
Research Article
Development of Multiple Big Data
Analytics Platforms with Rapid Response

Bao Rong Chang, Yun-Da Lee, and Po-Hao Liao

Department of Computer Science and Information Engineering, National University of Kaohsiung,
700 Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan

Correspondence should be addressed to Bao Rong Chang; brchang@nuk.edu.tw

Received 6 April 2017; Accepted 28 May 2017; Published 21 June 2017

Academic Editor: Wenbing Zhao

Copyright © 2017 Bao Rong Chang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The crucial problem of the integration of multiple platforms is how to adapt for their own computing features so as to execute
the assignments most efficiently and gain the best outcome. This paper introduced the new approaches to big data platform,
RHhadoop and SparkR, and integrated them to form a high-performance big data analytics with multiple platforms as part of
business intelligence (BI) to carry out rapid data retrieval and analytics with R programming. This paper aims to develop the
optimization for job scheduling using MSHEFT algorithm and implement the optimized platform selection based on computing
features for improving the system throughput significantly. In addition, users would simply give R commands rather than run Java
or Scala program to perform the data retrieval and analytics in the proposed platforms. As a result, according to performance index
calculated for various methods, although the optimized platform selection can reduce the execution time for the data retrieval and
analytics significantly, furthermore scheduling optimization definitely increases the system efficiency a lot.

1. Introduction

Big data [1] has been sharply in progress unprecedentedly
in recent years and is changing the operation for business
as well as the decision-making for the enterprise. The huge
amounts of data contain valuable information, such as the
growth trend of systemapplication and the correlation among
systems.The undisclosed informationmay contain unknown
knowledge and application that are discoverable further.
However, big data with the features of high volume, high
velocity, and high variety as well as in face of expanding
incredible amounts of data, several issues emerging in big
data such as storage, backup [2], management, processing,
search [3], analytics, practical application, and other abilities
to deal with the data also face new challenges. Unfortunately,
those cannot be solved with traditional methods and thus
it is worthwhile for us to continue exploring how to extract
the valuable information from the huge amounts of data.
According to the latest survey reported from American CIO
magazine, 70% of IT operation has been done by batch

processing in the business, which makes it “unable to control
processing resources for operation as well as loading” [4].
This becomes one of the biggest challenges for big data
application.

Hadoop distributes massive data collections across mul-
tiple nodes, enabling big data processing and analytics far
more effectively than was possible previously. Spark, on the
other hand, does not do distributed storage [5]. It is nothing
but a data processing tool, operating on those distributed
data collections. Furthermore, Hadoop includes not only a
storage component called Hadoop Distributed File System
(HDFS), but also a processing component calledMapReduce.
Spark does not come with its own file management system.
Accordingly, it needs to be integrated with Hadoop to share
HDFS. Hadoop processing mostly static and batch-mode
style can be just fine and originally was designed to handle
crawling and searching billions of web pages and collecting
their information into a database [6]. If you need to do
analytics on streaming data, or to run required multiple
operations, Spark is suitable for those. As a matter of fact,

Hindawi
Scientific Programming
Volume 2017, Article ID 6972461, 13 pages
https://doi.org/10.1155/2017/6972461

https://doi.org/10.1155/2017/6972461

2 Scientific Programming

HDFS

RHadoop/Hadoop

Client program

R shell

RSparkR/Spark

NTFS
Sqoop

Flume

Figure 1: Data retrieval and data analytics Stack.

Spark was designed for Hadoop; therefore, data scientists
all agree they are better together for a variety of big data
applications in the real world.

Through establishing a set of multiple big data analytics
platforms with high efficiency, high availability, and high
scalability [7], this paper aims to integrate different big data
platforms to achieve the compatibility with any existing
business intelligence (BI) [8] together with related analytics
tools so that the enterprise needs not change large amounts of
software for such platforms. Therefore, the goal of this
paper is to design the optimization for job scheduling using
MSHEFT algorithm as well as to implement optimized
platform selection, and established platforms support R com-
mand to execute data retrieval and data analytics in big data
environment. In such a way the upper-level tools relying on
relational database which has stored the original data can run
on the introduced platforms through minor modification or
even no modification to gain the advantages of high effi-
ciency, high availability, and high scalability. I/O delay time
can be shared through reliable distributed file system to
speed-up the reading of a large amount of data. Data retrieval
and data analytics stack has layered as shown in Figure 1.
As a result, according to performance index calculated for
various methods, we are able to check out whether or not the
proposed approach can reduce the execution time for the data
retrieval and analytics significantly.

2. Related Work in Big Data Processing

This paper has introduced data retrieval and data analytics
using R programming in conjunction with RHadoop [9]/
Hadoop [10] and SparkR [11]/Spark [12] platforms to build
a multiple-platform big data analytics system. Furthermore,
the use of distributed file system for fast data analytics and
data storage reduces the execution time of processing a
huge amount of data. First let us aim to understand the funda-
mental knowledge of Hadoop and Spark platforms and then
build their extended systems RHadoop and SparkR for the
purpose of fitting all kinds of relative problems on big data

analytics.This sectionwill introduce their related profiles and
key technologies for both platforms accordingly.

2.1. Distributed Computing Framework with Hadoop.
Hadoop is a well-known open source distributed computing
framework as shown in Figure 2 that provides reliable,
scalable, distributed computing, data storage, and cluster
computing analytics of big data, including a MapReduce [13]
for distributed computing, HDFS [14] distributed file system,
and a distributed NoSQL database HBase [15] which can be
used to store nonrelational data set. There are some tools
that are based on Hadoop applications. First Apache Pig can
perform complexMapReduce conversions on a huge amount
of data using a simple scripting language called Pig Latin.
Next ApacheHive [16] is a data warehousing package that lets
you query and manage large datasets in distributed storage
using a SQL-style language called HiveQL. Third Apache
Sqoop is a tool for transferring large amounts of data
between Hadoop and structured data storage as efficiently as
possible. Further Apache Flume is a distributed and highly
scalable log collection system that can be used for log data
collection, log data processing, and log data transmission.
ThenApache Zookeeper is a distributed application designed
for the coordination of services, it is mainly used to solve the
decentralized applications often encountered in some data
management issues. Final Apache Avro is a data serialization
system designed to support intensive data, the application of
huge amounts of data exchange.

Examples of applications using Hadoop are given as fol-
lows. Caesars entertainment, a casino gaming company, has
built a Hadoop environment [17] that differentiates customer
groups and creates exclusive marketing campaign for each
group. Healthcare technology company Cerner uses Hadoop
to build a set of enterprise data centers [18] to help Cerner
and their clients monitor the health of more than one million
patients a day. The dating site eHarmony uses Hadoop to
upgrade their cloud systems [19], enabling it to send millions
of messages for matching friend dating every day.

2.2. Parallel Processing Framework with Spark. Spark is an
open source parallel processing framework released by the
Apache Software Foundation that supports in-memory pro-
cessing and dramatically increases the execution speed of big
data analytics, as shown in Figure 3. Spark is also designed for
fast computing, high availability, and fault tolerance. Using
its internal memory capabilities, Spark can be a great choice
for machine learning and graph computation, as well as a
great choice for big data analytics. Its main functions and
positioning are the same as Hadoop MapReduce. Through
In-memory cluster computing [20], it hopes to eliminate I/O
latency caused by a lot of relay files swapped betweenmemory
and disk during MapReduce. Theoretically, the processing
speed could be hundreds of times higher than the Hadoop.
Spark is written in Scala, but also supports Scala, Java, and
Python programming; the underlying storage system can also
be directly compatible with HDFS.

Examples of Spark’s applications are given as follows.
Microsoft launched Spark for AzureHDInsight [21], allowing

Scientific Programming 3

HDFS
(Hadoop distributed file system)

MapReduce (Job scheduling/
execution system)

Pig
(script)

ETL tools
Zo

ok
ee

pe
r (

co
or

di
na

tio
n)

BI
reporting

RDBMS

Hive
(SQL)

Sqoop

Av
ro

 (s
er

ia
liz

at
io

n)

HBase (column NoSQL DB)

Log

Flume

ETL tools

Mahout
(Java)

Figure 2: Hadoop framework.

Hadoop Yarn

HDFS
(Hadoop distributed file system)

Tachyon

Spark core

MLlib

Succinct

GraphX

BlinkDB

MLbase

Velox

Keystone
ML

clean G-OLA

Spark
streaming SparkR Spark SQL

Sample

Figure 3: Spark framework.

users to use Spark for Azure HDInsight to solve big data chal-
lenges in near real-time, such as fraud detection, clickstream
analytics, financial alerts, and more. Yahoo used Spark for
the development of Audience Expansion in the application
of advertising [22] to find the target user. Cloudera devel-
ops Spark Streaming’s flexibility [23] to enable Cloudera’s
customers to build complete IoT applications on a unified
platform.

2.3. IntegratedDevelopment Environment for R. Over the past
decade, programming language R has been highly enhanced
and greatly upgraded significantly to break the original limit
in the past. In academy and industry, R becomes one of the
most important tools for the research such as computational
statistics, visualization, and data science. Millions of statis-
ticians and data scientists use R to solve problems from
counting biology to quantitative marketing. R has become
one of the most popular programming language for the
analytics of scientific data and finance. R is not only free,

compact, and part of the open source that can run on many
platforms, but also integrates data analytics and plotting
functions all in one. It may add many additional packages
to enhance system’s functions, similarly comparable to the
functions of commercial software, and can be viewed as
one of major tools of contemporary data analytics. R is
mainly used to analyze data, and thus the master node in a
cluster installs R where big data access through HDFS has
been available, or a stay alone computer for centralized
processing installs R where small data access through NTFS
has achieved. It is noted that data stored in NTFS can be
transferred to HDFS via Sqoop [24]/Flume [25] or Hive.

2.4. RHadoop Based on Hadoop. Hadoop is capable of dis-
tributed computing and can store large amounts of data, but
there is still a lot of information that needs to be analyzed
professionally. However, R itself is not able to read the data
size more than the size of memory in computer, and hence
there is data size limit for processing big data. Therefore, it

4 Scientific Programming

rhdfsrmr2

MapReduce

R script

HDFS

Figure 4: RHadoop framework.

rhdfs

SparkR

R script

Spark core

HDFS

rJava

Figure 5: SparkR framework.

turns out the integration of Hadoop and R called RHadoop as
a sort of data analytics service. In such a way, R will not only
handle professional analytics, but it will also allow to easily
utilizeHadoop features, such as the ability to access HDFS via
rhdfs package and through the rmr2 package [26] to call
MapReduce for accomplishing the distributed computing.
The framework of RHadoop is shown in Figure 4.

2.5. SparkR Based on Spark. SparkR is an R suite developed
by AMPLab that provides Spark with a Resilient Distributed
Dataset (RDD) [27] API that allows R to carry out distributed
computing using Spark. SparkR was merged into Spark in
April 2015 and was released with Spark 1.4 in June 2015, so
deploying SparkR requires installing Spark 1.4 or later and
installing R related packages, including rJava [28] and rhdfs
[29]. rJava lets R call objects, instances, and methods writ-
ten in Java to make it less difficult for R to call Java-
owned resources, such as Spark and Hadoop, and rhdfs, like
RHadoop, to access HDFS. The framework of SparkR is
shown in Figure 5. Although RHadoop mentioned above can
activate distributed computing with R programming, its effi-
ciency is not as good as SparkR. SparkR, adopting in-memory
cluster computing, needs more memory resources than
RHadoop. In order to avoid shutting down the task due to
hardware resources limitation, both RHadoop and SparkR
can be installed together for being interchangeably used at
same site. In addition, in order to determine themost suitable
analytical tools, we also need a matching algorithm to carry
out the distributed computing successfully.

Table 1: Recipe of compatibility packages.

Software Version
Hadoop (including RHadoop) 2.6.0
Spark (including SparkR) 1.4.0
R 3.2.2
Oracle Java (JDK) 8u66
Scala 2.10.4
rJava 0.9.7
rhdfs 1.0.8
rmr2 3.3.1

3. System Implementation Method

This paper aims to develop the optimization for job schedul-
ing using MSHEFT algorithm so that system obtains the
best throughput. After scheduling all of input queries in a
job queue, system is then able to dispatch the job at top of
the queue to one of big data analytics platforms through
automatic platform selection. Regarding clustering and dis-
tributed parallel computing, a cloud computing foundation
has been established to implement virtualization architecture
because virtual machine has the feature of flexible control in
hardware resource and thus it is quite suitable to act as a
container provided an environment for the exploration of big
data analytics.

3.1. Virtual Machine Deployment. Figure 6 shows a cloud
computing [30] with high performance, high availability, and
high scalability where server farm at the top layer and storage
farm at the bottom layer are built for this study. In order to
realize virtualization, an open source virtual machine man-
agement (VMM) or hypervisor Proxmox Virtual Environ-
ment (PVE) [31] based on KVM is used to implement virtual
machine clustering; the status of virtual machine clustering
can be effectively monitored through PVE, and the resource
configuration of each virtual machine can be dynamically
adjusted [32]. Since the platform performance is very closely
related to I/O latency, the efficiency of both hard disk and net-
work access should be increased in hardware configuration.

3.2. Recipe of Compatibility Packages. The most difficult
aspect of integration of a lot of open source packages in a
system is compatibility suite and that is one of the crucial
problems of system integration as well. In this paper we pro-
posed a recipe to resolve the challenge of suite compatibility.
Several packages will be integrated to establish multiple big
data analytics platforms in this paper and all of them are open
source software, which are developed and maintained by dif-
ferent open source communities. A lot of software has com-
plex dependency and compatibility problems. The recipe of
packages proposed in this paper includes Hadoop, Spark, R,
Scala, rJava, rhdfs, and rmr2, which are fully compatible for
stable operation in the proposed approach as listed in Table 1.

3.3. Optimized Platform Selection. The program of automatic
platform selection assigns a task to an appropriate big data

Scientific Programming 5

Server
(master)

Server
(slave)

Server
(slave)

Edge switch 1 Edge switch 2

Primary storage

Secondary storage

NIC1 NIC2

LACP

NIC1 NIC2 NIC1 NIC2

SYN

NIC team NIC team NIC team

N
th server1

st server 2
nd server

· · ·

Figure 6: Cloud computing with high performance, high availability, and high scalability.

L1 L2

75%3%
RHadoop SparkR

20G (memory)

Figure 7: Automatic selection of suitable platform.

analytics platform according to the size of remaining amount
of memory in a working virtual machine. The function and
property for both RHadoop and SparkR are identical in a
sense because they can access the same HDFS and support R
syntax. Although these two platforms are the same function,
they are different in the demand environment and executive
manner. The memory size of 20G for each server in the
experiments is given, and it sets the remaining amount of
memory size 0.6G in a virtual machine in cluster denoted
Level 1 (roughly 3% of total amount of memory) and 15G
Level 2 (approximately 75% of total amount of memory) as
the cut-off points. In Figure 7, the program automatically
chooses nothing to carry on the task as the remaining amount
of memory is less than 3%; RHadoop would be applied as the
remaining amount of memory lies between L1 and L2, and
hence SparkR could be employed as the remaining amount of
memory is higher than L2.

3.4. Optimization for Job Scheduling. Heterogeneous Earliest
Finish Time (HEFT) [33] is an exploratory scheduling algo-
rithm, which is used for scheduling the communication time
of previous set of dependent task of heterogeneous network.

HEFT is based on one of list scheduling algorithms, where
their characteristics are to establish a priority list in the first
step. According to the sorted priority list, HEFT assigns each
task to a suitable CPU to make the task completed as soon
as possible. The pseudocode of HEFT algorithm is shown in
Algorithm 1. HEFT tries to search for local optimization and
eventually makes the whole local optimums. In the test of
automatic platform selection, the total of 20GB memory is
configured, and it is found that all of analytics platforms can
be used when the remaining amount of memory is greater
than or equal to L1; in addition, it is better to use RHadoop in
case of being less than L2, and SparkR shall be used in case of
being greater than L2. Job dispatched to RHadoop platform
has run a kind of in-disk computing mode such that it may
encounter data swap between disk and memory occasion-
ally. Instead, in-memory computing mode has employed in
SparkR platform and thus SparkR needs much more mem-
ory allocated for computing. HEFT algorithm is modified
to Memory-Sensitive Heterogeneous Earliest Finish Time
(MSHEFT)where the priority is considered first; then the size
of data file is considered as the second condition, and finally
an extra factor is considered, which is “remaining amount

6 Scientific Programming

(1) Compute rank𝑢 for all nodes by traversing graph upward, starting from the exit node.(2) Sort the nodes in a list by nonincreasing order of rank𝑢 values.(3) while there are unscheduled nodes in the list do(4) begin(5) Select the first task 𝑛𝑖 in the list and remove it.(6) Assign the task 𝑛𝑖 to the processor 𝑝𝑗 that minimizes the (EFT) value of 𝑛𝑖.(7) end
Algorithm 1: The HEFT algorithm.

(1) Compute rank𝑢 for all nodes by traversing graph upward, starting from the exit node.(2) Sort the nodes in a list by nonincreasing order of rank𝑢 values.(3) while there are unscheduled nodes in the list do(4) Compare priority.(5) begin(6) Compare job size(7) Select the first task 𝑛𝑖 in the list and remove it.(8) begin(9) if the remaining memory size > 0.6GB(10) begin(11) what is the value of the remaining memory size?(12) Assign the task 𝑛𝑖 to the processor 𝑝𝑗 that minimizes the (EFT) value of 𝑛𝑖.(13) end if(14) waiting the remaining memory size and go line 9.(15) end(16)end
Algorithm 2: The MSHEFT algorithm.

of memory.” In Algorithm 2, the pseudocode of MSHEFT
algorithm has been presented. Job processing flow chart is
shown in Figure 8.

3.5. Execution Procedure. The execution procedure has been
shown in Figure 9.With the user interface, the process is des-
ignated to monitor the status of each node in the server farm.
MSHEFT algorithm for scheduling optimization together
with platform selection has decided to choose an appropri-
ate platform for execution according to the current status
monitored through user interface. The proposed approach
including MSHEFT algorithm plus platform selection can be
denoted MSHEFT-PS in this paper. When the analytics task
has finished, the results will be stored back to HDFS and the
whole process will be terminated. In addition, job schedul-
ing using first-come-first-serve FCFS will be adopted for
each single analytics platform Rhadoop or SparkR, denoted
FCFS-SP, in the experiment to check how it performs as a
single platform applied. Furthermore, the platform selection
mechanism integrated FCFS, denoted FCFS-PS, has also been

employed to test the systemperformance under the condition
of remaining amount of memory in a virtual machine in
which a certain node has been resident.

3.6. Performance Evaluation. In order to compare the com-
putation efficiency among the several algorithms, the perfor-
mance index [2] has been evaluated based on the necessitated
equations, which are derived first frommeasuring access time
of data of a single item for a certain dataset on (1), next
calculating average access time based on a variety of data
size among the datasets on (2), then inducing a normalized
performance index among the datasets on (3), and finally
resulting in a performance index according to a series of tests
on (4). In these equations we denote the subscript 𝑖 the index
of data size, 𝑗 the index of dataset, and 𝑘 the index of test
condition and the subscript 𝑠 indicates a single item in a spe-
cific dataset. Eq. (1) calculates the average access time (AAT)
for each data size. In (1), AAT𝑖𝑗𝑘 represents average access
time with the same data size, and 𝑁𝑖𝑘 stands for the current
data size. Eq. (2) calculates the average access times overall

Scientific Programming 7

Large

SparkR

Yes

If the remaining

Check the remaining
memory size

Compare
priority

Waiting
high

priority

High

Low
Compare
job size

Waiting

Small No

Waiting
memory
allocated

Jobs

>15GB

≤15GB

memory size > 0.6 GB

RHadoop

Figure 8: Job processing flow chart with MSHEFT algorithm and platform selection.

Start

Platform
selector

Write

User
interface

R Script

Show cluster
status

Stat

End
Exit

Write
output file

RHadoop shell
interface

SparkR shell
interface

Return

MSHEFT
algorithm

Figure 9: Execution procedure flow chart.

AAT𝑠𝑗𝑘 for each test (i.e., write, read, and compute) on a spe-
cific platform, in which AAT𝑠𝑖𝑗𝑘 represents the average access
time of each dataset; please refer back to (1), and 𝜔𝑖 stands for
weight for a weighted average. The following formula will
evaluate the performance index (PI) [10]. Eq. (3) calculates

the normalized performance index for a specific platform.
Eq. (4) calculates the performance index overall for a specific
platform, SF1 is a constant value that is used here to quantify
the value of performance index in the range 0–100, and 𝑊𝑘
stands for weight for a weighted average.

AAT𝑠𝑖𝑗𝑘 = AAT𝑖𝑗𝑘𝑁𝑖𝑘 , where 𝑠 = 1, 2, . . . , 𝑑; 𝑖 = 1, 2, . . . , 𝑙; 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑛, (1)

AAT𝑠𝑗𝑘 =
𝑙∑
𝑖=1

𝜔𝑖 ⋅ AAT𝑠𝑖𝑗𝑘 , where 𝑠 = 1, 2, . . . , 𝑑; 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑛; 𝑙∑
𝑖=1

𝜔𝑖 = 1, (2)

8 Scientific Programming

PI𝑗𝑘 = 1/AAT𝑠𝑗𝑘
maxℎ=1,2,...𝑚 (1/AAT𝑠ℎ𝑘) , where 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑛, (3)

PI𝑗 = (𝑛∑
𝑘=1

𝑊𝑘 ⋅ PI𝑗𝑘) ⋅ SF1, where 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑛; SF1 = 102, 𝑛∑
𝑘=1

𝑊𝑘 = 1. (4)

4. Experimental Results and Discussion

This section categories data into simulation data and actual
data for test with two cases; the first case (Case 1) uses the
test data generated randomly with Java programming; the
second case (Case 2) adopts the actual data collected from
the Internet. Proxmox Virtual Environment can be used to
dynamically adjust the resource allocation to set up the
experimental environments according to different memory
remaining amounts, as listed in Table 2, so as to implement
effect tests on various platforms.

4.1. Generated Data Set and Experimental Environment for
Case 1. Case 1 tests each platform with first-come-first-serve
algorithm to perform different sizes of test data, R commands
having different complexity, and different priorities to all of
queries so as to compare the execution time in various
environments as is shown in Table 2. R commands for test
are as shown in Table 3. In this experiment, there are three
methods applied to test. The first approach uses first-come-
first-serve algorithm (FCFS) for each single platformRHaoop
or SparkR, denoted FCFS-SP.The second one is an optimized
platform selection (PS) utilized to choose an appropriate
platform for execution according to the remaining amount of
memory in a virtualmachine but it is still based on FCFS, thus
denoted FCFS-PS. The third method introduced the opti-
mization for job scheduling using MSHEFT algorithm
employed to reschedule all of input queries in an ascending
order in a job queue according to the smallest size of data file
first. Once a job has been dequeued and launched, it based
on PS will also choose an appropriate platform for execution,
thereby denoted MSHEFT-PS. In short, three approaches
including FCFS-SP, FCFS-PS, and MSHEFT-PS will be
implemented in this paper. The test methods are shown
in Table 4. With four fields, test data have been randomly
generated with Java programming where the first column is
the name of the only key string, the second column is random
integer from 0 to 99, the third column is a random integer
from 100 to 199, and the fourth column is the generated
integer sequence number. Designated data size for test is
shown in Table 5.

4.2. Experimental Results in Case 1. As a result, two plat-
forms, RHadoop and SparkR, have performed for several
test data sets with different priorities, data sizes, and R com-
mands. As listed in Table 6, the proposed approachMSHEFT-
PS has been implemented in the different order of jobs
in a queue when comparing with the other methods. Per-
formance comparisons of test are shown in Figures 10, 11,
12, 13, 14, and 15. The average execution time of proposed

approach MSHEFT-PS is faster than the other methods,
FCFS-SP and FCFS-PS. The normalized performance index
and performance index are listed inTables 7 and 8.This shows
that the proposed approach outperforms the others in Case 1.
4.3. Data Collection and Experimental Environment for Case2. Case 2 has collected the actual data sets and the designated
data size for test as shown in Table 9. The concerned
approaches as listed in Table 3 have applied for measuring the
average execution time according to different data themes.
Similarly, Table 1 has listed two test environments and R
command I test is listed in Table 2 as well.

4.4. Experimental Results in Case 2. Executable job list in
Case 2 is shown in Table 10. Performance comparisons of test
are shown in Figures 16 and 17.The experimental results show
that the average execution time of the proposed approach
MSHEFT-PS is much lower than the other methods, FCFS-
SP and FCFS-PS, over three different conditions. The nor-
malized performance index and performance index are listed
in Table 11. Notice that the performance of our proposed
approach is superior to the others in Case 2.
4.5. Discussion. There is no specific mechanism so far to esti-
mate job execution time for Rhadoop or SparkR. Accord-
ing to the report in Apache Spark website at https://spark
.apache.org/, it noted that run programs up to 100x faster
than Hadoop MapReduce in memory, or 10x faster on disk.
Technically speaking, SparkR job execution will similarly be
up to 100x faster than RHadoop job execution in-memory, or
up to 10x on disk as mentioned above. In this paper, the
experiments show that run program for a specific job using
SparkR is up to 9.7x faster than RHadoop. However, the
average in SparkR job execution is nearly 3.9x faster than
RHadoop job execution.

5. Conclusion

This paper found that even though the analytics platforms
have the same configuration and functions, their perfor-
mance still has resulted in different efficiency in different
experimental conditions when applying scheduling opti-
mization for multiple big data analytics platforms. The per-
formance efficiency can be greatly improved by making the
optimization for job scheduling, automatically detecting clus-
tering state, and then choosing an appropriate platform for
job processing. According to the experiments in Case 1 with
simulation data and Case 2 with actual data, it is found that
the remaining amount of memory is less and the scale of

https://spark.apache.org/
https://spark.apache.org/

Scientific Programming 9

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

R command I test

0

1000

2000

3000

4000

5000

6000

Ti
m

e (
se

co
nd

)

Figure 10: Execution time of R command I in test environment I of Case 1.

Table 2: Test environment.

Environment Description

Test environment I
Adjust 10GB memory space and give it to a
virtual machine executing big data
processing

Test environment II Configure 20GB memory space of a virtual
machine executing big data processing

Table 3: R command test.

Command Description
R command I Only search special field

R command II Only search special field, and add comparison
conditions

R command III
Search special field, add comparison
conditions, and execute the commands with
while or for

Table 4: Test method.

Method Description

FCFS-SP Use command of enforced R to execute such
platform, and then input R command

FCFS-PS Directly input R command

MSHEFT-PS Use command of set to set working quantity, and
then input R command

data set is larger, which will much more highlight the impor-
tance of scheduling optimization and platform selection. In
addition to the job scheduling using MSHEFT algorithm
and optimized platform selection proposed in this paper,
this system is capable of integrating new analytics platform to
it by adding new big data analytics tools with related R shells
to system, without any further changes in others.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

1000

2000

3000

4000

5000

6000

7000
Ti

m
e (

se
co

nd
)

R command II test

Figure 11: Execution time of R command II in test environment I of
Case 1.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

2000

4000

6000

8000

10000

12000

14000

Ti
m

e (
se

co
nd

)

R command III test

Figure 12: Execution time of R command III in test environment I
of Case 1.

10 Scientific Programming

Table 5: Designated data size and its priority in Case 1.
Sequence Priority Data size Code name
1 1 850G A
2 3 30G B
3 1 400G C
4 2 10G D
5 5 500G E
6 3 630G F
7 2 1 T G
8 4 20G H
9 5 100G I
10 1 700G J

Table 6: Executable job list in Case 1.
Method Job

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
FCFS-SP A B C D E F G H I J
FCFS-PS A B C D E F G H I J
MSHEFT-PS C J A D G B F H I E

Table 7: Normalized performance index in Case 1.
Operation FCFS-SP-

RHadoop
FCFS-SP-
SparkR FCFS-PS MSHEFT-

PS
R command I 0.319 0.787 0.799 1.000
R command II 0.441 0.884 0.895 1.000
R command III 0.481 0.880 0.885 1.000

Table 8: Average normalized performance index and performance index in Case 1.
Method Average normalized

performance index Performance index

FCFS-SP-RHadoop 0.413 41.34
FCFS-SP-SparkR 0.850 85.03
FCFS-PS 0.859 85.94
MSHEFT-PS 1.000 100.00

Table 9: Designated data size and its priority in Case 2.
Sequence Priority Data size Data theme Code name
1 4 10G World-famous masterpiece WC
2 1 250G Load of production machine: Overlaoding OD
3 2 250G Load of production machine: Underloading UD
4 3 1 T Qualified rate of semiconductor products YR
5 1 750G Correlation among temperature and people’s power utilization TE
6 4 750G Correlation among rainfall and people’s power utilization RE
7 1 100G Flight information in the airport AP
8 5 500G Traffic violation/accidents TA

Scientific Programming 11

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

1000

2000

3000

4000

5000

6000

Ti
m

e (
se

co
nd

)

R command I test

Figure 13: Execution time of R command I in test environment II of Case 1.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

1000

2000

3000

4000

5000

6000

Ti
m

e (
se

co
nd

)

R command II test

Figure 14: Execution time of R command II in test environment II
of Case 1.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

2000

4000

6000

8000

10000

12000

14000

Ti
m

e (
se

co
nd

)

R command III test

Figure 15: Execution time of R command III in test environment II
of Case 1.

#1 #2 #3 #4 #5 #6 #7 #8
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

2000

4000

6000

8000

10000

12000
Ti

m
e (

se
co

nd
)

Figure 16: Execution time of experimental environment I in Case 2.

#1 #2 #3 #4 #5 #6 #7 #8
Job number

Rhadoop
SparkR

Platform selection
Job scheduling

0

2000

4000

6000

8000

10000

12000

Ti
m

e (
se

co
nd

)

Figure 17: Execution time of experimental environment II in Case2.

12 Scientific Programming

Table 10: Executable job list in Case 2.
Method Job

#1 #2 #3 #4 #5 #6 #7 #8
FCFS-SP WC OD UD YR TE RE AP TA
FCFS-PS WC OD UD YR TE RE AP TA
MSHEFT-PS AP OD TE UD YR WC RE TA

Table 11: Average normalized performance index and performance
index in Case 2.
Method Average normalized

performance index Performance index

FCFS-SP-RHadoop 0.314 31.42
FCFS-SP-SparkR 0.753 75.32
FCFS-PS 0.760 76.02
MSHEFT-PS 1.000 100.00

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is fully supported by the Ministry of Science and
Technology, Taiwan, under Grant nos. MOST 105-2221-E-
390-013-MY3 and MOST 104-2622-E-390-006-CC3.

References

[1] H. Chen, R. H. L. Chiang, and V. C. Storey, “Business intelli-
gence and analytics: frombig data to big impact,”MISQuarterly:
Management Information Systems, vol. 36, no. 4, pp. 1165–1188,
2012.

[2] B. R. Chang, H.-F. Tsai, and C.-L. Guo, “High performance
remote cloud data center backup using NoSQL database,”
Journal of InformationHiding andMultimedia Signal Processing,
vol. 7, no. 5, pp. 993–1005, 2016.

[3] B.-R. Chang, H.-F. Tsai, and H.-T. Hsu, “Secondary index
to Big Data NoSQL Database—Incorporating solr to HBase
approach,” Journal of Information Hiding andMultimedia Signal
Processing, vol. 7, no. 1, pp. 80–89, 2016.

[4] C. D. Wickens, “Processing resources in attention dual task
performance and workload assessment,” 1981, Office of Naval
Research Engineering Psychology Program, No. N-000-14-79-
C-0658.

[5] P. Mika and G. Tummarello, “Web semantics in the clouds,”
IEEE Intelligent Systems, vol. 23, no. 5, pp. 82–87, 2008.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2ndUSENIXWorkshop onHot Topics in Cloud
Computing, pp. 95–101, Portland, Ore, USA, 2010.

[7] B.-R. Chang, H.-F. Tsai, Y.-C. Tsai, C.-F. Kuo, and C.-C. Chen,
“Integration and optimization of multiple big data processing
platforms,” Engineering Computations (Swansea, Wales), vol. 33,
no. 6, pp. 1680–1704, 2016.

[8] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview of
business intelligence technology,” Communications of the ACM,
vol. 54, no. 8, pp. 88–98, 2011.

[9] D. Harish, M. S. Anusha, and K. V. Daya Sagar, “Big data
analytics using RHadoop,” International Journal of Innovative
Research in Advanced Engineering, vol. 2, no. 4, pp. 180–185,
2015.

[10] M. Adnan, M. Afzal, M. Aslam, R. Jan, and A. M. Martinez-
Enriquez, “Minimizing big data problems using cloud com-
puting based on Hadoop architecture,” in Proceedings of the
2014 11th Annual High Capacity Optical Networks and Emerg-
ing/Enabling Technologies (Photonics for Energy), HONET-PfE
2014, pp. 99–103, Charlotte, NC, USA, 2014.

[11] X. Yang, S. Liu, K. Feng, S. Zhou, and X.-H. Sun, “Visualization
and adaptive subsetting of earth science data in HDFS: a novel
data analytics strategy with hadoop and spark,” in Proceedings
of the 2016 IEEE International Conferences on Big Data and
Cloud Computing, Social Computing and Networking, Sustain-
able Computing and Communications, pp. 89–96, Atlanta, Ga,
USA, 2016.

[12] Apache Spark, 2017, https://spark.apache.org/.
[13] M. Maurya and S. Mahajan, “Performance analysis of MapRe-

duce programs on Hadoop cluster,” in Proceedings of the 2012
World Congress on Information and Communication Technolo-
gies, WICT 2012, pp. 505–510, Trivandrum, India, 2012.

[14] A. Kala Karun and K. Chitharanjan, “A review on hadoop—
HDFS infrastructure extensions,” in Proceedings of the 2013
IEEE Conference on Information and Communication Technolo-
gies, ICT 2013, pp. 132–137, Tamil Nadu, India, 2013.

[15] L. George, HBase: The Definitive Guide: Random Access to Your
Planet-Size Data, O’Reilly Media, Inc, Sebastopol, Calif, USA.

[16] A.Thusoo, J. S. Sarma, N. Jain et al., “Hive: a warehousing solu-
tion over a map-reduce framework,” Proceedings of the VLDB
Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[17] Caesars Entertainment, 2017, https://www.cloudera.com/about-
cloudera/press-center/press-releases/2015-05-05-cloudera-intel-
accelerate-enterprise-hadoop-adoption-industry-partnership.html.

[18] Cerner, 2017, https://www.cloudera.com/customers/cerner.html.
[19] eharmony, 2017, http://www.eharmony.com/engineering/mapping-

love-with-hadoop/#.WKCRgTt9600.
[20] J. Heinrich and B. Broeksema, “Big data visual analytics with

parallel coordinates,” in Proceedings of the Big Data Visual
Analytics, BDVA 2015, Tasmania, Australia, 2015.

[21] AzureHDInsight, 2017, https://azure.microsoft.com/zh-tw/services/
hdinsight/.

[22] G. Li, J. Kim, and A. Feng, “Yahoo audience expansion: migra-
tion from hadoop streaming to spark,” in Proceedings of the
Spark Summit 2013, San Francisco, Calif, USA, 2013, Yahoo,
2017, https://spark-summit.org/2013/li-yahoo-audience-expansion-
migration-from-hadoop-streaming-to-spark/.

[23] Cloudera Spark Streaming, 2017, https://blog.cloudera.com/
blog/2016/05/new-in-cloudera-labs-envelope-for-apache-spark-
streaming/.

[24] M. S. Aravinth, M. S. Shanmugapriyaa, M. S. Sowmya, and M.
E. Arun, “An efficient hadoop frameworks sqoop and ambari
for big data processing,” International Journal for Innovative
Research in Science and Technology, vol. 1, no. 10, pp. 252–255,
2015.

[25] S. Hoffman, Apache Flume: Distributed Log Collection for
Hadoop, Packt Publishing Ltd, Maharashtra, India, 2013.

https://spark.apache.org/
https://www.cloudera.com/about-cloudera/press-center/press-releases/2015-05-05-cloudera-intel-accelerate-enterprise-hadoop-adoption-industry-partnership.html
https://www.cloudera.com/about-cloudera/press-center/press-releases/2015-05-05-cloudera-intel-accelerate-enterprise-hadoop-adoption-industry-partnership.html
https://www.cloudera.com/about-cloudera/press-center/press-releases/2015-05-05-cloudera-intel-accelerate-enterprise-hadoop-adoption-industry-partnership.html
https://www.cloudera.com/customers/cerner.html
http://www.eharmony.com/engineering/mapping-love-with-hadoop/#.WKCRgTt9600
http://www.eharmony.com/engineering/mapping-love-with-hadoop/#.WKCRgTt9600
https://azure.microsoft.com/zh-tw/services/hdinsight/
https://azure.microsoft.com/zh-tw/services/hdinsight/
https://spark-summit.org/2013/li-yahoo-audience-expansion-migration-from-hadoop-streaming-to-spark/
https://spark-summit.org/2013/li-yahoo-audience-expansion-migration-from-hadoop-streaming-to-spark/
https://blog.cloudera.com/blog/2016/05/new-in-cloudera-labs-envelope-for-apache-spark-streaming/
https://blog.cloudera.com/blog/2016/05/new-in-cloudera-labs-envelope-for-apache-spark-streaming/
https://blog.cloudera.com/blog/2016/05/new-in-cloudera-labs-envelope-for-apache-spark-streaming/

Scientific Programming 13

[26] A. Gahlawat, “Big data analytics using R and Hadoop,” Interna-
tional Journal of Computational Engineering and Management,
vol. 1, no. 17, pp. 9–14, 2013.

[27] M. Zaharia, M. Chowdhury, T. Das et al., “Fast and interactive
analytics over Hadoop data with Spark,” USENIX Login, vol. 37,
no. 4, pp. 45–51, 2012.

[28] S. Urbanek, M. S. Urbanek, and S. J. JDK, “Package ‘rJava’,” 2017,
http://www.rforge.net/rJava/.

[29] S. Salian and D. G. Harisekaran, “Big data analytics predicting
risk of readmissions of diabetic patients,” International Journal
of Science and Research, vol. 4, no. 4, pp. 534–538, 2015.

[30] B. R. Chang, H.-F. Tsai, and C.-M. Chen, “Empirical analysis of
cloud-mobile computing based VVoIP with intelligent adapta-
tion,” Journal of Internet Technology, vol. 17, no. 5, pp. 993–1002,
2016.

[31] ProxmoxVirtual Environment, 2017, https://pve.proxmox.com/.
[32] B. R. Chang, H.-F. Tsai, and Y.-C. Tsai, “High-performed

virtualization services for in-cloud enterprise resource planning
system,” Journal of Information Hiding and Multimedia Signal
Processing, vol. 5, no. 4, pp. 614–624, 2014.

[33] H.Topcuoglu, S.Hariri, andM.Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260–274, 2002.

http://www.rforge.net/rJava/
https://pve.proxmox.com/

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

