productivity of new programming languages,” in Facing
the Multicore - Challenge II, vol. 7174 of Lecture Notes in Com-
puter Science, pp. 24–35, Springer Berlin Heidelberg, Berlin,
Germany, 2012.

[3] J. Reid, “Additional coarray features in Fortran,” in Proceedings
of the 7th International Conference on PGAS Programming
Models, M. Weiland, A. Jackson, N. Johnson, and M. Fortran,
Eds., 104 pages, The University of Edinburgh, Edinburgh, UK,
2013.

[4] I. Chivers and J. Sleightholme, “Compiler support for the
Fortran 2003 and 2008 standards revision 20,” ACM SIGPLAN
Fortran Forum, vol. 35, no. 3, pp. 29–50, 2016.

[5] A. Fanfarillo, T. Burnus, S. Filippone, V. Cardellini, D. Nagle,
and D. W. I. Rouson, “OpenCoarrays: open-source transport
layers supporting coarray Fortran compilers,” in Proceedings of
the 8th International Conference on Partitioned Global Address

Space Programming Models (PGAS ’14), Eugene, Ore, USA,
October 2014.

[6] D. Eachempati, H. J. Jun, and B. Chapman, “An open-source
compiler and runtime implementation for Coarray Fortran,” in
Proceedings of the 4th Conference on Partitioned Global Address
Space (PGAS) Programming Models, PGAS’10, New York, NY,
USA, October 2010.

[7] R.W. Numrich, J. Reid, and K. Kim, “Writing a multigrid solver
using co-array fortran,” in Applied Parallel Computing Large
Scale Scientific and Industrial Problems, vol. 1541 ofLectureNotes
in Computer Science, pp. 390–399, Springer Berlin Heidelberg,
Berlin, Germany, 1998.

[8] R. Barrett, “Co-array Fortran experiences with finite differenc-
ing methods,” in Proceedings of the The 48th Cray User Group
meeting, Italy, Lugano, Italy, 2006.

[9] M. Hasert, H. Klimach, and S. Roller, “CAF versusMPI - Appli-
cability of Coarray Fortran to a Flow Solver,” in Recent Advances
in the Message Passing Interface, vol. 6960 of Lecture Notes in
Computer Science, pp. 228–236, Springer Berlin Heidelberg,
Berlin, Germany, 2011.

[10] A. I. Stone, J. M. Dennis, andM.M. Strout, “Evaluating Coarray
Fortran with the CGPOP Miniapp,” in Proceedings of the Fifth
Conference on Partitioned Global Address Space Programming
Models (PGAS), 2011.

[11] A. Shterenlikht, “Fortran coarray library for 3D cellular
automata microstructure simulation,” in Proceedings of the 7th
International Conference on PGAS Programming Models, 2013.

[12] D. Henty, “Performance of Fortran Coarrays on the Cray XE6,”
in Proceedings of the Cray User Group, 2012.

[13] R. W. Numrich, “A Parallel Numerical Library for Co-array
Fortran,” in Proceedings of the International Conference on
Parallel Processing and Applied Mathematics, Springer Berlin
Heidelberg, 2005.

[14] V. Cardellini, A. Fanfarillo, and S. Filippone, “Heterogeneous
CAF-based load balancing on Intel Xeon Phi,” in Proceedings of
the 30th IEEE International Parallel and Distributed Processing
SymposiumWorkshops, IPDPSW 2016, pp. 702–711, Chicago, Ill,
USA, May 2016.

[15] R. W. Numrich and J. Reid, “Co-array Fortran for parallel
programming,” ACM SIGPLAN Fortran Forum, vol. 17, no. 2,
pp. 1–31, 1998.

[16] R. W. Numrich, Coarray Fortran, Springer, Boston, Mich, USA,
2011.

[17] J. A. Ekaterinaris, “High-order accurate, low numerical diffu-
sionmethods for aerodynamics,” Progress in Aerospace Sciences,
vol. 41, no. 3-4, pp. 192–300, 2005.

[18] P. Tsoutsanis, V. A. Titarev, and D. Drikakis, “WENO schemes
on arbitrarymixed-element unstructuredmeshes in three space
dimensions,” Journal of Computational Physics, vol. 230, no. 4,
pp. 1585–1601, 2011.

[19] P. Tsoutsanis, A. F. Antoniadis, and D. Drikakis, “WENO
schemes on arbitrary unstructured meshes for laminar, transi-
tional and turbulent flows,” Journal of Computational Physics,
vol. 256, pp. 254–276, 2014.

[20] V. A. Titarev and E. F. Toro, “Finite-volume WENO schemes
for three-dimensional conservation laws,” Journal of Computa-
tional Physics, vol. 201, no. 1, pp. 238–260, 2004.

[21] P. H. Cook, M. C. P. Firmin, and M. A. McDonald, “Aerofoil
RAE 2822: pressure distributions, and boundary layer and wake
measurements,” Tech. Rep., Advisory Group For Aerospace
Research And Development (AGARD), 1979.

http://www.archer.ac.uk

12 Scientific Programming

[22] J. W. Slater, J. C. Dudek, and K. E. Tatum, The NPARC
alliance verification and validation archive, (2000).URL
https://www.grc.nasa.gov/www/wind/valid/archive.html.

[23] M. Haveraaen, K. Morris, D. Rouson, H. Radhakrishnan, and
C. Carson, “High-Performance Design Patterns for Modern
Fortran,” Scientific Programming, vol. 2015, Article ID 942059,
14 pages, 2015.

https://www.grc.nasa.gov/www/wind/valid/archive.html

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

