
Research Article
Parallel Pseudo Arc-Length Moving Mesh Schemes for
Multidimensional Detonation

Jianguo Ning, Xinpeng Yuan, TianbaoMa, and Jian Li

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Tianbao Ma; madabal@bit.edu.cn

Received 17 January 2017; Accepted 16 May 2017; Published 12 July 2017

Academic Editor: Piotr Luszczek

Copyright © 2017 Jianguo Ning et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We have discussed themultidimensional parallel computation for pseudo arc-lengthmovingmesh schemes, and the schemes can be
used to capture the strong discontinuity for multidimensional detonations. Different from the traditional Euler numerical schemes,
the problems of parallel schemes for pseudo arc-length moving mesh schemes include diagonal processor communications and
mesh point communications, which are illustrated by the schematic diagram and key pseudocodes. Finally, the numerical examples
are given to show that the pseudo arc-length moving mesh schemes are second-order convergent and can successfully capture the
strong numerical strong discontinuity of the detonation wave. In addition, our parallel methods are proved effectively and the
computational time is obviously decreased.

1. Introduction

Detonation is a type of combustion involving a supersonic
exothermic front accelerating through a medium that even-
tually drives a shock front propagating directly in front of
it. Detonations occur in both conventional solid and liquid
explosives, [1] as well as in reactive gases [2]. Due to the
strong discontinuity, one of the most important challenges
in detonation simulations is to capture the precursor shock
wave. To capture the strong discontinuity in detonation
waves, mesh adaptation is an indispensable tool for use in
the efficient numerical solution of this type of problem. The
movingmeshmethod is one of themesh adaptationmethods,
which relocate mesh point positions while maintaining the
total number of mesh points and the mesh connectivity [3–
5]. Particularly, Tang et al. proposed a moving mesh method
that contained two parts: physical PDE time evolution and
mesh redistribution [6–8]. The physical PDE time evolution
and mesh redistribution were alternating, and conservative
interpolation was used to transfer solutions from old mesh
to newmesh.Themethod is shown to work well generally for
hyperbolic conservation. After that, Ning et al. have improved
this method and proposed the pseudo arc-length moving
mesh schemes, which can deal with the multidimensional
chemical reaction detonation problem [9].

In this paper, we will discuss the parallel computation
of pseudo arc-length moving mesh schemes for multidimen-
sional detonation. There are some works about the parallel
schemes for Euler numerical scheme. Knepley and Karpeev
developed a new programming framework, called Sieve, to
support parallel numerical partial differential equation (PDE)
algorithms operating over distributed meshes [10]. Morris
et al. demonstrated how to build a parallel application that
encapsulates the Message Passing Interface (MPI) without
requiring the user to make direct calls to MPI except for
startup and shutdown [11]. Mubarak et al. present us with
a parallel algorithm of creating and deleting data copies,
referred to as ghost copies, which localize neighborhood data
for computation purposes while minimizing interprocess
communication [12]. Wang et al. use the parallel scheme to
reduce the cost for adaptive mesh refinementWENO scheme
of multidimensional detonation [13]. However, there are no
discussions about the parallel computation for moving mesh
schemes, which will be of concern in this paper. Different
from the traditional Euler numerical scheme, the data com-
munications of moving mesh schemes between processors
are more complex, which include physical values and mesh
points. Besides, the processor communications for pseudo
arc-length moving mesh schemes include adjacent proces-
sor and diagonal processor. Here, we adopt the software

Hindawi
Scientific Programming
Volume 2017, Article ID 5896940, 17 pages
https://doi.org/10.1155/2017/5896940

https://doi.org/10.1155/2017/5896940

2 Scientific Programming

architecture of MPI. The most important advantages of this
model are twofold: achievable performance and portability.
Performance is a direct result of available optimized MPI
libraries and full user control in the program development
cycle. Portability arises from the standard API and the
existence of MPI libraries on a wide range of machines.
In general, an MPI program runs on distributed memory
machines. The processor communications for the parallel
computation of pseudo arc-length moving mesh schemes
are more complex than the traditional Euler scheme, and it
includes adjacent processor and diagonal processor. Here, we
will consider three kinds of processor partitions to show our
parallel schemes. This article is organized as follows. Sec-
tion 2 introduces the chemical and physical model. Section 3

presents the numerical scheme. Section 4 is devoted to the
parallel computation. Section 5 conducts several numerical
experiments to demonstrate our schemes. The paper ends
with a conclusion and discussion in Section 6.

2. Governing Equations

Instead of using many real elementary reactions, a two-step
model was utilized as the testing model. Two-step reaction
model considers a complicated chemical reaction to be an
induction and an exothermic reaction. For both induction
reaction and exothermic reaction, the progress parameters𝛼 and 𝛽 are unity at first, then 𝛼 decreases to zero, and 𝛽
decreases until an equilibrium state is reached. The rates 𝜔𝛼
and 𝜔𝛽 are given as follows [14].

𝜔𝛼 = 𝑑𝛼𝑑𝑡 = −𝑘𝛼𝜌 exp(− 𝐸𝛼𝑅𝑇) ,
𝜔𝛽 = 𝑑𝛽𝑑𝑡 = {{{{{

0 (𝛼 > 0) ,−𝑘𝛽𝑝2 [𝛽2 exp(− 𝐸𝛽𝑅𝑇) − (1 − 𝛽)2 exp(−𝐸𝛽 + 𝑄𝑅𝑇)] (𝛼 ≤ 0) ,
(1)

where 𝜌 is themass density,𝑝 the pressure,𝑇 the temperature,𝑅 the gas constant, 𝑄 the heat release parameter, 𝑘𝛼 and 𝑘𝛽
the constants of reaction rates, and 𝐸𝛼 and 𝐸𝛽 the activation
energies.

In deriving fundamental equations, the gas is assumed to
be perfect, nonviscous, and non-heat-conducting. In Carte-
sian coordinates, governing equations for gaseous detonation
problem, including the above chemical reaction, are𝜕𝜕𝑡w + ∇xF (w) = s (w) , t ≥ 0, (2)

where x is the multidimensional vector,F(w) is the multidi-
mensional matrix function, and s(w) is the chemical reaction
source term. For the one-dimensional space,

w = (𝜌, 𝜌𝑢, 𝐸, 𝜌𝛼, 𝜌𝛽)𝑇 ,
F = (𝜌𝑢, 𝜌𝑢2 + 𝑝, (𝐸 + 𝑝) 𝑢, 𝜌𝑢𝛼, 𝜌𝑢𝛽)𝑇 ,
s = (0, 0, 0, 𝜔1, 𝜔2)𝑇 .

(3)

For the two-dimensional space,

w = (((((
(

𝜌𝜌𝑢𝜌V𝐸𝜌𝛼𝜌𝛽
)))))
)

,

F = (((((((
(

𝜌𝑢 𝜌V𝜌𝑢2 + 𝑝 𝜌𝑢V𝜌𝑢V 𝜌V2 + 𝑝(𝐸 + 𝑝) 𝑢 (𝐸 + 𝑝) V𝜌𝑢𝛼 𝜌V𝛼𝜌𝑢𝛽 𝜌V𝛽

)))))))
)

,

s = (((((((
(

0000𝜔1𝜔2

)))))))
)

.
(4)

In the case of three-dimensional space,

w =
((((((((((
(

𝜌𝜌𝑢𝜌V𝜌𝑤𝐸𝜌𝛼𝜌𝛽

))))))))))
)

,

Scientific Programming 3

F = ((((((((
(

𝜌𝑢 𝜌V 𝜌𝑤𝜌𝑢2 + 𝑝 𝜌𝑢V 𝜌𝑢𝑤𝜌V𝑢 𝜌V2 + 𝑝 𝜌V𝑤𝜌𝑤𝑢 𝜌𝑤V 𝜌𝑤2 + 𝑝(𝐸 + 𝑝) 𝑢 (𝐸 + 𝑝) V (𝐸 + 𝑝)𝑤𝜌𝑢𝛼 𝜌V𝛼 𝜌𝑤𝛼𝜌𝑢𝛽 𝜌V𝛽 𝜌𝑤𝛽

))))))))
)

,

s = ((((((((
(

00000𝜔1𝜔2

))))))))
)

,

(5)

where 𝑢, V, and 𝑤 are the Cartesian components of the fluid
velocity in the𝑥,𝑦, and 𝑧directions, respectively. Total energy
density 𝐸 is defined as𝐸 = 𝑝𝛾 − 1 + 12𝜌 (𝑢2 + V2 + 𝑤2) + 𝜌𝑄𝛽. (6)

Here 𝛾 is the specific heat ratio.
3. Numerical Method

Firstly, we present the framework of pseudo arc-length mov-
ing mesh schemes for the gaseous detonation problem (2).
Our adaptive scheme is formed by two independents parts:
the evolution of the governing equation and the iterative
mesh redistribution.

3.1. Time Evolution of Governing Equations. The physical
domain for computation isΩ𝑝. Given a partition of the mesh
domain {𝐾j | 𝐾j ∈ Ω𝑝, 𝐾j = [xj, xj+1], ⋃j 𝐾j = Ω𝑝} and a
partition of the time interval [0, 𝑇]. The average on the cell𝐾j is

wj = 1󵄨󵄨󵄨󵄨󵄨𝐾j
󵄨󵄨󵄨󵄨󵄨 ∫𝐾j

wj𝑑𝜎. (7)

Here, the sign |𝐾j| denotes the length for the region 𝐾j(𝐾𝑗)
in one dimension, the area for the region 𝐾j(𝐾𝑖,𝑗) in two
dimensions, and the volumes for the region𝐾j(𝐾𝑖,𝑗,𝑘) in three
dimensions. Integrating (2) over 𝐾j, we have∫

𝐾j

𝜕w𝜕𝑡 𝑑𝜎 + ∫
𝐾j

∇xF (w) 𝑑𝜎 = ∫
𝐾j

s (w) 𝑑𝜎. (8)

Applying the Green-Gauss’s theorem and rewriting, we have󵄨󵄨󵄨󵄨󵄨𝐾j
󵄨󵄨󵄨󵄨󵄨 𝑑wj𝑑𝑡 + ∮

𝜕𝐾j

F (w) ⋅ nj𝑑𝜎 = 󵄨󵄨󵄨󵄨󵄨𝐾j
󵄨󵄨󵄨󵄨󵄨 s (wj) , (9)

where nj is the outward unit normal vector of boundary
external surface 𝜕𝐾j. The Lax-Friedrichs flux is defined by

H (u, k,n) = 12 [F (u) ⋅ n +F (k) ⋅ n − 𝑎 (k − u)] , (10)

where 𝑎 = maxu,k|F󸀠(u) ⋅ n|. It satisfies the conservation and
consistency

H (u, k,n) = −H (u, k, −n) ,
H (u, u,n) = F (u) ⋅ n. (11)

Let {𝑒𝑙j | 𝑒𝑙j ∈ 𝜕𝐾j, ⋃𝑁𝑙𝑙=1 𝑒𝑙j = 𝜕𝐾j} be a partition of boundary
external surface 𝜕𝐾j andnj be the outward unit normal vector
of surface 𝑒𝑙j. Then we have a semidiscrete scheme of (2)

󵄨󵄨󵄨󵄨󵄨𝐾j
󵄨󵄨󵄨󵄨󵄨 𝑑wj𝑑𝑡 = −𝑁𝑙∑

𝑙=1

∫
𝑒𝑙
j

H (wint(𝑙)
j ,wext(𝑙)

j ,n𝑙j) 𝑑𝜎
+ 󵄨󵄨󵄨󵄨󵄨𝐾j

󵄨󵄨󵄨󵄨󵄨 s (wj) , (12)

where wint(𝑙)
j

or wext(𝑙)
j

, 𝑙 = 1, 2, . . . , 𝑁𝑙, is the internal or

external approximate value at 𝑒𝑙j.
For the one-dimensional space,𝑁𝑙 = 2, and 𝑒1

𝑗
(𝑒2
𝑗
) is the

left (right) point of line cell 𝐾𝑗. Thus, (12) becomes𝑑w𝑗𝑑𝑡= 1󵄨󵄨󵄨󵄨󵄨𝐾𝑗󵄨󵄨󵄨󵄨󵄨 [−H (wint(1)
𝑗

,wext(1)
𝑗

) +H (wint(2)
𝑗

,wext(2)
𝑗

)]
+ s (w𝑗) .

(13)

By the initial reconstruction technique [15] to reset wint(𝑙)
𝑗

,

wext(𝑙)
𝑗

, 𝑙 = 1, 2, on the edge 𝑒𝑙
𝑗
, we can obtain the second-order

accurate spatial discretization:

wint(1)
𝑗

= w𝑗 + 12𝜓 (w𝑗 − w𝑗+1,w𝑗−1 − w𝑗) ,
wext(1)
𝑗

= w𝑗−1 + 12𝜓 (w𝑗 − w𝑗−1,w𝑗−1 − w𝑗−2) ,
wint(2)
𝑗

= wext(1)
𝑗+1

,
wext(2)
𝑗

= wint(1)
𝑗+1

,
(14)

where 𝜓 is a nonlinear limiter function which is used to sup-
press the possible pseudo oscillation. In our computations, we
use van Leer’s limiter [15]

𝜓 (𝑎, 𝑏) = (sign (𝑎) + sign (𝑏)) |𝑎𝑏||𝑎| + |𝑏| + 𝜀 . (15)

4 Scientific Programming

X

Y

e3
i,j

e2
i,j

e1
i,j

e4
i,j

Ki,j

Figure 1: Schematic diagram of the quadrilateral element 𝐾𝑖,𝑗.
For the two-dimensional space, 𝑁𝑙 = 4, and the diagram for
edges 𝑒𝑙

𝑖,𝑗
, 𝑙 = 1, 2, 3, 4, of the quadrilateral element 𝐾𝑖,𝑗 is

shown in Figure 1.
The values wint(𝑙)

𝑖,𝑗
, wext(𝑙)
𝑖,𝑗

at edge 𝑒𝑙
𝑖,𝑗
, 𝑙 = 1, 2, 3, 4, can be

defined by

wint(1)
𝑖,𝑗

= w𝑖,𝑗 + 12𝜓 (w𝑖,𝑗 − w𝑖,𝑗+1,w𝑖,𝑗−1 − w𝑖,𝑗) ,
wext(1)
𝑖,𝑗

= w𝑖,𝑗−1 + 12𝜓 (w𝑖,𝑗 − w𝑖,𝑗−1,w𝑖,𝑗−1 − w𝑖,𝑗−2) ,
wext(3)
𝑖,𝑗

= wint(1)
𝑖,𝑗+1

,
wint(3)
𝑖,𝑗

= wext(1)
𝑖,𝑗+1

wint(2)
𝑖,𝑗

= w𝑖,𝑗 + 12𝜓 (w𝑖,𝑗 − w𝑖−1,𝑗,w𝑖+1,𝑗 − w𝑖,𝑗) ,
wext(2)
𝑖,𝑗

= w𝑖+1,𝑗 + 12𝜓 (w𝑖+1,𝑗 − w𝑖+2,𝑗,w𝑖,𝑗 − w𝑖+1,𝑗) ,
wext(4)
𝑖,𝑗

= wint(2)
𝑖−1,𝑗

,
wint(4)
𝑖,𝑗

= wext(2)
𝑖−1,𝑗

.

(16)

For the three-dimensional hexahedron element, the situation
is complex. Due to the movement of the mesh points, the
hexahedron element will change to polyhedron element. For
calculating the element volume and the boundary external
surface area, each surface of hexahedron element is divided
into two surfaces and calculated. The control element 𝐾𝑖,𝑗,𝑘
is illustrated in Figure 2. The boundary surfaces 𝑒𝑙

𝑖,𝑗,𝑘
, 𝑙 =1, 2, . . . , 12, are defined in Table 1.

The second-order values wint(𝑙)
𝑖,𝑗,𝑘

, wext(𝑙)
𝑖,𝑗,𝑘

at edge 𝑒𝑙
𝑖,𝑗,𝑘

, 𝑙 =1, 2, . . . , 12, can be obtained by

wint(1)
𝑖,𝑗,𝑘

= wint(2)
𝑖,𝑗,𝑘= w𝑖,𝑗,𝑘+ 12𝜓 (w𝑖,𝑗,𝑘 − w𝑖−1,𝑗,𝑘,w𝑖+1,𝑗,𝑘 − w𝑖,𝑗,𝑘) ,

X Y

Zxi,j,k

xi+1,j,k
xi,j+1,k

xi,j,k+1

xi+1,j,k+1

xi+1,j+1,k

xi,j+1,k+1

xi+1,j+1,k+1

Figure 2: Schematic diagram of the quadrilateral element 𝐾𝑖,𝑗,𝑘.
Table 1: Definition of boundary surfaces 𝑒𝑙

𝑖,𝑗,𝑘
, 𝑙 = 1, 2, . . . , 12.

Surfaces Vertexes𝑒1
𝑖,𝑗,𝑘

⟨x𝑖+1,𝑗,𝑘+1, x𝑖+1,𝑗,𝑘, x𝑖+1,𝑗+1,𝑘+1⟩𝑒2
𝑖,𝑗,𝑘

⟨x𝑖+1,𝑗,𝑘, x𝑖+1,𝑗+1,𝑘, x𝑖+1,𝑗+1,𝑘+1⟩𝑒3
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘, x𝑖,𝑗,𝑘+1, x𝑖,𝑗+1,𝑘+1⟩𝑒4
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘, x𝑖,𝑗+1,𝑘+1, x𝑖,𝑗+1,𝑘⟩𝑒5
𝑖,𝑗,𝑘

⟨x𝑖,𝑗+1,𝑘, x𝑖,𝑗+1,𝑘+1, x𝑖+1,𝑗+1,𝑘+1⟩𝑒6
𝑖,𝑗,𝑘

⟨x𝑖,𝑗+1,𝑘, x𝑖+1,𝑗+1,𝑘+1, x𝑖+1,𝑗+1,𝑘⟩𝑒7
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘+1, x𝑖,𝑗,𝑘, x𝑖+1,𝑗,𝑘+1⟩𝑒8
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘, x𝑖+1,𝑗,𝑘, x𝑖+1,𝑗,𝑘+1⟩𝑒9
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘+1, x𝑖+1,𝑗,𝑘+1, x𝑖+1,𝑗+1,𝑘+1⟩𝑒10
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘+1, x𝑖+1,𝑗+1,𝑘+1, x𝑖,𝑗+1,𝑘+1⟩𝑒11
𝑖,𝑗,𝑘

⟨x𝑖+1,𝑗,𝑘, x𝑖,𝑗,𝑘, x𝑖+1,𝑗+1,𝑘⟩𝑒12
𝑖,𝑗,𝑘

⟨x𝑖,𝑗,𝑘, x𝑖,𝑗+1,𝑘, x𝑖+1,𝑗+1,𝑘⟩
wext(1)
𝑖,𝑗,𝑘

= wext(2)
𝑖,𝑗,𝑘= w𝑖+1,𝑗,𝑘+ 12𝜓 (w𝑖+1,𝑗,𝑘 − w𝑖+2,𝑗,𝑘,w𝑖,𝑗,𝑘 − w𝑖+1,𝑗,𝑘) ,

wint(5)
𝑖,𝑗,𝑘

= wint(6)
𝑖,𝑗,𝑘= w𝑖,𝑗,𝑘+ 12𝜓 (w𝑖,𝑗,𝑘 − w𝑖,𝑗−1,𝑘,w𝑖,𝑗+1,𝑘 − w𝑖,𝑗,𝑘) ,

wext(5)
𝑖,𝑗,𝑘

= wext(6)
𝑖,𝑗,𝑘= w𝑖,𝑗+1,𝑘+ 12𝜓 (w𝑖,𝑗+1,𝑘 − w𝑖,𝑗+2,𝑘,w𝑖,𝑗,𝑘 − w𝑖,𝑗+1,𝑘) ,

wint(9)
𝑖,𝑗,𝑘

= wint(10)
𝑖,𝑗,𝑘= w𝑖,𝑗,𝑘+ 12𝜓 (w𝑖,𝑗,𝑘 − w𝑖,𝑗,𝑘−1,w𝑖,𝑗,𝑘+1 − w𝑖,𝑗,𝑘) ,

Scientific Programming 5

wext(9)
𝑖,𝑗,𝑘

= wext(10)
𝑖,𝑗,𝑘= w𝑖,𝑗,𝑘+1+ 12𝜓 (w𝑖,𝑗,𝑘+1 − w𝑖,𝑗,𝑘+2,w𝑖,𝑗,𝑘 − w𝑖,𝑗,𝑘+1) ,

wint(3)
𝑖,𝑗,𝑘

= wext(1)
𝑖−1,𝑗,𝑘

,
wint(4)
𝑖,𝑗,𝑘

= wext(2)
𝑖−1,𝑗,𝑘

,
wext(3)
𝑖,𝑗,𝑘

= wint(1)
𝑖−1,𝑗,𝑘

,
wext(4)
𝑖,𝑗,𝑘

= wint(2)
𝑖−1,𝑗,𝑘

,
wint(7)
𝑖,𝑗,𝑘

= wext(5)
𝑖,𝑗−1,𝑘

,
wint(8)
𝑖,𝑗,𝑘

= wext(6)
𝑖,𝑗−1,𝑘

,
wext(7)
𝑖,𝑗,𝑘

= wint(5)
𝑖,𝑗−1,𝑘

,
wext(8)
𝑖,𝑗,𝑘

= wint(6)
𝑖,𝑗−1,𝑘

,
wint(9)
𝑖,𝑗,𝑘

= wext(11)
𝑖,𝑗,𝑘−1

,
wint(9)
𝑖,𝑗,𝑘

= wext(11)
𝑖,𝑗,𝑘−1

,
wext(10)
𝑖,𝑗,𝑘

= wint(12)
𝑖,𝑗,𝑘−1

,
wext(10)
𝑖,𝑗,𝑘

= wint(12)
𝑖,𝑗,𝑘−1

.
(17)

Time discretization can be achieved by the strong stability
preserving high order Runge-Kutta time discretization [16,
17]. The semidiscrete scheme (12) can be written as

w̃𝑡 = 𝐿 (w̃) . (18)

Here, the second-order TVDRunge-Kutta method for (18) in
the time discretization is

w̃(1) = w̃𝑛 + Δ𝑡𝐿 (w̃𝑛) ,
w̃𝑛+1 = 12 w̃𝑛 + 12 w̃(1) + 12Δ𝑡𝐿 (w̃(1)) . (19)

3.2. Pseudo Arc-Length Moving Mesh Scheme. Let x ={𝑥1, 𝑥2, . . . , 𝑥𝑁𝑑} and 𝜉 = {𝜉1, 𝜉2, . . . , 𝜉𝑁𝑑} denote the phys-
ical and computational coordinates, respectively. Here, 𝑁𝑑
denotes the number of spatial dimensions. A one-to-one
coordinate transformation from the computational domainΩ𝑐 to the physical domainΩ𝑝 is denoted by

x : 𝜉 󳨀→ x,Ω𝑐 󳨀→ Ω𝑝. (20)

In the variational approach, the mesh map between the
domainsΩ𝑐 andΩ𝑝 is usually provided by

Ψ (𝜉) = 12 𝑁𝑑∑𝑟=1∫Ω𝑝 (∇x𝜉𝑟)𝑇𝐺−1𝑟 (∇x𝜉𝑟) 𝑑x, (21)

where ∇x fl (𝜕𝑥1 , 𝜕𝑥2 , . . . , 𝜕𝑥𝑁𝑑)𝑇 and 𝐺𝑟, 𝑟 = 1, 2, . . . , 𝑁𝑑,
are given symmetric positive definite matrices calledmonitor
functions, depending on the underlying solution to be adap-
tive.The Euler-Lagrange equations of the functional (21) have
the form ∇x ⋅ (𝐺−1𝑟 ∇x𝜉𝑟) = 0, 1 ≤ 𝑟 ≤ 𝑁𝑑. (22)

In practice, Ω𝑝 may have a very complex geometry, and as a
result it is not realistic to solve (22) directly. An alternative is
to consider a functional

Ψ̃ (x) = 12 𝑁𝑑∑𝑟=1∫Ω𝑐 (∇𝜉𝑥𝑟)𝑇𝐺𝑟 (∇𝜉𝑥𝑟) 𝑑𝜉, (23)

where ∇𝜉 fl (𝜕𝜉1 , 𝜕𝜉2 , . . . , 𝜕𝜉𝑁𝑑)𝑇. In addition, one of the
choices ofmonitor functions is𝐺 = 𝜔𝐼, where 𝐼 is the identity
matrix and𝜔 is a positive weight function. For the purpose to
havemore accuracy near the nonsmooth part of solutions, we
introduce the monitor function of pseudo arc-length norm
[18, 19] 𝜔 = √1 + 𝛼1 |𝑊| + 𝛼2 |∇𝑊|2, (24)

where 𝛼1 and 𝛼2 are some nonnegative constants. Thus, the
corresponding Euler-Lagrange equations about (23) are∇𝜉 ⋅ (𝜔∇𝜉𝑥𝑟) = 0, 1 ≤ 𝑟 ≤ 𝑁𝑑. (25)

In our computations, we will use the Gauss-Seidel type
iteration method to solve the mesh equation (25)

𝑁𝑑∑
𝑟=1

[𝜗𝑟𝑗1 ,𝑗2,...,𝑗𝑟+1/2,...,𝑗𝑁𝑑 (x[𝜅]𝑗1 ,𝑗2,...,𝑗𝑟+1,...,𝑗𝑁𝑑
− x[𝜅+1]
𝑗1,𝑗2 ,...,𝑗𝑟 ,...,𝑗𝑁𝑑

)
− 𝜗𝑟𝑗1 ,𝑗2 ,...,𝑗𝑟−1/2,...,𝑗𝑁𝑑 (x[𝜅+1]𝑗1 ,𝑗2,...,𝑗𝑟 ,...,𝑗𝑁𝑑− x[𝜅]
𝑗1,𝑗2 ,...,𝑗𝑟−1,...,𝑗𝑁𝑑

)] = 0,
(26)

for 1 ≤ 𝑗𝑟 ≤ 𝑁𝜉𝑟 , 1 ≤ 𝑟 ≤ 𝑁𝑑, and 𝜅 = 0, 1, . . ., where𝜗𝑟𝑗1 ,𝑗2 ,...,𝑗𝑟−1/2,...,𝑗𝑁𝑑 = 𝜔𝑗1 ,𝑗2 ,...,𝑗𝑟−1/2,...,𝑗𝑁𝑑= 12 (𝑁𝑑 − 1) ∑
𝑠𝑟=𝑗
𝑟−1/2,𝑠𝑘=𝑗

𝑘−1/2,𝑗𝑘+1/2

𝜔𝑠1 ,𝑠2 ,...,𝑠𝑟 ,...,𝑠𝑁𝑑 ,
𝜗𝑟𝑗1 ,𝑗2 ,...,𝑗𝑟+1/2,...,𝑗𝑁𝑑 = 𝜔𝑗1 ,𝑗2 ,...,𝑗𝑟+1/2,...,𝑗𝑁𝑑= 12 (𝑁𝑑 − 1) ∑

𝑠𝑟=𝑗
𝑟+1/2,𝑠𝑘=𝑗

𝑘−1/2,𝑗𝑘+1/2

𝜔𝑠1 ,𝑠2 ,...,𝑠𝑟 ,...,𝑠𝑁𝑑 ,
(27)

6 Scientific Programming

where𝜔
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑 fl 𝜔(w[𝜅]

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
). In addition, let us consider

the solutions updating on new grids x[𝜅+1] from the old grids
x[𝜅]. Here, the solution updating should preserve conservative
property for w

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑 in the sense of that

∑
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾[𝜅]𝑗1 ,𝑗2,...,𝑗𝑁𝑑 󵄨󵄨󵄨󵄨󵄨󵄨󵄨w[𝜅]𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑
= ∑
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾[𝜅+1]𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨w[𝜅+1]𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
. (28)

Let 𝐷𝑙 denote the region scanned by the boundary 𝑒𝑙
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

after one iterative step of (28). So we can have the following
conservative interpolation scheme:󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾[𝜅+1]𝑗

1
,𝑗
2
,...,𝑗
𝑁𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨w[𝜅+1]𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾[𝜅]𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑 󵄨󵄨󵄨󵄨󵄨󵄨󵄨w[𝜅]𝑗1,𝑗2 ,...,𝑗𝑁𝑑
+ 𝑁𝑙∑
𝑙=1

󵱰𝐹𝑙 (wint(𝑙)
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
,wext(𝑙)
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
) ,

(29)

where wint(𝑙)
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

and wext(𝑙)
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

are the reconstructed left

and right states on the boundary 𝑒𝑙
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

by w[𝜅]
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

(for more details see Section 3.2). 󵱰𝐹𝑙(⋅, ⋅), 𝑙 = 1, 2, . . . , 𝑁𝑙,
denotes the integration of w over the domain 𝐷𝑙. Here we
have omitted the subscripts 𝑗𝑟, 𝑟 = 1, 2, . . . , 𝑁𝑑, of 󵱰𝐹𝑙(⋅, ⋅) and𝐷𝑙 for simplicity. Since only cell averages of w

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑 over𝐾

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑 are known, we should give an approximation of󵱰𝐹𝑙(⋅, ⋅) instead of its exact value. Then 󵱰𝐹𝑙(⋅, ⋅) can be approxi-

mately calculated as󵱰𝐹𝑙 (u, k) = max {𝐷𝑙, 0} ⋅ k +min {𝐷𝑙, 0} ⋅ u. (30)

Next, we will show the examples to calculate 𝐷𝑙, 𝑙 = 1, 2, . . . ,𝑁𝑑, according to different dimensions.
In one-dimensional space, 𝐷1, 𝐷2 can be obtained from

the following: 𝐷1 = 𝑥[𝜅]𝑗 − 𝑥[𝜅+1]𝑗 ,𝐷2 = 𝑥[𝜅+1]𝑗+1 − 𝑥[𝜅]𝑗+1. (31)

In two-dimensional space, the changed area𝐷𝑙, 𝑙 = 1, 2, . . . , 4,
are illustrated in Figure 3. As an example, we compute 𝐷1.
Noticing x𝑖,𝑗 = (𝑥𝑖,𝑗, 𝑦𝑖,𝑗), we have𝐷1 fl 12 [(𝑥[𝜅+1]𝑖+1,𝑗 − 𝑥[𝜅]𝑖,𝑗) (𝑦[𝜅]𝑖+1,𝑗 − 𝑦[𝜅+1]𝑖,𝑗)

− (𝑦[𝜅+1]𝑖+1,𝑗 − 𝑦[𝜅]𝑖,𝑗) (𝑥[𝜅]𝑖+1,𝑗 − 𝑥[𝜅+1]𝑖,𝑗)] . (32)

Obviously, 𝐷1 is the area, which is positive if x[z+1]i−1,j−1, x
[z+1]
i,j−1 ,

x[z]i,j−1, and x[z]i−1,j−1 are located in a counter-clockwise order;

D1

D2

D3

D4

x[K]
i,j x[K]

i+1,j

x[K]
i,j+1

x[K]
i+1,j+1

x[K+1]
i,j x[K+1]

i+1,j

x[K+1]
i,j+1

x[K+1]
i+1,j+1

Figure 3: Schematic diagram of the two-dimensional changed areas𝐷𝑙, 𝑙 = 1, 2, 3, 4.
otherwise it is negative if those four points are located in a
clockwise order.

In the three-dimensional space, the control element𝐾𝑖+1/2,𝑗+1/2,𝑘+1/2 is illustrated in Figure 4. Similarly, we com-
pute 𝐷1 as an example. The changed area 𝐷1 is illustrated in
Figure 5.𝐷1 is composed by three tetrahedrons, so we have𝐷1 = 𝑉x[𝜅]

𝑖+1,𝑗,𝑘+1
x[𝜅+1]
𝑖+1,𝑗,𝑘+1

x[𝜅+1]
𝑖+1,𝑗+1,𝑘+1

x[𝜅+1]
𝑖,𝑗,𝑘+1+ 𝑉x[𝜅]

𝑖+1,𝑗,𝑘+1
x[𝜅+1]
𝑖+1,𝑗+1,𝑘+1

x[𝜅]
𝑖,𝑗,𝑘+1

x[𝜅+1]
𝑖,𝑗,𝑘+1+ 𝑉x[𝜅]

𝑖+1,𝑗,𝑘+1
x[𝜅+1]
𝑖+1,𝑗+1,𝑘+1

x[𝜅]
𝑖+1,𝑗+1,𝑘+1

x[𝜅]
𝑖,𝑗,𝑘+1

. (33)

Each tetrahedron volume can be calculated by the volume
formula

𝑉𝑂𝐴𝐵𝐶 = 16
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑂𝐴 𝑦𝑂𝐴 𝑧𝑂𝐴𝑥𝑂𝐵 𝑦𝑂𝐵 𝑧𝑂𝐵𝑥𝑂𝐶 𝑦𝑂𝐶 𝑧𝑂𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (34)

Obviously,𝑉𝑂𝐴𝐵𝐶 is the volume, which is positive if 𝐴, 𝐵, and𝐶 are located in a counter-clockwise order; otherwise it is
negative if those three points are located in a clockwise order.

The solution procedure can be illustrated by the following
flowchart.

Algorithm 1.

Step 1. Give a uniform mesh {𝜉0𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑 } on the computa-
tional domainΩ𝑐. Initialize the physical mesh {x0

𝑗1,𝑗2 ,...,𝑗𝑁𝑑
} on

the physical domain Ω𝑝, and compute the grid initial values
w0
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
. Then, let x[0]

𝑗1 ,𝑗2,...,𝑗𝑁𝑑
fl x0

𝑗1 ,𝑗2,...,𝑗𝑁𝑑
and w[0]

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

fl

w0
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
.

Step 2. With scheme (26), move the grid from x[𝜅]
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

to
x[𝜅+1]
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

and the corresponding grid values from w[𝜅]
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

to w[𝜅+1]
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

based on scheme (29) for 𝜅 = 0, 1, 2, Repeat

Scientific Programming 7

X

Y

Z

x[K]
i,j,k

x[K]
i+1,j,k x[K]

i,j+1,k

x[K]
i,j,k+1

x[K]
i+1,j,k+1

x[K]
i+1,j+1,k

x[K]
i,j+1,k+1

x[K]
i+1,j+1,k+1

x[K+1]
i,j,k

x[K+1]
i+1,j,k x[K+1]

i,j+1,k

x[K+1]
i,j,k+1

x[K+1]
i+1,j,k+1

x[K+1]
i+1,j+1,k

x[K+1]
i,j+1,k+1

x[K+1]
i+1,j+1,k+1

Figure 4: Schematic diagram of the control element 𝐾𝑖+1/2,𝑗+1/2,𝑘+1/2.

x[K]
i,j,k+1

x[K]
i+1,j,k+1

x[K]
i+1,j+1,k+1

x[K+1]
i,j,k+1

x[K+1]
i+1,j,k+1

x[K+1]
i+1,j+1,k+1

Figure 5: Three-dimensional changed area𝐷1.
the updating procedure for a fixed number of iterations or
until ‖x[𝜅+1]

𝑗1,𝑗2 ,...,𝑗𝑁𝑑
− x[𝜅]
𝑗1,𝑗2 ,...,𝑗𝑁𝑑

‖ ≤ 𝜀. Then, let x̃𝑗1,𝑗2 ,...,𝑗𝑁𝑑 =
x[𝜅+1]
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

and w̃
𝑗
1
,𝑗
2
,...,𝑗
𝑁d = w[𝜅+1]

𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

at time level 𝑡𝑛.
Step 3. Evolve the underlying PDEs using finite volume
scheme (12) and time discretization scheme (19) on the new
mesh {x̃𝑗1,𝑗2 ,...,𝑗𝑁𝑑 } to obtain the numerical approximations
w𝑛+1
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

at the time level 𝑡𝑛+1.
Step 4. If 𝑡𝑛+1 ⩽ 𝑇, then let x[0]

𝑗1 ,𝑗2,...,𝑗𝑁𝑑
= x̃𝑗1,𝑗2 ,...,𝑗𝑁𝑑 and

w[0]
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑

= w𝑛+1
𝑗
1
,𝑗
2
,...,𝑗
𝑁𝑑
, and go to Step 2.

Remark 2. In practice, it is common to use some temporal
or spatial smoothing on the weight function 𝜔 to obtain

smoothermeshes in order to avoid very singularmesh and/or
large approximation errors near those regions where the
solution has a large gradient. A low pass filter should be used
to smooth the weight function 2∼3 times for each 𝜅: in one-
dimensional space:𝜔𝑗 = 14 (𝜔𝑗−1 + 2𝜔𝑗 + 𝜔𝑗+1) ; (35)

in two-dimensional space:𝜔𝑖,𝑗←󳨀 14𝜔𝑖,𝑗 + 18 (𝜔𝑖+1,𝑗 + 𝜔𝑖,𝑗+1 + 𝜔𝑖−1,𝑗 + 𝜔𝑖,𝑗−1)
+ 116 (𝜔𝑖+1,𝑗+1 + 𝜔𝑖+1,𝑗−1 + 𝜔𝑖−1,𝑗+1 + 𝜔𝑖−1,𝑗−1) ;

(36)

in three-dimensional space:𝜔𝑖,𝑗,𝑘 ←󳨀 18𝜔𝑖,𝑗,𝑘 + 116 (𝜔𝑖−1,𝑗,𝑘 + 𝜔𝑖+1,𝑗,𝑘 + 𝜔𝑖,𝑗−1,𝑘
+ 𝜔𝑖,𝑗+1,𝑘 + 𝜔𝑖,𝑗,𝑘−1 + 𝜔𝑖,𝑗,𝑘+1) + 132 (𝜔𝑖−1,𝑗−1,𝑘
+ 𝜔𝑖−1,𝑗+1,𝑘 + 𝜔𝑖+1,𝑗−1,𝑘 + 𝜔𝑖+1,𝑗+1,𝑘) + 132 (𝜔𝑖−1,𝑗,𝑘−1
+ 𝜔𝑖−1,𝑗,𝑘+1 + 𝜔𝑖+1,𝑗,𝑘−1 + 𝜔𝑖+1,𝑗,𝑘+1) + 132 (𝜔𝑖,𝑗−1,𝑘−1+ 𝜔𝑖,𝑗−1,𝑘+1 + 𝜔𝑖,𝑗+1,𝑘−1 + 𝜔𝑖,𝑗+1,𝑘+1)+ 164 (𝜔𝑖−1,𝑗−1,𝑘−1 + 𝜔𝑖+1,𝑗−1,𝑘−1 + 𝜔𝑖−1,𝑗+1,𝑘−1+ 𝜔𝑖−1,𝑗−1,𝑘+1 + 𝜔𝑖−1,𝑗+1,𝑘+1 + 𝜔𝑖+1,𝑗−1,𝑘+1+ 𝜔𝑖+1,𝑗+1,𝑘−1 + 𝜔𝑖+1,𝑗+1,𝑘+1) .

(37)

8 Scientific Programming

Remark 3. Because discontinuities may initially exist on
boundaries or move to boundaries at a later time, redistribu-
tion of boundary points should be made in order to improve
the quality of the solution near boundary. For convenience,
our attention is restricted to the case in which the physical
domainΩ𝑝 is straight boundary.Assume that a new set of grid
points {x[𝜅+1]

𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑
} is obtained in Ω𝑝 by solving the moving

mesh equation (26). Then the speeds of the internal grid
points {x[𝜅]

𝑗1,𝑗2 ,...,𝑗𝑁𝑑
} are given by

(𝑐𝑗1
𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑

, 𝑐𝑗2
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

, . . . , 𝑐𝑗𝑁𝑑
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

)
= x[𝜅+1]
𝑗1 ,𝑗2,...,𝑗𝑁𝑑

− x[𝜅]
𝑗1,𝑗2 ,...,𝑗𝑁𝑑

, (38)

where 1 ≤ 𝑗𝑟 ≤ 𝑁𝑥𝑟 , 1 ≤ 𝑟 ≤ 𝑁𝑑.We assume that the points of
boundaries are moving with the same speed as the tangential
component of the speed for the internal points adjacent to
those boundary point. For an example, when the boundary
surface is the boundary surface of x0,𝑗2 ,...,𝑗𝑁𝑑 , we have(𝑐𝑗1

0,𝑗2 ,...,𝑗𝑁𝑑
, 𝑐𝑗2
0,𝑗2 ,...,𝑗𝑁𝑑

, . . . , 𝑐𝑗𝑁𝑑
0,𝑗2 ,...,j𝑁𝑑)= (0, 𝑐𝑗2

𝑗1 ,𝑗2,...,𝑗𝑁𝑑
, . . . , 𝑐𝑗𝑁𝑑

𝑗1 ,𝑗2 ,...,𝑗𝑁𝑑
) , (39)

where 1 ≤ 𝑗𝑟 ≤ 𝑁𝑥𝑟 , 1 ≤ 𝑟 ≤ 𝑁𝑑. Thus new boundary points{x[𝜅+1]
0,𝑗2 ,...,𝑗𝑁𝑑

} are defined by

x[𝜅+1]
0,𝑗2 ,...,𝑗𝑁𝑑

= x[𝜅]
0,𝑗2,...,𝑗𝑁𝑑+ (𝑐𝑗1
0,𝑗2 ,...,𝑗𝑁𝑑

, 𝑐𝑗2
0,𝑗2 ,...,𝑗𝑁𝑑

, . . . , 𝑐𝑗𝑁𝑑
0,𝑗2 ,...,𝑗𝑁𝑑

) , (40)

where 1 ≤ 𝑗𝑟 ≤ 𝑁𝑥𝑟 , 1 ≤ 𝑟 ≤ 𝑁𝑑. The redistribution
for other boundaries can be carried out in a similar way.
Numerical experiments show that the above procedure for
moving the boundary points is useful in improving the
solution resolution.

4. Parallelization Strategy

The perfect parallel strategy can reach the conflicting goals
of portability and high performance. Here, we adopt the
software architecture of MPI, which is a de facto standard for
parallel programming on distributed memory systems [20].
The primary importance with the MPI model is its discrete
memory view in programming, which makes it hard to write
and often involves a very long development cycle [21, 22].
Carefully thought-out strategies for partitioning the data and
managing the resultant communication are essential for a
good MPI program. Secondly, due to the distributed nature
of the model, global data may be duplicated for performance
reasons, resulting in an increase in the overall memory
requirement. Besides, because of machine instabilities and
the lack of fault tolerance in the model, it is very challenging
to get very large MPI jobs running on large parallel systems
(although this is true in general for other programming
models). Considering our numerical schemes, the schematic

Processor 0
Step 1: Obtain the whole mesh and physical

values from all processors.
Step 2: Output results.

Yes

No

Start

End all processors.

Processors 1∼N − 1: free.

Processors 0∼N − 1: whether the terminal time is reached.

Step 1: Communicate synchronously, and compute time step.
Step 2: Exchange information about internal boundary physical

values among processors, and evolve governing equations.

Processors 0∼N − 1

internal boundary mesh and physical values are
obtained by communicating among processors.

Processors 0∼N − 1: move the mesh and update the physical values;

values from the whole domain on processor 0.
Processors 0∼N − 1: read the corresponding part mesh and physical

Processors 1∼N − 1: free.

Processor 0
Step 1: Initialize mesh and physical values

on the whole domain.

parts.
Step 2: Partition the whole domain into N

Figure 6: Schematic diagram of the parallel computation.

diagram for our parallel computation is given in Figure 6.
Here, 𝑁 corresponds to the number of processors. Next, the
illustrations aiming at the critical problems for the schematic
diagram will be discussed.

4.1. Partition the Spatial Mesh Domain. In the parallel
computation, the whole domain is divided into some blocks,
and each block is distributed to different processors. The dis-
tribution is such that each processor gets allocated with one
block. Because the computational complexity is related to the
number of mesh points, the whole spatial domain is divided
according to mesh points rather than spatial coordinates.
In addition, the number of mesh points for each processor
computation is the same as far as possible. The common
partitions for whole spatial domain are given in Figure 7.
Figure 7(a) is line partition which fits the stripe domain.
The surface partition is shown in Figure 7(b) which can be
used for the surface domain and body domain. The body
partition in Figure 7(c) is used for the three-dimensional
spatial domain. Next, we will discuss relationship between
the whole domain and processors, and pseudocodes will be
given. It is assumed that 𝐶𝑒𝑙𝑙𝑁𝑢𝑚 is the number of cells in
the whole spatial domain. The array 𝐶𝑒𝑙𝑙_𝑡𝑜_𝑃(𝐶𝑒𝑙𝑙𝑁𝑢𝑚)

Scientific Programming 9

0 1 2 · · · N − 3 N − 2 N − 1

(a)

0 1

N− 2 N − 1N − Nx

Nx Nx + 1 2Nx − 2 2Nx − 1

Nx − 2 Nx − 1

(b)

01

N− 1

Nz

Nz − 1

Ny

Ny − 1

Nx − 1

(c)

Figure 7: Partitions for spatial domain. (a) Line partition; (b) surface partition; (c) body partition.

is created to store which processor is assigned to each cell,
and array 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑁) is created to store the number of
cells for each processor. The new number 𝐶𝑒𝑙𝑙_𝑖𝑛_𝑃(𝑖) in
processor for 𝑖th cell can be obtained by the following pseudo-
code: 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(1∼N) = 0𝑑𝑜 𝑖 = 1, 𝐶𝑒𝑙𝑙𝑁𝑢𝑚𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = 𝐶𝑒𝑙𝑙_𝑡𝑜_𝑃(𝑖)𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑝𝑟𝑜𝑐e𝑠𝑠𝑜𝑟) =𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟) + 1𝐶𝑒𝑙𝑙_𝑖𝑛_𝑃(𝑖) = 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟)𝑒𝑛𝑑𝑑𝑜
In addition, the array 𝑆𝑢𝑏_𝑡𝑜_𝑒𝑛𝑡𝑖𝑟𝑒(𝑚𝑎𝑥(𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑁)),𝑁) is created to store the relationship between the whole
domain and processors. The pseudocode is

𝑑𝑜 𝑖 = 1, 𝐶𝑒𝑙𝑙𝑁𝑢𝑚𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = 𝐶𝑒𝑙𝑙_𝑡𝑜_𝑃(𝑖)𝑠𝑢𝑏_𝑖 = 𝐶𝑒𝑙𝑙_𝑖𝑛_𝑃(𝑖)𝑆𝑢𝑏_𝑡𝑜_𝑒𝑛𝑡𝑖𝑟𝑒(𝑠𝑢𝑏_𝑖, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟) = 𝑖𝑒𝑛𝑑𝑑𝑜
4.2. Reduction and Synchronization. The size of spatial mesh
is different for each processor, which leads to the time step
for each processor being different.Thus time step is needed to
synchronize in the computation. 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 are
used to achieve this. Let ℎ󸀠𝑡 be the time step of each processor
computation with CFL condition. ℎ𝑡 is the time step after
synchronization. The codes for MPI Fortran are𝐶𝐴𝐿𝐿 𝑀𝑃𝐼_𝑅𝑒𝑑𝑢𝑐𝑒(ℎ󸀠𝑡, ℎ𝑡, 1,𝑀𝑃𝐼_𝐷𝑂𝑈𝐵𝐿𝐸_𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁,& 𝑀𝑃𝐼_𝑀𝐼𝑁, 0, 𝐶𝑂𝑀𝑀, 𝐼𝐸𝑅𝑅)𝐶𝐴𝐿𝐿 𝑀𝑃𝐼_𝐵𝑐𝑎𝑠𝑡(ℎ𝑡, 1,𝑀𝑃𝐼_𝐷𝑂𝑈𝐵𝐿𝐸_𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁, 0, 𝐶𝑂𝑀𝑀, 𝐼𝐸𝑅𝑅)

10 Scientific Programming

4.3. Processor Communication. For data communication, it is
necessary to know neighbor processors for each processor.
For line partition, there are two neighbors for current
processor to communicate, and if the current processor is
on the boundary or its neighbor does not exist, the neighbor
processor will be signed 𝑛𝑢𝑙𝑙. For the adjacent two processors𝑃𝐴 and 𝑃𝐵 (𝑃𝐴 is left; 𝑃𝐵 is right), there are 𝑁𝑒_𝑗 adjacent
cells for processors𝑃𝐴 and𝑃𝐵.Thus, processor𝑃𝐴 needs𝑁𝑒_𝑗
cells to communicate with processor 𝑃𝐵. In the same way,
processor 𝑃𝐵 needs 𝑁_𝑎𝑗 cells to communicate with proces-
sor 𝑃𝐴. The following pseudocode is given to show the com-
munication between 𝑃𝐴 and 𝑃𝐵.𝐶_𝐴/𝐶_𝐵 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐴)𝑖𝑓 (righcell belong to 𝑃_𝐵) 𝑡ℎ𝑒𝑛𝑃_𝐴_𝑠𝑒𝑛𝑑(𝐶_𝐴) = 𝑖𝑃_𝐵_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝐴) = 𝑖𝐶_𝐴 = 𝐶_𝐴 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐵)𝑖𝑓 (lef tcell belong to 𝑃_𝐴) 𝑡ℎ𝑒𝑛𝑃_𝐵_𝑠𝑒𝑛𝑑(𝐶_𝐵) = 𝑖𝑃_𝐴_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝐵) = 𝑖𝐶_𝐵 = 𝐶_𝐵 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜
The arrays 𝑃_𝐴_𝑠𝑒𝑛𝑑(𝑁_𝑎𝑗) and 𝑃_𝐴_𝑟𝑒𝑐𝑒𝑖V𝑒(𝑁_𝑎𝑗) are
the cells which 𝑃𝐴 send and receive, while The arrays𝑃_𝐵_𝑠𝑒𝑛𝑑(𝑁_𝑎𝑗) and𝑃_𝐵_𝑟𝑒𝑐e𝑖V𝑒(𝑁_𝑎𝑗) are the cells which𝑃𝐵 send and receive. For the surface partition, there are
eight neighbor processors for the current processor, which
is shown in Figure 8(a) (here, 𝐶𝑒𝑛 is the current processor).
Because neighbors𝑁𝑒𝑖, 𝑖 = 1, 2, 3, 4, have the common com-
municating edge with the current processor 𝐶𝑒𝑛, we can use
the similar way as the line partition to communication. The
position of processor 𝑁𝑒𝑖, 𝑖 = 5, 6, 7, 8, can be obtained with𝑁𝑒𝑖, 𝑖 = 1, 2, 3, 4. For example, the following pseudocode is
to show the communication between𝑁𝑒5 and 𝐶𝑒𝑛.𝐶_𝐶𝑒𝑛/𝐶_𝑁𝑒5 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑁𝑒5)𝑖𝑓 (righcell belong to 𝑁𝑒1 and abovecell belong

to 𝑁𝑒4) 𝑡ℎ𝑒𝑛𝑁𝑒5_𝑠𝑒𝑛𝑑(𝐶_𝐶𝑒𝑛) = 𝑖𝐶𝑒𝑛_𝑟𝑒c𝑒𝑖V𝑒(𝐶_𝐶𝑒𝑛) = 𝑖𝐶_𝐶𝑒𝑛 = 𝐶_𝐶𝑒𝑛 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐶𝑒𝑛)

𝑖𝑓 (lef tcell belong to 𝑁𝑒4 and belowcell
belong to 𝑁𝑒1) 𝑡ℎ𝑒𝑛𝐶𝑒𝑛_𝑠𝑒𝑛𝑑(𝐶_𝑁𝑒5) = 𝑖𝑁𝑒5_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝑁𝑒5) = 𝑖𝐶_𝑁𝑒5 = 𝐶_𝑁𝑒5 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜

When the current processor is on the boundary, which is
shown in Figure 8(b), the ghost cells𝐶𝑏𝑐 can be obtained with
the current processor 𝐶𝑒𝑛, other ghost cells 𝐶𝑑𝑎 and 𝐶𝑑𝑏 for𝐶𝑒𝑛 can be obtained by communicating with 𝑁𝑒𝑎 and 𝑁𝑒𝑏.
The following pseudocode is for 𝐶𝑒𝑛 obtaining 𝐶𝑑𝑎𝐶_𝐶𝑒𝑛 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝑁𝑒𝑎)𝑖𝑓 (righcell belong to 𝑛𝑢𝑙𝑙 and belowcell

belong to 𝐶𝑒𝑛) 𝑡ℎ𝑒𝑛𝑁𝑒𝑎_𝑠𝑒𝑛𝑑(𝐶_𝐶𝑒𝑛) = 𝑖𝐶𝑒𝑛_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝐶𝑒𝑛) = 𝑖𝐶_𝐶𝑒𝑛 = 𝐶_𝐶𝑒𝑛 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜
For body partition, there are 26 neighbor processors around
the current processor𝐶𝑒𝑛, which is shown in Figure 8(a). We
have divided the neighbors into three kinds 𝑁𝑚𝑖, 𝑁𝑙𝑗, and𝑁V𝑘, 𝑖 = 1, 2, . . . , 6, 𝑗 = 1, 2, . . . , 12, and 𝑘 = 1, 2, . . . , 8,
where they are corresponding to three kinds of communica-
tion which is shown in Figure 9(b). 𝑁𝑚1, 𝑁𝑙1, and 𝑁V1 are
the examples, of which we will give the pseudocode to show
the communication of body partition.

For𝑁𝑚1,𝐶_𝐶𝑒𝑛 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐴)𝑖𝑓 (behindcell belong to 𝐶𝑒𝑛) 𝑡ℎ𝑒𝑛𝑁𝑚1_𝑠𝑒𝑛𝑑(𝐶_𝐶𝑒𝑛) = 𝑖𝐶𝑒𝑛_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝐶𝑒𝑛) = 𝑖𝐶_𝐶𝑒𝑛 = 𝐶_𝐶𝑒𝑛 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜
For𝑁𝑙1,𝐶_𝐶𝑒𝑛 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐴)𝑖𝑓 (behindcell belong to 𝑁𝑚3 and rightcell

belong to 𝑁𝑚1) 𝑡ℎ𝑒𝑛𝑁𝑙1_𝑠𝑒𝑛𝑑(𝐶_𝐶𝑒𝑛) = 𝑖𝐶𝑒𝑛_𝑟𝑒𝑐𝑒𝑖v𝑒(𝐶_𝐶𝑒𝑛) = 𝑖𝐶_𝐶𝑒𝑛 = 𝐶_𝐶𝑒𝑛 + 1

Scientific Programming 11

Cen

Ne8 Ne3 Ne7

Ne4

Ne5 Ne1 Ne6

Ne2

Cd1 Cd2

Cb3

Cb4

Cb1

Cb2

Cd4 Cd3

(a)

· · ·

· · ·

· · ·

Cen

Nea

Neb

Cda

Cdb

Cba

Cbc

Cbb

(b)

Figure 8: Processor communication for surface partition; (a) internal communication; (b) boundary communication.

Cen

Nl1

Nl1

Nl2

Nl2

Nl2

Nl3

Nl3

Nl4

Nl5

Nl5

Nl6

Nl6

Nl7
Nl8

Nl9

Nl9

Nl10

Nl10

Nl11
Nl12

Nm1

Nm1

Nm2

Nm3

Nm4

Nm4

Nm5

Nm6

N1

N1

N2

N2

N2

N3

N3

N4

N5

N5

N6

N6

N6

N7

N7

N8

(a)

Cen
Nmi

Nlj
N�k

(b)

Figure 9: Processor communication for body partition; (a) neighbor processors; (b) communication blocks.

𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜
For𝑁V1,𝐶_𝐶𝑒𝑛 = 1𝑑𝑜 𝑖 = 1, 𝑃_𝐶𝑒𝑙𝑙𝑁𝑢𝑚(𝐴)𝑖𝑓 (belowcell belong to 𝑁𝑙1 and behindcell

belong to 𝑁𝑙8 & and rightcell belong to 𝑁𝑙5) 𝑡ℎ𝑒𝑛𝑁V1_𝑠𝑒𝑛𝑑(𝐶_𝐶𝑒𝑛) = 𝑖𝐶𝑒𝑛_𝑟𝑒𝑐𝑒𝑖V𝑒(𝐶_𝐶𝑒𝑛) = 𝑖𝐶_𝐶𝑒𝑛 = 𝐶_𝐶𝑒𝑛 + 1𝑒𝑛𝑑𝑖𝑓𝑒𝑛𝑑𝑑𝑜

Figure 10 shows the communications when the current
processor is the boundary processor. Figure 10(a) is the
surface boundarywhile Figure 10(b) is the edge boundary. For
Figure 10(a), the communication is the same as the situations
in Figure 8, while Figure 10(b) is the similar situation as the
line partition. Thus, we leave it out.

5. Numerical Examples

In this section, the numerical convergence and the efficiency
for our parallel schemes will be shown. In addition, the
practical problem will be considered. In our simulation, the
parameters are taken as 𝛾 = 1.2, 𝐸𝛼 = 1.7, 𝐸𝛽 = 0.35,𝑄 = 52.6, 𝑘𝛼 = 287.0, and 𝑘𝛽 = 0.0359. The simulations are
taken on the computer group of four nodes. There are two
Intel E5620CPUs on each node, and each CPU is quad-core.

12 Scientific Programming

Cen

Nld Nmc Nlc

Nmb

Nmd

Nla Nma
Nlb

(a)

Cen

Cen

Nm�훼

Nm�훼

Nm�훽

Nm�훽

Nm�훽

· · ·

· ·
·· ·
·· ·
·

...

...

d

(b)

Figure 10: Boundary processor communication; (a) boundary surface processors; (b) boundary edge processors.

5.1. Example 1. Firstly, the numerical accuracy is tested for
the one-dimensional Euler equations. A periodic boundary
condition is used and the initial conditions are set to be𝜌(𝑥, 0) = 1.0 + 0.2 sin(𝑥), 𝑢(𝑥, 0) = 0.5, 𝑝(𝑥, 0) = 1.0,𝛼(𝑥, 0) = 0.5 + 0.2 sin(𝑥), and 𝛽(𝑥, 0) = 0.5 + 0.2 sin(𝑥). The
exact solution for this problem is𝜌 (𝑥, 𝑡) = 1.0 + 0.2 sin (𝑥 − 0.5𝑡) ,𝑢 (𝑥, 𝑡) = 0.5,𝑝 (𝑥, 𝑡) = 1.0,𝛼 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 − 0.5𝑡) ,𝛽 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 − 0.5𝑡) .

(41)

The final time for this computation is 𝑇 = 2.0. The monitor
function for this computation is𝑀 = √1 + 𝛼1𝑠𝜉, (42)

where 𝑠 = 𝜌𝛾/𝑝 and 𝛼1 = 0.1. The parameter 𝛾 is 1.2.
The computational domain is taken as [−𝜋, 𝜋]. The errors
and convergence orders in the density are obtained and com-
pared in Table 2. From Table 2, we can see that our scheme
is the second-order convergent scheme. In addition, Sod’s
classical shock tube problem is studied to show that our
schemes can capture the singularities and avoid the nonphys-
ical phenomena. The Riemann initial values are

(𝜌, 𝑢, 𝑝) = {{{(1.0, 0.0, 1.0) if 0 ≤ 𝑥 < 0.5,(0.125, 0.0, 0.1) if 0.5 ≤ 𝑥 < 1.0 (43)

and reflecting boundary conditions at 𝑥 = 0 and 𝑥 = 1. The
terminal time is 𝑇 = 0.2. The solutions about density and the
trajectory of mesh are shown in Figure 11. There are 100 cells
used in the simulation. The monitor function employed for
this computation is

𝑀 = √1 + 𝛼1(𝜌𝜉
max𝜉 (𝜌𝜉)) + 𝛼2(𝑠𝜉

max𝜉 (𝑠𝜉)). (44)

It is found that themesh is adaptivewith the solutions and our
schemes can capture the discontinuous jump in numerical

Table 2: Errors and convergence orders in the density.

Cells Fixed mesh Moving mesh
Error Order Error Order

20 3.4932𝐸 − 02 — 3.5100𝐸 − 02 —
40 1.0219𝐸 − 02 1.7733 1.0244𝐸 − 02 1.7767
80 2.6508𝐸 − 03 1.9468 2.6380𝐸 − 03 1.9572
160 6.3429𝐸 − 04 2.0632 6.2496𝐸 − 04 2.0776
320 1.4987𝐸 − 04 2.0815 1.4569𝐸 − 04 2.1009
simulations. The computational complexity and errors anal-
ysis are compared between the fixed mesh and moving mesh
schemes in Table 3. Comparing (F1) and (M1), we can use50 mesh points to reach the effect of 100 fixed mesh points
while costing the same CPU time. In addition, the different
arc-length parameters with 100 mesh points are simulated
to compare 200 and 250 fixed mesh points schemes. Our
schemes can reach better results with less mesh points.
Particularly,𝐿2,𝐿∞ errors are obviously reduced.Thuswe can
conclude that our schemes can capture the singularities and
avoid the nonphenomena.

5.2. Example 2. This is the two-dimensional example. Firstly,
the numerical accuracy is tested with the periodic boundary
condition and initial conditions 𝜌(𝑥, 0) = 1.0 + 0.2 sin(𝑥 +𝑦), 𝑢(𝑥, 0) = V(𝑥, 0) = 0.5, 𝑝(𝑥, 0) = 1.0, 𝛼(𝑥, 0) = 0.5 +0.2 sin(𝑥 + 𝑦), and 𝛽(𝑥, 0) = 0.5 + 0.2 sin(𝑥 + 𝑦). The source
terms are adjusted so that the governing equations (2) can fit
the exact solution𝜌 (𝑥, 𝑡) = 1.0 + 0.2 sin (𝑥 + 𝑦 − 𝑡) ,𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0.5,𝑝 (𝑥, 𝑡) = 1.0,𝛼 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 + 𝑦 − 𝑡) ,𝛽 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 + 𝑦 − 𝑡) .

(45)

Here the monitor function is about entropy (42). The final
time for the computation is 𝑇 = 2.0. The errors and con-
vergence orders about density are shown in Table 4, which
implies that our schemes are the second-order convergence.

Scientific Programming 13

Table 3: Comparison of various fixed and moving mesh.

Description CPU time Time steps 𝐿1 error 𝐿2 error 𝐿∞ error
Fixed mesh (cells):
(F1) 100 1.56𝐸 − 02 48 7.9754𝐸 − 03 1.5122𝐸 − 02 6.4432𝐸 − 02
(F2) 200 6.24𝐸 − 02 97 4.2999𝐸 − 03 1.0988𝐸 − 02 7.1633𝐸 − 02
(F3) 250 9.36𝐸 − 02 121 3.2221𝐸 − 03 8.5794𝐸 − 03 6.7484𝐸 − 02
Moving mesh (𝑐𝑒𝑙𝑙𝑠, 𝛼1, 𝛼2):
(M1) 50, 20, 50 1.56𝐸 − 02 69 7.8921𝐸 − 03 1.4041𝐸 − 02 6.4284𝐸 − 02
(M2) 100, 20, 100 4.68𝐸 − 02 129 4.2209𝐸 − 03 1.0347𝐸 − 02 7.1121𝐸 − 02
(M3) 100, 10, 10 7.80𝐸 − 02 236 3.1650𝐸 − 03 7.9560𝐸 − 03 6.5914𝐸 − 02

Table 4: Errors and convergence orders in the density.

Cells Fixed mesh Moving mesh
Error Order Error Order

20 2.4050𝐸 − 01 — 2.4980𝐸 − 01 —
40 6.6037𝐸 − 02 1.8647 6.6661𝐸 − 02 1.9058
80 1.6605𝐸 − 02 1.9916 1.6590𝐸 − 02 2.0056
160 3.9552𝐸 − 03 2.0698 3.9543𝐸 − 03 2.0688
320 9.2949𝐸 − 04 2.0892 9.2871𝐸 − 04 2.0901
Next, we apply our schemes to a two-dimensional explosion
problem. The computational domain is illustrated in Fig-
ure 12. The boundary condition is reflective, and the initial
conditions in the unreacted region are (𝜌, 𝑢, V, 𝑤, 𝛼, 𝛽) =(1, 0, 0, 0, 1, 1).The initial conditions in the reacted region are
obtained by the𝑍𝑁𝐷model [23].There are 240×240 cells in
our computation. The monitor function

𝑀 = √1 + 𝛼1𝜌2 + 𝛼2 󵄨󵄨󵄨󵄨∇𝜌󵄨󵄨󵄨󵄨2 (46)

is used in the computation. The terminal time is 0.5. The
parallel cost with different processors is compared in Tables
5 and 6. Table 5 is the comparison of parallel efficiency with
different processors for line partition, while Table 6 is for the
surface partition. The 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 and 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 for parallel
computations are defined by

Speedup with 𝑁 processors

= Cost time with one processor
Cost time with 𝑁 processors

,
Efficiency with 𝑁 processors

= Speedup with 𝑁 processors𝑁 .
(47)

Both tables illustrate that our parallel schemes are effective
and the computational cost time is reduced. Figure 13 is the
computational results at time 0.15, and Figure 14 is at time0.3. The solutions figures show that our schemes can capture
the shock waves and the mesh trajectory is adaptive.

5.3. Example 3. The last example is the three-dimensional
problem.Thenumerical exact test is takenfirstly.Theperiodic
boundary condition is used and the initial conditions are set

Table 5: Parallel efficiency with different processors for line parti-
tion.

Number of processors CPU time Speedup Efficiency1 (1 × 1) 15778 1.0 1.02 (2 × 1) 7894 1.9987 0.99943 (3 × 1) 5281 2.9877 0.99594 (4 × 1) 3976 3.9683 0.99215 (5 × 1) 3354 4.7042 0.94086 (6 × 1) 2891 5.4576 0.9096
Table 6: Parallel efficiency with different processors for surface
partition.

Number of processors CPU time Speedup Efficiency1 (1 × 1) 15778 1.0 1.04 (2 × 2) 3965 3.9793 0.99489 (3 × 3) 2053 7.6853 0.853916 (4 × 4) 1620 9.7395 0.6087
to be 𝜌(𝑥, 0) = 1.0 + 0.2 sin(𝑥 + 𝑦 + 𝑧), 𝑢(𝑥, 0) = V(𝑥, 0) =𝑤(𝑥, 0) = 0.5, 𝑝(𝑥, 0) = 1.0, 𝛼(𝑥, 0) = 0.5 + 0.2 sin(𝑥 + 𝑦 + 𝑧),
and 𝛽(𝑥, 0) = 0.5 + 0.2 sin(𝑥 + 𝑦 + 𝑧). The terminal time is𝑇 = 2.0 and the monitor function is about entropy (42). The
exact solution is𝜌 (𝑥, 𝑡) = 1.0 + 0.2 sin (𝑥 + 𝑦 + 𝑧 − 1.5𝑡) ,𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 𝑤 (𝑥, 𝑡) = 0.5,𝑝 (𝑥, 𝑡) = 1.0,𝛼 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 + 𝑦 + 𝑧 − 1.5𝑡) ,𝛽 (𝑥, 𝑡) = 0.5 + 0.2 sin (𝑥 + 𝑦 + 𝑧 − 1.5𝑡) .

(48)

14 Scientific Programming

Exact
Moving mesh
Fixed mesh

0

0.2

0.4

0.6

D
en

sit
y

0.8

1

0.2 0.4 0.6 0.8 10
x

(a)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 10
x

Th
e t

im
et

(b)

Figure 11: The simulation results; (a) solution about density; (b) trajectory of mesh.

Reacted
region

Unreacted
region

0

0.5

1

1.5

2

2.5

3

Y

0 1 1.5 2 2.5 30.5
X

Figure 12: The computational domain.

The errors and convergence orders about density are shown
in Table 7, which implies that our schemes are the second-
order convergence.The computational domain and boundary
conditions are shown in Figure 15. The initial values for
reacted region and unreacted region are the same as Example
two. Table 8 is used to show the parallel efficiency for body
partition, which illustrates that the computational time is
reduced and our parallel scheme can deal with the three-
dimensional problems. There are 120 × 120 × 120 cells in our
simulations. The monitor function𝑀 = √1 + 𝛼1𝜌2 + 𝛼2 󵄨󵄨󵄨󵄨∇𝜌󵄨󵄨󵄨󵄨2 (49)

Table 7: Errors and convergence orders in the density.

Cells Fixed mesh Moving mesh
Error Order Error Order

30 1.0109 — 1.0138 —
40 5.8547𝐸 − 01 1.8987 5.8571𝐸 − 01 1.9071
50 3.8052𝐸 − 01 1.9310 3.8027𝐸 − 01 1.9358
60 2.6448𝐸 − 01 1.9952 2.6421𝐸 − 01 1.9970
70 1.9246𝐸 − 01 2.0620 1.9223𝐸 − 01 2.0633
Table 8: Parallel efficiency with different processors for body
partition.

Number of processors CPU time Speedup Efficiency1 (1 × 1 × 1) 24298 1.0 1.08 (2 × 2 × 2) 3370 7.2101 0.901327 (3 × 3 × 3) 1145 21.2209 0.785932 (4 × 4 × 2) 1053 23.0750 0.7211
is used in the computation. The terminal time is 0.5. Figures
16 and 17 show the adaptive solutions. Figure 16 shows the
three-dimensional sliced effect of the adaptive mesh with the
solutions at different time points. Figure 17(a) is the simulated
result of the block in the center of the domain about density
at time 0.15, while Figure 17(b) is a 𝑥-direction of the sliced
simulation about density at time 0.3. The spatial cells are
distorted to adapt to the shock wave front. They show us that
our schemes can capture shock waves.

6. Conclusion and Discussion

In this paper, we have discussed the parallel computation
for pseudo arc-length moving mesh schemes. Different from
the traditional Euler numerical scheme, the communications

Scientific Programming 15

14.72

13.66

12.61

11.55

10.50

9.44

8.39

7.33

6.28

5.22

4.17

3.11

2.06

1.00
32.51.5 210.50

X

0

0.5

1

1.5

2

2.5

3

Y

(a)

32.51.5 210.50

X

0

0.5

1

1.5

2

2.5

3

Y

(b)

Figure 13: The computational results at time 0.15; (a) solution about density; (b) trajectory of mesh.

43.60

40.09

36.58

33.07

29.56

26.05

22.54

19.04

15.53

12.02

8.51

5.00

32.51.5 210.50

X

0

0.5

1

1.5

2

2.5

3

Y

(a)

32.51.5 210.50

X

0

0.5

1

1.5

2

2.5

3

Y

(b)

Figure 14: The computational results at time 0.3; (a) solution about pressure; (b) trajectory of mesh.

0
1.0

3.0

0

1.0

3.0
Nonreflecting

Nonreflecting

Nonreflecting

Nonreflecting

0

3.0

Reacted
region

Unreacted
region

Figure 15: The computational domain.

16 Scientific Programming

3.98

3.64

3.29

2.95

2.61

2.26

1.92

1.57

1.23

0.89

0.54

0.20

X Y

Z

(a)

4.98

4.64

4.29

3.95

3.61

3.26

2.92

2.57

2.23

1.89

1.54

1.20

X Y

Z

(b)

Figure 16: The simulation solutions; (a) solution about density at time 0.15; (b) solution about pressure at time 0.3.

X

Y

Z

3.98

3.64

3.29

2.95

2.61

2.26

1.92

1.57

1.23

0.89

0.54

0.20

(a)

X
Y

Z

3.98

3.64

3.29

2.95

2.61

2.26

1.92

1.57

1.23

0.89

0.54

0.20

(b)

Figure 17: The simulation solutions; (a) a block solutions about density at time 0.15; (b) a piece of solutions about density at time 0.3.

between processors are more complex, which include adja-
cent processor and diagonal processor. The parallel schemes
including line, surface, and body partition are all considered
in this work and the pseudocodes and schematic diagram are
given. Finally, the numerical examples are shown to illustrate
that our parallel schemes are effective and the pseudo arc-
lengthmovingmesh schemes are convergent and can be used
to capture the shock wave.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant nos. 11390363 and 11532012).

References

[1] F. Davis, Detonation, Univ. California Press, 1979.
[2] G. Wang, D. Zhang, K. Liu, and J. Wang, “An improved CE/SE

scheme for numerical simulation of gaseous and two-phase
detonations,” Computers and Fluids. An International Journal,
vol. 39, no. 1, pp. 168–177, 2010.

[3] A. Harten and J. M. Hyman, “Self-adjusting grid methods
for one-dimensional hyperbolic conservation laws,” Journal of
Computational Physics, vol. 50, no. 2, pp. 235–269, 1983.

[4] J. M. Stockie, J. A. Mackenzie, and R. . Russell, “A moving mesh
method for one-dimensional hyperbolic conservation laws,”
SIAM Journal on Scientific Computing, vol. 22, no. 5, pp. 1791–
1813, 2000.

[5] X. Yang,W.Huang, and J. Qiu, “AmovingmeshWENOmethod
for one-dimensional conservation laws,” SIAM Journal on Sci-
entific Computing, vol. 34, no. 4, pp. A2317–A2343, 2012.

Scientific Programming 17

[6] H. Tang and T. Tang, “Adaptive mesh methods for one- and
two-dimensional hyperbolic conservation laws,” SIAM Journal
on Numerical Analysis, vol. 41, no. 2, pp. 487–515, 2003.

[7] J. Han andH. Tang, “An adaptivemovingmeshmethod for two-
dimensional ideal magnetohydrodynamics,” Journal of Com-
putational Physics, vol. 220, no. 2, pp. 791–812, 2007.

[8] P. He and H. Tang, “An adaptive moving mesh method for two-
dimensional relativistic magnetohydrodynamics,” Computers
and Fluids. An International Journal, vol. 60, pp. 1–20, 2012.

[9] J. Ning, X. Yuan, T. Ma, and C. Wang, “Positivity-preserving
moving mesh scheme for two-step reaction model in two
dimensions,” Computers and Fluids. An International Journal,
vol. 123, pp. 72–86, 2015.

[10] M. G. Knepley and D. A. Karpeev, “Mesh algorithms for PDE
with sieve I: mesh distribution,” Scientific Programming, vol. 17,
no. 3, pp. 215–230, 2009.

[11] K. Morris, D. W. I. Rouson, M. N. Lemaster, and S. Filippone,
“Exploring capabilities within ForTrilinos by solving the 3D
Burgers equation,” Scientific Programming, vol. 20, no. 3, pp.
275–292, 2012.

[12] M. Mubarak, S. Seol, Q. Lu, and M. S. Shephard, “A parallel
ghosting algorithm for the flexible distributed mesh database,”
Scientific Programming, vol. 21, no. 1-2, pp. 17–42, 2013.

[13] C. Wang, X. Dong, and C.-W. Shu, “Parallel adaptive mesh
refinement method based on WENO finite difference scheme
for the simulation of multi-dimensional detonation,” Journal of
Computational Physics, vol. 298, pp. 161–175, 2015.

[14] S. Taki and T. Fujiwara, “Numerical simulation on the estab-
lishment of gaseous detonation,” Prog Astronaut Aeronaut, vol.
9, pp. 186–200, 1984.

[15] B. van Leer, “Towards the ultimate conservative difference
scheme. V. A second-order sequel to Godunov’s method,” Jour-
nal of Computational Physics, vol. 32, no. 1, pp. 101–136, 1979.

[16] C.-W. Shu and S. Osher, “Efficient implementation of essentially
nonoscillatory shock-capturing schemes,” Journal of Computa-
tional Physics, vol. 77, no. 2, pp. 439–471, 1988.

[17] S. Gottlieb and C.-W. Shu, “Total variation diminishing Runge-
Kutta schemes,” Mathematics of Computation, vol. 67, no. 221,
pp. 73–85, 1998.

[18] K. Chen, “Error equidistribution and mesh adaptation,” SIAM
Journal on Scientific Computing, vol. 15, no. 4, pp. 798–818, 1994.

[19] X. Wang, T.-B. Ma, and J.-G. Ning, “A pseudo arc-length
method for numerical simulation of shock waves,”Chinese Phy-
sics Letters, vol. 31, no. 3, Article ID 030201, 2014.

[20] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and
B. Chapman, “High performance computing using MPI and
OpenMP on multi-core parallel systems,” Parallel Computing,
vol. 37, no. 9, pp. 562–575, 2011.

[21] L. Hochstein and V. R. Basili, “The ASC-alliance projects: a case
study of large-scale parallel scientific code development,” Com-
puter, vol. 41, no. 3, pp. 50–58, 2008.

[22] L. Hochstein, F. Shull, and L. B. Reid, “The role of MPI in
development time: A case study,” in Proceedings of the 2008
SC - International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2008, usa, November
2008.

[23] W. Fickett and W. W. Wood, “Flow calculations for pulsating
one-dimensional detonations,” Physics of Fluids, vol. 9, no. 5, pp.
903–916, 1966.

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

