
Research Article
An Invocation Cost Optimization Method for
Web Services in Cloud Environment

Lianyong Qi,1 Jiguo Yu,1 and Zhili Zhou2

1School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China
2School of Computer and Software, Nanjing University of Information Science and Technology,
Nanjing 210044, China

Correspondence should be addressed to Lianyong Qi; lianyongqi@gmail.com

Received 2 January 2017; Revised 27 February 2017; Accepted 19 April 2017; Published 9 May 2017

Academic Editor: Basilio B. Fraguela

Copyright © 2017 Lianyong Qi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The advent of cloud computing technology has enabled users to invoke various web services in a “pay-as-you-go”manner. However,
due to the flexible pricing model of web services in cloud environment, a cloud user’ service invocation cost may be influenced by
many factors (e.g., service invocation time), which brings a great challenge for cloud users’ cost-effective web service invocation. In
view of this challenge, in this paper, we first investigate the multiple factors that influence the invocation cost of a cloud service, for
example, user’s job size, service invocation time, and service quality level; and afterwards, a novel Cloud Service Cost Optimization
Method namedCS-COM is put forward, by considering the abovemultiple impact factors. Finally, a set of experiments are designed,
deployed, and tested to validate the feasibility of our proposal in terms of cost optimization. The experiment results show that our
proposed CS-COM method outperforms other related methods.

1. Introduction

The advent of cloud computing technology has provided us
with a light-weight resolution for building various complex
business applications [1–3]. With the flexible provision of
cloud computing infrastructure, a service user can invoke
his/her interested web services in an “easy-to-access” and
“pay-as-you-go” manner, which significantly benefits the
users who request dynamic and variable computing resources
[4–6].

However, the flexible pricingmodel in cloud environment
brings users a challenging task to find the optimal service
invocation cost [7], as the cost is often varied with many
impact factors, such as user job size, service invocation time,
and user’s requested service quality [8]. For example, let
us consider a video-on-demand scenario [9, 10] where a
service 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 can help users to enjoy movies located
on remote servers. Then when 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 is invoked by a
user, the invocation cost often depends on many context
factors, such as movie size, service invocation time, and
movie display quality. Therefore, from the perspective of a

cloud user, it becomes a necessity and a challenge to find
the optimal service invocation time as well as the minimal
service invocation cost, when he/she utilizes 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 to
enjoy his/her preferred movies.

In view of this challenge, in this paper, we first investigate
and analyze the impact factors that influence the invocation
cost of a cloud service; afterwards, a novel Cloud Service
Cost Optimization Method, that is, CS-COM, is brought
forth in this paper, by combining the above multiple impact
factors.

The rest of paper is structured as follows. In Section 2,
we first investigate the impact factors that influence the
invocation cost of a cloud service. Afterwards, an optimiza-
tion method for invocation cost of cloud services, that is,
CS-COM, is put forward in Section 3, by considering the
investigated multiple impact factors. A set of experiments are
designed and deployed in Section 4, to validate the feasibility
of our proposal in terms of cost optimization. Related works
and further discussions are presented in Section 5. And
finally, in Section 6, we conclude the paper and point out our
future research directions.

Hindawi
Scientific Programming
Volume 2017, Article ID 4358536, 9 pages
https://doi.org/10.1155/2017/4358536

https://doi.org/10.1155/2017/4358536


2 Scientific Programming

0

ex
ec
ut
io
n_

du
ra
tio

n

f(job_size)

job_size

(a)

0

ex
ec
ut
io
n_

du
ra
tio

n

f(job_size)

job_size

(b)

0

ex
ec
ut
io
n_

du
ra
tio

n

f(job_size)

job_size

(c)

Figure 1: Positive correlation between job size of a cloud user and execution duration of a cloud service.

2. Impact Factor Analyses for Web Service
Invocation Cost in Cloud

Due to the flexible pricing models in cloud environment, the
invocation cost for a cloud service is oftennot static but varied
with many impact factors. In this section, we will investigate
these context factors. Concretely, the following three context
factors play important roles in cloud service charging.

2.1. Job Size. Size of a cloud user’ job (or task), whose units
are KB, MB, GB, TB, PB, and so forth. Generally, for a job
of a cloud user, a larger job size often leads to longer service
execution duration. Let us consider the example of 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷
introduced in Section 1. A 2GB movie often takes more time
cost (e.g., decoding time or transmission time) than a 1GB
movie does.

With the above observation, a conclusion could often be
drawn that there is a positive correlation between a user’s job
size and a cloud service’s execution duration. Here, we utilize
formula (1) to depict the relationship between them. Then
according to the above analyses, in (1), the first-order deriva-
tive 𝑓󸀠(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) > 0 often holds. Concretely, for simplicity,
we utilize the three submodels in Figure 1 to depict the pos-
itive correlation between a cloud user’s job size and a cloud
service’s estimated execution duration. As Figure 1 shows, a
cloud service’s estimated execution durations all increasewith
the growth of job size. The major difference among these
three submodels is as follows: execution duration increases
faster with the growth of job size in Figure 1(a) (e.g., when

the cloud load is becoming heavier and heavier), while in con-
trast, execution duration increases more slowly when job size
grows in Figure 1(b) (e.g., when the cloud load is becoming
smaller and smaller); and in Figure 1(c), execution duration
increases linearly with the growth of job size (e.g., when the
cloud load stays approximately stable).

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑓 (𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) . (1)
For a cloud service, larger execution duration oftenmeans

higher service invocation cost. Therefore, there is an indirect
positive correlation between job size of a cloud user and
invocation cost of a cloud service. For example, a 2GBmovie
may be charged more than a 1GB movie when a user invokes
𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷.
2.2. Service Invocation Time. It means the time point that a
cloud service begins to execute. Generally, a cloud user would
be charged more when he/she invokes a cloud service in busy
hours (e.g., 08:00 am∼18:00 pm of a day) or on busy days.
In contrast, when the cloud service is not busy, a cloud user
would be charged less. Let us take the 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 introduced
in Section 1, for example. If a user invokes 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 service
on free days (e.g., Monday∼Thursday), a small fee would be
charged (i.e., cost per hour cph is low in Figure 2), while on
other busy days (e.g., Friday∼Sunday), the invocation cost of
𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 would rise significantly due to the heavy network
load on weekends.

Here, we utilize the following pricing model in (2) to
depict the relationship between a cloud service’s cph and



Scientific Programming 3

Invocation time t of a cloud service

cp
h

($
/h

ou
r)

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Fr
id

ay

Sa
tu

rd
ay

Su
nd

ay

g(t)

0

0.5

1

1.5

2

2.5

3

Figure 2: Cloud services’ pricing model regarding invocation time
𝑡: an example.

invocation time point 𝑡. Generally, the time-aware pricing
model of a cloud service is often provided by its service
provider.

𝑐𝑝ℎ = 𝑔 (𝑡) . (2)

2.3. Service Quality Level. It means a cloud service’s quality
level that is requested by a cloud user. Generally, a cloud
provider often publishes its cloud service with multiple
quality levels so as to accommodate the various preferences
of different cloud users [11]. Here, we utilize set {𝑞𝑙1, . . . , 𝑞𝑙𝑛}
to denote a cloud service’s 𝑛 service quality levels that could
be delivered to its cloud users (𝑞𝑙1 denotes the lowest quality
level, while 𝑞𝑙𝑛 denotes the highest quality level). Generally,
the service invocation cost would be high if a cloud user
requests a high service quality level. For example, let us
consider the example of 𝑠𝑒𝑟V𝑖𝑐𝑒𝑉𝑂𝐷 (introduced in Section 1)
as well as its two service quality levels shown as follows. As
1080 P > 720 P holds, a user would be charged more if he/she
selects service-quality-level-1 instead of service-quality-level-2,
as service-quality-level-1 requiresmore transmission cost than
service-quality-level-2 does:

service-quality-level-1: 1080 P (high video quality)
service-quality-level-2: 720 P (middle video quality)

3. Cost Optimization Method for
Cloud Service Invocation

In Section 2, we have analyzed the three important impact
factors that are related to the invocation cost of a cloud
service, that is, job size, service invocation time, and service
quality level. Next, we combine the above three impact factors
together to develop a novel cost optimization method for
cloud services, that is, CS-COM, so as to help cloud users
to find the optimal service invocation time and the minimal
service invocation cost. Concretely, our proposed CS-COM
method consists of the following four steps.

Table 1: An example of parameters 𝑎 and 𝑏 in (4).

Parameter 𝑞𝑙𝑥
𝑞𝑙1 𝑞𝑙2 ⋅ ⋅ ⋅ 𝑞𝑙𝑛

𝑎 1 2 𝑛
𝑏 1/𝑛 2/𝑛 1

Step 1. Estimate a cloud service’s execution duration based on
a cloud user’s job size.

In Section 2 (see Figure 1 and formula (1)), we have
introduced three pricing submodels between a cloud user’s
job size and a cloud service’s estimated execution duration.
Therefore, given a cloud user’s job size, we can estimate a
cloud service’s execution duration based on (1). Here, please
note that formula (1) can be in the form of Figure 1(a)
or Figure 1(b) or Figure 1(c), depending on the service
provider’s pricing strategy. Next, we utilize range [𝑡0, 𝑡0 +
execution duration] to denote the running period of a cloud
service, where 𝑡0 is the time point that the cloud service starts
to execute.

Step 2. According to the estimated service execution duration
(in Step 1) and the time-aware pricingmodel (in (2)), calculate
the original service invocation cost P (without considering
service quality level).

As introduced in Step 1, a cloud service starts to execute
at 𝑡 = 𝑡0 and ends at 𝑡 = 𝑡0 + execution duration. Therefore,
through the integral operation over cph in (2), we can obtain
the original service invocation cost P (without considering
service quality level). Concretely, P could be calculated by (3),
where 𝑐𝑝ℎ = 𝑔(𝑡) holds (see formula (2)).

𝑃 = ∫
𝑡0+𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡0

𝑐𝑝ℎ d𝑡

= ∫
𝑡0+𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡0

𝑔 (𝑡) d𝑡.
(3)

Step 3. Calculate the comprehensive service invocation cost
𝑃(𝑥) based on the requested service quality level 𝑞𝑙𝑥 and the
original invocation cost 𝑃 derived in Step 2.

In Step 2, we have derived the original invocation cost𝑃 of
a cloud service without considering the service quality level.
As analyzed previously in Section 2, service quality level often
plays an important role in service charging.Therefore, in this
step, original service invocation cost 𝑃 is modified to be 𝑃(𝑥)
by considering the cloud user’s requested service quality level
𝑞𝑙𝑥 where 𝑞𝑙𝑥 ∈ {𝑞𝑙1, . . . , 𝑞𝑙𝑛} holds (here, we assume that
there are 𝑛 quality levels for a cloud service; 𝑞𝑙1 and 𝑞𝑙𝑛 denote
the lowest and highest service quality levels, resp.).

As analyzed in Section 2, a higher service quality level
often leads to larger service invocation cost. In view of this
intuitive observation, we utilize the simple linear formula in
(4) to depict the correlation between 𝑃(𝑥) and 𝑃. In (4), 𝑎
and 𝑏 are two parameters that are determined by the service
quality level 𝑞𝑙𝑥. A concrete example is presented in Table 1



4 Scientific Programming

Input: user: a cloud user
cs: a cloud service ready to be invoked by user
job size: user’s job (or task) size
𝑞𝑙𝑥: service quality level of cs requested by user
𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒): execution duration = 𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) in (1)
𝑔(𝑡): 𝑐𝑝ℎ = 𝑔(𝑡) in (2)

Output: 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙): optimal service invocation start time of cs
𝑃(𝑥)
(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

: optimal invocation cost of cs by user

(1) Set variable 𝑡0 // service invocation start time
(2) Get models 𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) and 𝑔(𝑡) from service provider
(3) Get parameters 𝑎 and 𝑏 in (4) from service provider based on 𝑞𝑙𝑥
(4) Estimate cs’s execution duration based on job size and (1)
(5) Calculate 𝑃 based on 𝑡0, execution duration and (3)

// 𝑃: original service invocation cost of cs by user
(6) Calculate 𝑃(𝑥) based on 𝑎, 𝑏, 𝑃 and (4)

// 𝑃(𝑥): comprehensive invocation cost of cs by user
(7) Set objective function: Minimize 𝑃(𝑥)
(8) Determine 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) by combining (1)–(5)
(9) Determine 𝑃(𝑥)

(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
based on (6)

(10) Return 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) to user
(11) Return 𝑃(𝑥)

(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
to user

Algorithm 1: CS-COM (𝑢𝑠𝑒𝑟, 𝑐𝑠, 𝑗𝑜𝑏 𝑠𝑖𝑧𝑒, 𝑞𝑙𝑥, 𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒), 𝑔(𝑡)).

to demonstrate the relationship between parameter values of
(𝑎, 𝑏) and service quality level 𝑞𝑙𝑥. Generally, parameters 𝑎
and 𝑏 could be obtained from the cloud service provider.

𝑃(𝑥) = ℎ (𝑞𝑙𝑥, 𝑃) = 𝑎 ∗ 𝑃 + 𝑏. (4)

Step 4. Optimize cost 𝑃(𝑥) derived in Step 3.

Our final goal is to minimize the comprehensive service
invocation cost 𝑃(𝑥) derived in (4). Next, through combining
(1)–(4) and objective function (i.e., Minimize 𝑃(𝑥)), we can
obtain an optimal value for service invocation start time 𝑡0,
denoted by 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) in (5). And correspondingly, when 𝑡0 =
𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) holds, the optimal service invocation cost 𝑃(𝑥)

(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

is achieved, which could be calculated by (6).

𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = {𝑡0 | 𝑃(𝑥) = min {𝑃 (𝑥)}} (5)

𝑃(𝑥)(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 𝑎 ∗ ∫
𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)+𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

𝑔 (𝑡) d𝑡 + 𝑏. (6)

With Steps 1–4 of our proposed CS-COM method, we
can determine the optimal service execution start time 𝑡0 as
well as the optimal (i.e., the lowest) service invocation cost
𝑃(𝑥)
(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

, by considering a cloud user’s job size and requested
service quality level 𝑞𝑙𝑥. Next, more formally, the pseudocode
of our proposedCS-COMmethod is specified as Algorithm 1.
Here, the functions execution duration = 𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) in (1),
𝑐𝑝ℎ = 𝑔(𝑡) in (2), and parameters 𝑎 and 𝑏 are all regarded as
known already, as they all depend on the pricing models of
cloud service providers.

4. Experiments

In this section, a set of simulated experiments are designed
and tested, to validate the feasibility of our proposedCS-COM
method in terms of cost optimization.

4.1. Experiment Settings. Next, we introduce the concrete
parameters or environment settings adopted in the experi-
ments.

4.1.1. Relationship between execution duration and job size
(See Formula (1)). As work [12] indicates, a cloud service’s
execution duration (without considering the data transfer
between user client and cloud server) mainly depends on the
CPU processing speed and user job size. Due to the flexible
resource provision in cloud environment, we can assume
that the CPU processing speed stays approximately stable. In
this situation, there is an approximately linear relationship
between estimated execution duration (unit: hour) of a cloud
service and job size (unit: GB) of a cloud user. So in the
experiments, we utilize the linear function in (7) to model
their relationship where 𝑘 (𝑘 > 0) is a parameter. Here, we
utilize the well-known cloud simulation tool CloudSim [13]
developed by Melbourne University for generating the user
job 1000 times randomly, through which the user job size
could be obtained.

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑓 (𝑗𝑜𝑏 𝑠𝑖𝑧𝑒) = 𝑘 ∗ 𝑗𝑜𝑏 𝑠𝑖𝑧𝑒. (7)

4.1.2. Relationship between cph and t (See Formula (2)). Gen-
erally, a cloud service’s pricing model, that is, cph (cost per



Scientific Programming 5

hour), heavily depends on the service invocation time 𝑡 [14].
In the experiments, we generate the random pricing mod-
els with the help of CloudSim (concretely, cloud services
including pricing models in (1)–(4) are encapsulated in a
service entity in CloudSim and registered in CloudInfor-
mationService component; our proposed cost optimization
method CS-COM and other related methods are located in
the component of Data Center Proxy so as to estimate the
service invocation cost).

4.1.3. Relationship between Invocation Cost 𝑃(𝑥) and Service
Quality 𝑞𝑙𝑥 (See Formula (4) and Table 1). According to the
experiment results observed by [14], there is an approximate
linear relationship between service invocation cost 𝑃(𝑥) and
service quality 𝑞𝑙𝑥 (see formula (8)). In the experiments, we
adopt this experienced data in (8) to approach formula (4) in
our paper.

𝑃(𝑥) = 2 ∗ 𝑞𝑙𝑥 + 0.4. (8)

Besides, we test and compare our CS-COM method with
four related methods: FCFS (First Come First Serve) [15], FL-
FL (cost evaluation based on historical records) [16], Cost-
plus (considering service invocation cost and user benefit
simultaneously) [17], and CB (considering time-depended
pricing model only) [14].

The experiments were conducted on a HP laptop with
2.40GHz processors and 4.0GB RAM. The machine is
running under Windows 7 and JAVA 1.5. Each experiment
was carried out 10 times and the average results were
adopted. Concretely, three experiment profiles are tested and
compared.

4.2. Experiment Results

4.2.1. Profile 1: Invocation Cost Comparison with respect to
Job Size. In this profile, we test and compare the service
invocation costs of our proposedCS-COMmethod and other
four methods. Here, in CS-COM, parameters 𝑘 = 2, 𝑎 = 2,
and 𝑏 = 0.4 hold (see (8)); parameter 𝐿 in FL-FL is equal to
3; parameter conversion = 0.4 holds in Cost-plus. Cloud user’s
job size is varied from 1GB to 10GB.

The experiment results are presented in Figure 3. As
Figure 3 shows, the service invocation costs of five methods
all increase with the growth of job size approximately; this
is because processing a larger job often takes more time
cost and hence leads to a higher invocation cost. Moreover,
the service invocation cost of Cost-plus method is high
as it considers the user benefit as an optimization object,
while more user benefit often means higher charging fees.
Besides, the service invocation cost of FCFS method often
fluctuates frequently as its service invocation time is ran-
domly selected, while different service invocation timemeans
varied service charging. The rest three experiment curves
increase approximately in polynomial manners, where FL-FL
method utilizes the past service invocation costs to estimate
the future invocation cost and CB method considers the
time-dependent pricing models of cloud services, while our
proposed CS-COM method consider a cloud user’s job size,

0

2

4

6

8

10

12

14

16

In
vo

ca
tio

n 
co

st 
($

)

2 3 4 5 6 7 8 9 101
Job size (GB)

FCFS
FL-FL
Cost-plus

CB
CS-COM

Figure 3: Invocation cost comparison of five methods with respect
to job size.

service invocation time, and requested service quality level
simultaneously.Therefore,CS-COMmethod outperforms the
other fourmethods in terms of service invocation cost, which
could also be observed from Figure 3.

4.2.2. Profile 2: Invocation Cost Comparison with respect to
𝑡. In this profile, we compare the service invocation costs
of five methods with respect to the service invocation time.
As the “cph-t” charging models (see formula (2)) randomly
generated by CloudSim make it hard to observe the stable
variation trend of invocation cost, in this profile, we choose
a randomly generated but fixed “cph-t” charging model (𝑡 ∈
[1:00 pm, 12:00 pm]) where [6:00 pm, 9:00 pm] is the busy
hour. To observe the cost variation trendwith invocation time
𝑡, we tune parameter job size so that the user job could be
finished within one hour. Other parameter settings are the
same as in Profile 1.

The experiment results are shown in Figure 4. As Figure 4
indicates, the service invocation cost of Cost-plus is high as
it considers both user benefit and service cost, while larger
user benefit often means higher charging fees. The FCFS
method achieves the approximate cost variation trend with
the preset “cph-t” charging model as no cost optimization
strategy is adopted in FCFS. In FL-FL method, sampling
technique is recruited to approximately approach original
“cph-t” charging model, which achieves the similar cost
variation trend as in FCFS. The rest two methods, that is,
CB and CS-COM, perform better than the previous three
methods in terms of cost optimization, as the dynamic time-
aware cost optimization strategy is considered in these two
methods. Besides, as supposed in this profile, the execution
duration of user job is one hour; therefore, at the last o’clock
(i.e., 12:00 pm), time-aware cost optimization strategy does
not work anymore and hence, the five cost variation curves
converge.



6 Scientific Programming

2 3 4 5 6 7 8 9 10 11 121
Service invocation time (o’clock, pm)

0

2

4

6

8

10

12

14

16

In
vo

ca
tio

n 
co

st 
($

)

FCFS
FL-FL
Cost-plus

CB
CS-COM

Figure 4: Invocation cost comparison of five methods with respect
to service invocation time (1:00 pm∼12:00 pm).

0

10

20

30

40

50

60

70

Ti
m

e c
os

t (
m

s)

2 3 4 5 6 7 8 9 101
Job size (GB)

FCFS
FL-FL
Cost-plus

CB
CS-COM

Figure 5: Time cost comparison of five methods.

4.2.3. Profile 3: Time Cost Comparison. In this profile, we test
the time costs of five methods. Here, sampling technique is
recruited to convert the continuous function 𝑐𝑝ℎ = 𝑔(𝑡) in (2)
into𝑑discrete valueswith same intervals, so as to facilitate the
further computation of service invocation cost. Concretely,
𝑑 = 100 holds in this profile. Other parameter settings are
the same as those in Profile 1.

The concrete experiment results are presented in Figure 5.
As can be seen from Figure 5, FL-FL method achieves the
least time cost as it only considers the past few historical

CS-COM

2 3 4 5 6 7 8 9 101
k

0

1

2

3

4

5

6

7

In
vo

ca
tio

n 
co

st 
($

)

Figure 6: Service invocation cost of CS-COM with respect to 𝑘.

service invocation costs of a cloud service, without further
complicated computation. The rest four time cost curves all
increase approximately linearly with the growth of job size.
The time cost of FCFS method is not very large as it only
refers to an integral operation associated with 𝑐𝑝ℎ = 𝑔(𝑡)
and 𝑡. The execution efficiencies of rest three methods, that
is, Cost-plus, CB, and CS-COM, are very close, as they all
contain some extra computation processes associated with
cloud users’ job size; concretely, Cost-plus needs to calculate
the benefit of a cloud user based on the service invocation
cost (derived based on job size) and CB needs to optimize the
service invocation cost based on the time-dependent pricing
model (depends on job size), while our proposed CS-COM
method employs job size to estimate the service execution
duration. As Figure 5 shows, the time costs of all the five
methods are not high (at “millisecond” level).

4.2.4. Profile 4: Service Invocation Cost of CS-COM with
respect to 𝑘. As formula (7) indicates, 𝑘 is an impor-
tant parameter that bridges the estimated service execu-
tion duration and a cloud user’s job size and consequently
influences the finally derived optimal service invocation cost.
In this profile, we test the relationship between 𝑘 and the
optimal service invocation cost in our proposed CS-COM
method. Concretely, 𝑘 is varied from 1 to 10, job size is equal
to 1 GB, and parameters 𝑎 = 2 and 𝑏 = 0.4 hold in (4).

The concrete experiment results are presented in Figure 6.
As can be seen from Figure 6, the invocation cost of
CS-COM method increases approximately in a polynomial
manner with the growth of 𝑘, this is because 𝑘 appears in
the upper bound of 𝑡 (i.e., 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) + execution duration
= 𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) + 𝑓(𝑗𝑜𝑏 𝑠𝑖𝑧𝑒)) of invocation cost integration
∫𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)+𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑡0(𝑜𝑝𝑡𝑖𝑚𝑎𝑙)

𝑔(𝑡) d𝑡 in (6), while 𝑔(𝑡) is often a
polynomial function associated with 𝑡. So after the integral
operation, the service invocation cost becomes a polynomial
function associated with parameter 𝑘.

From the above three sets of experiment results, we can
conclude that our proposed CS-COM method outperforms



Scientific Programming 7

the rest four methods in terms of service invocation cost
(concretely, compared to FCFS, FL-FL, Cost-plus, and CB, the
cost reduction ratios of our proposal are 74.9%, 62.8%, 80.1%,
and 35.1%, resp.). Besides, the time cost of our proposal is at
the “ms” level, which is acceptable for most business applica-
tions. Finally, in our proposed CS-COM method, the derived
optimal service invocation cost has a positive correlationwith
parameter 𝑘 in formula (7), which approximately coincides
withmost existing cloud pricingmodels. Actually, for a cloud
service, the value of parameter 𝑘 could be published by its
service provider in a flexible manner so as to maximize the
economic gains.

5. Related Work and Further Discussions

5.1. Related Work and Comparison Analyses. Cloud com-
puting technology, on one hand, facilitates cloud users’
sharing and use of various computing resources by pro-
viding an “easy-to-access” and “pay-per-use” resource pro-
vision manner and, on the other hand, brings a great
challenge to minimize or optimize cloud users’ service
invocation cost. Many researchers have investigated this hot
research topic and brought forth their respective resolutions
[12, 14–17].

In [12], the authors divided the invocation cost of a
cloud service into three categories: data-storage cost, CPU
processing cost, and data-transfer cost. In order to evaluate
and predict a cloud user’s service invocation cost, FL-FL
method was put forward in [16] by considering the ser-
vice’s past invocation costs; however, FL-FL method fails to
generate an accurate service invocation cost as the latter is
often influenced by some other factors. Work [17] analyzed
the relationship between service invocation cost and user
benefits and finally introduced a cost-benefit-aware cloud
service scheduling method Cost-plus. However, one final
optimization goal was to maximize user profits, not to
minimize the service invocation cost. In order to minimize
the service invocation cost, FCFS method was put forward
in [15]. FCFS adopted the “First Come First Serve” rule so
as to reduce the waiting time of user job and optimize the
service invocation cost. However, FCFS did not consider
the dynamic and varied time-aware pricing model in cloud
environment. In view of this, work [14] took the time-
dependent pricingmodel of cloud services into consideration
and brought forth an invocation cost optimization method
CB. However, CBmethod only considered service invocation
time when optimizing the invocation cost, while neglecting
some other important factors, for example, user job size and
user’s requested service quality level.

In view of the above shortcomings, a novel service
invocation cost optimization method named CS-COM is put
forward in this paper, which considers the multiple factors
that influence the invocation cost in cloud environment.
Experiment results show that CS-COM outperforms other
related methods in terms of cost optimization.

5.2. Further Discussions. In this paper, we put forward a
cost optimization method for web services based on multiple

impact factors. Generally, the proposed multifactors-based
optimization strategy can also be applied in other application
domains with multiple factors, for example, performance
optimization [18–23], feature analysis [24–29], quality evalu-
ation [30–32], knowledge learning [33–37], and data mining
[38–40]. However, several shortcomings are still present in
our approach.

(1) Only three factors (i.e., job size, service invocation time
and service quality level) are considered in our cost
optimization method named CS-COM, which are not
enough for real cloud service scheduling applications.
Therefore, in the future, we will further improve our
proposal by introducing more charging factors.

(2) Users’ subjective preferences that play an important
role in users’ final service invocation decisions are
not considered in our proposed CS-COM approach.
In the future, we will refine our work by taking user
preferences into consideration.

6. Conclusions

Cloud computing has provided an “easy-to-access” and “pay-
per-use” resource delivery manner, to help users build their
various complex business applications quickly and conve-
niently. However, due to the flexible pricing model of cloud
services, a cloud service’s invocation cost is often not fixed
but varied, which brings a great challenge to optimize the
service invocation cost when a cloud user requests a cloud
service. In view of this challenge, we first analyze themultiple
factors that may influence the invocation cost of a cloud
service, for example, user job size, service invocation time,
and service quality level. Afterwards, through considering
the above multiple factors, a novel service invocation cost
optimization method named CS-COM is put forward in
this paper, to aid a cloud user to find the optimal service
invocation start time as well as the lowest service invocation
cost. Finally, through a set of simulated experiments deployed
on CloudSim platform, we further demonstrate the feasibility
and advantages of our proposed CS-COM method in terms
of cost optimization.

In the future, we will further refine our proposed CS-
COM method by introducing more charging factors, so as
to make it more comprehensive and more applicable in real
cloud service scheduling applications.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper is partially supported by Natural Science Founda-
tion of China (no. 61402258, no. 61602253, no. 61373027, and
no. 61672321) and Open Project of State Key Laboratory for
Novel Software Technology (no. KFKT2016B22).



8 Scientific Programming

References

[1] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto
clouds: leveragingmobile devices to provide cloud service at the
edge,” in Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD ’15), pp. 9–16, July 2015.

[2] Z. Xia, X. Wang, X. Sun, Q. Liu, and Q. Wang, “A secure and
dynamic multi-keyword ranked search scheme over encrypted
cloud data,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 2, pp. 340–352, 2015.

[3] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving effi-
cient cloud search services: multi-keyword ranked search over
encrypted cloud data supporting parallel computing,” IEICE
Transactions on Communications, vol. E98B, no. 1, pp. 190–200,
2015.

[4] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based
method for task allocation in open and dynamic cloud environ-
ments,” Knowledge-Based Systems, vol. 115, pp. 123–132, 2016.

[5] Z. Xia, X. Wang, L. Zhang, Z. Qin, X. Sun, and K. Ren, “A
privacy-preserving and copy-deterrence content-based image
retrieval scheme in cloud computing,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 11, pp. 2594–2608,
2016.

[6] L. Qi, W. Dou, and J. Chen, “Weighted principal component
analysis-based service selection method for multimedia ser-
vices in cloud,” Computing, vol. 98, no. 1-2, pp. 195–214, 2016.

[7] D. M. Divakaran and M. Gurusamy, “Towards flexible guaran-
tees in clouds: adaptive bandwidth allocation and pricing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 6,
pp. 1754–1764, 2015.

[8] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling person-
alized search over encrypted outsourced data with efficiency
improvement,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, pp. 2546–2559, 2016.

[9] Z. Pan, Y. Zhang, and S. Kwong, “Efficient motion and disparity
estimation optimization for low complexity multiview video
coding,” IEEE Transactions on Broadcasting, vol. 61, no. 2, pp.
166–176, 2015.

[10] Z. Pan, J. Lei, Y. Zhang, X. Sun, and S. Kwong, “Fast motion
estimation based on content property for low-complexity
H.265/HEVC encoder,” IEEE Transactions on Broadcasting, vol.
62, no. 3, pp. 675–684, 2016.

[11] A. K. Talukder and L. Zimmerman, “Cloud economics: prin-
ciples, costs, and benefits,” in Cloud Computing, pp. 343–360,
Springer, London, UK, 2010.

[12] E. Deelman, G. Singh,M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: the montage example,” in
Proceedings of the ACM/IEEE Conference on Supercomputing,
pp. 1–12, IEEE Press, November 2008.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. de Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol.
41, no. 1, pp. 23–50, 2011.

[14] C. Chawla and I. Chana, “Optimal time dependent pricing
model for smart cloud with cost based scheduling,” in Proceed-
ings of the 3rd International SymposiumonWomen inComputing
and Informatics (WCI ’15), pp. 522–526, August 2015.

[15] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and P. Sarkar,
“CAM: a topology aware minimum cost flow based resource

manager for MapReduce applications in the cloud,” in Proceed-
ings of the 21st ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’12), pp. 211–222, June 2012.

[16] Q. Liu,W. Cai, J. Shen, Z. Fu, X. Liu, andN. Linge, “A speculative
approach to spatial-temporal efficiency with multi-objective
optimization in a heterogeneous cloud environment,” Security
and Communication Networks, vol. 9, no. 17, pp. 4002–4012,
2016.

[17] W.-H. Choi and K.-S. Kang, “A Study on deciding optimal
price of bioinformatics services,” Journal of the Korea Safety
Management and Science, vol. 18, no. 1, pp. 203–208, 2016.

[18] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data
with accuracy improvement,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 12, pp. 2706–2716, 2016.

[19] Z. Pan, P. Jin, J. Lei, Y. Zhang, X. Sun, and S. Kwong, “Fast
reference frame selection based on content similarity for low
complexity HEVC encoder,” Journal of Visual Communication
and Image Representation, vol. 40, part B, pp. 516–524, 2016.

[20] Y. Xue, J. Jiang, B. Zhao, and T. Ma, “A self-adaptive articial bee
colony algorithm based on global best for global optimization,”
Soft Computing, 2017.

[21] Y. Zhang, X. Sun, and W. Baowei, “Efficient algorithm for k-
barrier coverage based on integer linear programming,” China
Communications, vol. 13, no. 7, pp. 16–23, 2016.

[22] X. Chen, S. Chen, and Y. Wu, “Coverless information hiding
method based on the Chinese character encoding,” Journal of
Internet Technology, vol. 18, no. 2, pp. 91–98, 2017.

[23] C. Yuan, Z. Xia, and X. Sun, “Coverless image steganography
based on SIFT and BOF,” Journal of Internet Technology, vol. 18,
no. 2, pp. 209–216, 2017.

[24] Z. Xia, X. Wang, X. Sun, and B. Wang, “Steganalysis of least
significant bit matching using multi-order differences,” Security
and Communication Networks, vol. 7, no. 8, pp. 1283–1291, 2014.

[25] J. Li, X. Li, B. Yang, and X. Sun, “Segmentation-based image
copy-move forgery detection scheme,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 3, pp. 507–518,
2015.

[26] Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong, “Steganalysis
of LSBmatching using differences between nonadjacent pixels,”
Multimedia Tools and Applications, vol. 75, no. 4, pp. 1947–1962,
2016.

[27] J. Wang, T. Li, Y.-Q. Shi, S. Lian, and J. Ye, “Forensics feature
analysis in quaternion wavelet domain for distinguishing pho-
tographic images and computer graphics,”MultimediaTools and
Applications, 2016.

[28] Z. Zhou, C.-N. Yang, B. Chen, X. Sun, Q. Liu, and Q. M.
Jonathan Wu, “Effective and efficient image copy detection
with resistance to arbitrary rotation,” IEICE Transactions on
Information and Systems, vol. E99-D, no. 6, pp. 1531–1540, 2016.

[29] C. Yuan, X. Sun, andR. Lv, “Fingerprint liveness detection based
on multi-scale LPQ and PCA,” China Communications, vol. 13,
no. 7, pp. 60–65, 2016.

[30] Y. Chen, C. Hao, W.Wu, and E. Wu, “Robust dense reconstruc-
tion by range merging based on confidence estimation,” Science
China Information Sciences, vol. 59, no. 9, Article ID 092103, pp.
1–11, 2016.

[31] Z. Zhou, Y. Wang, Q. M. J. Wu, C.-N. Yang, and X. Sun,
“Effective and effcient global context verifcation for image copy
detection,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 1, pp. 48–63, 2017.



Scientific Programming 9

[32] Z. Fu, F. Huang, X. Sun, A. V. Vasilakos, and C.-N. Yang,
“Enabling semantic search based on conceptual graphs over
encrypted outsourced data,” IEEE Transactions on Services
Computing, 2016.

[33] B. Gu and V. S. Sheng, “A robust regularization path algorithm
for ]-support vector classification,” IEEETransactions onNeural
Networks and Learning Systems, vol. 28, no. 5, pp. 1241–1248,
2016.

[34] B. Gu, X. Sun, and V. S. Sheng, “Structural minimax probability
machine,” IEEE Transactions on Neural Networks and Learning
Systems, 2016.

[35] B. Gu, V. S. Sheng, K. Y. Tay,W. Romano, and S. Li, “Incremental
support vector learning for ordinal regression,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 7,
pp. 1403–1416, 2015.

[36] B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman, and S. Li,
“Incremental learning for ]-support vector regression,” Neural
Networks, vol. 67, pp. 140–150, 2015.

[37] Q. Tian and S. Chen, “Cross-heterogeneous-database age esti-
mation through correlation representation learning,” Neuro-
computing, vol. 238, pp. 286–295, 2017.

[38] Z. Qu, J. Keeney, S. Robitzsch, F. Zaman, and X. Wang, “Multi-
level pattern mining architecture for automatic network mon-
itoring in heterogeneous wireless communication networks,”
China Communications, vol. 13, no. 7, pp. 108–116, 2016.

[39] N. Zhang, J. Wang, and Y. Ma, “Mining Domain Knowledge
on Service Goals From Textual Service Descriptions,” IEEE
Transactions on Services Computing, 2017.

[40] J. Wang, Z. Zhu, J. Liu, C. Wang, and Y. Xu, “An Approach of
Role Updating in Context-Aware Role Mining,” International
Journal of Web Services Research, vol. 14, no. 2, pp. 24–44, 2017.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


