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Due to the ambiguity and impreciseness of keyword query in relational databases, the research on keyword query expansion has
attracted wide attention. Existing query expansion methods expose users’ query intention to a certain extent, but most of them
cannot balance the precision and recall. To address this problem, a novel two-step query expansion approach is proposed based on
query recommendation and query interpretation. First, a probabilistic recommendation algorithm is put forward by constructing
a term similarity matrix and Viterbi model. Second, by using the translation algorithm of triples and construction algorithm of
query subgraphs, query keywords are translated to query subgraphswith structural and semantic information. Finally, experimental
results on a real-world dataset demonstrate the effectiveness and rationality of the proposed method.

1. Introduction

In recent years, keyword query in relational databases has
been widely applied due to its simplicity and ease of use
[1, 2]. Although this method does not require users to be
knowledgeable about the underlying structure of databases
and structured query language (e.g., SQL), its semantic
fuzziness and its expressive power are limited due to the lack
of structure [3]. In addition, ordinary users are usually unable
to specify exact keywords to describe their query intention,
which makes it harder to return adequate results through
keyword query [4, 5]. For these reasons, the precise and recall
of keyword query methods cannot be effectively guaranteed
[6]. Therefore, query expansion has even been an important
research branch,which can completely andprecisely interpret
the query and then improve the recall and precision of query
results [7–10].

Problem andMotivation. Query expansion is to provide more
descriptions for the information requirements to improve the
query performance. First, we formally define the problem of
query expansion as follows.

Definition 1 (query expansion). Given an input keyword
query 𝑄 = {𝑘1, 𝑘2, . . . , 𝑘𝑚} over a relational database, query

expansion is to find 𝑘 related queries 𝑄𝑖 (𝑖 = 1, . . . , 𝑘)
with 𝑘 largest score(𝑄, 𝑄𝑖), where score(𝑄, 𝑄𝑖) evaluates the
relevance between 𝑄 and 𝑄𝑖.

Then, we will illustrate the research motivation of this
paper by the following examples and analysis. Although
numerous query expansion methods can be found in the
scientific literature, unfortunately these studies suffer from
two main limitations. First, existing approaches do not
consider the relationship between keywords, which causes
the low query precision. Second, most of the existing work
neglects the similar words or related items of query keywords,
leading to the low query recall. On the one hand, Meng et
al. propose a semantic approximate keyword query method
based on keyword and query coupling relationships [11].This
method partly solves the problems of semantic fuzziness and
limitations of expression, but it analyzes the keyword and
query coupling relationships through query history. When
the query history of database is incomplete and evenmissing,
the method will not be able to conduct semantic analysis
normally. Additionally, the queries obtained by this method
contain only content information related to the keywords
rather than the structure information between keywords,
thus affecting the query precision. For example, suppose a
user issues the keyword query “Machine learning Arthur
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Figure 1: An expanded query.

Samuel” in DBLP to retrieve the paper “Machine learning”
published by Arthur Samuel. The query expansion contains
“Machine learningArthur Samuel SIGMOD” using the above
query expansion method. The expansion extends the query
with the content but lacks structure information. Conse-
quently, all tuples containing “Machine learning,” “Arthur
Samuel,” or “SIGMOD” will be returned. Obviously, such
results are not precise enough and many of them may not be
useful. Themethod proposed in this paper extends the initial
query with content and structure related to the keywords. An
expanded query is as shown in Figure 1.

It can express the potential semantic and structural
information of original keyword query: find out the paper
“Machine learning” published in SIGMOD and authored by
Arthur Samuel; simultaneously find out the paper “Markov”
which cites paper “Machine learning” and authored by
Arthur Samuel. In contrast to the query expansion in [11],
themethod proposed in this paper extends the original query
to query subgraphs with underlying structure of databases
and thus further improves the query precision. On the other
hand, Ganti et al. [12] translates keyword queries into SQL
based on the materialized mappings. Bergamaschi et al. [3]
propose aMetadatamethod to translate keyword queries into
SQL based on Munkres algorithm. Though these methods
describe users’ query intention to a degree, they do not take
into account similar words and related items extension. Thus
these methods have relative high query precision, but their
recall needs to be further improved. For example, assume
that a user hopes to study the methods of data analysis.
Because of his knowledge limitation, the user accesses the
database DBLP and submits a keyword query “Machine
learning Arthur Samuel,” and the expanded query obtained
via the above methods is as follows: select R3.Title from
Author R1, PaperAuthor R2, Paper R3 where R2.Pid=R3.Pid
and R2.Aid=R1.Aid and match(R3.Title) against (“Machine
learning” in Boolean mode) and match(R1.Name) against
(“Arthur Samuel” in Boolean mode), while the user may also
be intending to retrieve papers which have similar or relevant
topics to “Machine learning” such as paper “data mining”
published by Micheline Kamber. Since paper “data mining”
cites paper “Machine learning” and they are much related
to each other, the user is also interested in it. The results
of the query expansion method proposed in this paper are
as shown in Figure 2. Compared with the previous result,
these results not only have structural relationship between
keywords but also contain the related or similar queries with
query keywords.

The analysis and examples of the query expansion meth-
ods in Section 1 illustrate that the key challenge here is to
develop an approach which balances both query precision
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Figure 2: An expanded query of ReInterpretQE.

and recall. In this paper we focus on the problem of how
to tackle the above two limitations and then improve the
performance of keyword query expansion approach. We
propose a novel query expansion method ReInterpretQE
based on query recommendation and interpretation, which
extends a keyword query to a list of query subgraphs. These
subgraphs could better capture users’ information need and
the possible semantics of the keyword query and then guide
users to explore related tuples in the relational database. First,
we construct a term similarity matrix based on the tuple
information contained in relational databases. Second, we
make the query recommendation using the similarity matrix
and dynamic programming to get a query list. This query list
consists of top-𝑘 queries related to the initial query. Finally,
we transform the keyword query into query subgraphs.
Through the query recommendation and interpretation, the
query expansionmethod improves the recall and precision of
query results.

The main contributions of this paper are summarized as
follows:

(1) We present a keyword query expansion paradigm
ReInterpretQE in relational databases, which is based
on query recommendation and interpretation.

(2) We design a probabilistic recommendation algorithm
based on similarity matrix and dynamic program-
ming.

(3) We propose a keyword query interpretation method.
It uses statistical information and schema graph of
database for translating a keyword query to query
subgraphs.

(4) We conduct extensive experiments on the DBLP
dataset, and experimental results demonstrate the
effectiveness and feasibility of the proposed method.

The paper is organized as follows: Section 1 introduces
the research motivation, main contribution, and structure
of this paper; Section 2 reviews the related work; Section 3
describes the architecture of approach ReInterpretQE and
then provides details of algorithms in query recommendation
and query interpretation; Section 4 conducts the experiments
on a real dataset and compares the experimental results;
Section 5 concludes this paper and prospects the study in
future.
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2. Related Work

This section discusses the related research work. It mainly
includes the following two parts: keyword query in relational
databases and keyword query expansion.

2.1. Keyword Query in Relational Databases. Recently, key-
word query methods in relational databases have been stud-
ied extensively [2, 13–15]. According to the differentmodeling
methods of databases, the existing query methods can be
divided into twomain categories: schema graph-basedmeth-
ods and data graph-based methods. In [16–21], the database
is modeled as a schema graph, where nodes represent tables
and edges represent primary-foreign-key relationships.These
methods enumerate all possible CNs (Candidate Networks)
based on the schema graph. Although these methods store
the abstract structural information and take little memory,
the generation process of CNs needs to take a huge amount
of time. Correspondingly, in [22–27] the database is modeled
as a data graph, where nodes represent tuples and edges
represent primary-foreign-key relationships between tuples.
The methods identify the minimum connection trees that
contain the keywords on the data graph. Amajor challenge of
themethods is themaintenance of data graph.Thewhole data
graph needs to be reconstructed when the data in database
changes, which is often a time-consuming exercise.Therefore,
it is important to study the dynamic update of databases and
design incremental query methods based on the dynamic
construction of data graph.

2.2. Keyword Query Expansion Paradigm. In the field of
keyword query in relational databases, the majority of exist-
ing studies have focused on how to improve the efficiency
of query algorithms, while effective query preprocessing
has yet to be investigated. Since keyword queries lack the
structural information and users tend to select inappropriate
keywords, semantic fuzziness becomes an urgent problem
to be solved. The method in [28] expands the original
query by using query log mining techniques, but it is not
applicable in the relational databases. Reference [7] selects
the related query expression using user feedback. The results
obtained by this query expression are more accordant with
users’ query intention. However, it needs the interaction of
humans, so its efficiency is low. In [3], the keyword query is
transformed to a SQL statement based on Munkres, which
provides possible semantic descriptions. This method is
useful for identifying users’ query intention.Nevertheless, the
approach does not consider the multiple connection between
keywords (i.e., there are various explanations for a keyword
query). In addition, the above approach does not take into
account the similar words and related items which can well
express the intention of users. An analysis model about
coupling relationship is presented in [11]. It extracts semantic
relations based on query history. However, this model also
has great limitations. When the query logs are missing or
user’s preference often changes, the model cannot be applied
effectively. Therefore, this paper proposes a query expan-
sion method ReInterpretQE, which consists of two steps:
query recommendation and query interpretation. First, we

construct similarity matrix based on the structure and con-
tent information in databases and put forward a probabilistic
recommendation algorithm using dynamic programming.
Second, we come up with a keyword query interpretation
method to transform the keywords to subgraphs based on
the statistics and schema graph of database. Experimental
results show that both the recall and precision of query results
have been improved by using the proposed query expansion
method.

3. Query Expansion Approach

3.1. Overview of ReInterpretQE. To solve the two problems
of semantic fuzziness and limitations of expression, this
paper comes up with a novel two-step query expansion
method, ReInterpretQE. This method is based on query
recommendation and query interpretation.The goal of query
recommendation is to extend the initial query 𝑄 to a list
of keyword queries related to it, so that the query results
are more comprehensive and better to meet the demands
of users. The query interpretation is to translate the list of
keyword queries into query subgraphs, which can lock the
query results more precisely. It is designed to improve the
recall and precision of query results. Figure 3 shows the archi-
tecture diagram of ReInterpretQE, which is divided into two
main phases: query recommendation and query interpreta-
tion.

Phase 1 (query recommendation). In the process of query
recommendation, the intrasimilarity and intersimilarity
between terms are calculated using the structure informa-
tion, content information, and words cooccurrence, and a
similarity matrix is constructed based on the above two
similarities. Then the idea of dynamic programming is
used to build Viterbi model; thus a keyword query 𝑄 =
{𝑘1, 𝑘2, . . . , 𝑘𝑚} can be extended to a keyword query list𝑄1 =
(𝑞11, 𝑞12, . . . , 𝑞1𝑚) ⋅ ⋅ ⋅ 𝑄𝑘 = (𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑚). The query list pro-
duced by the query recommendation process is semantically
related to the original query.

Phase 2 (query interpretation). In the process of query
interpretation, an algorithm is put forward for translation
from keywords to triples. Then query subgraphs are built
for each query in query list using the schema graph of
database. The implementation detail of the algorithm will be
introduced in the subsequent sections.

First, Section 3.2 describes how to recommend query
list with the same or close similarity of meaning accord-
ing to structure information and content information in
databases. This problem can be solved effectively by the
construction of term similarity matrix and probabilistic
recommendation algorithm. The method makes the query
results contain more information that users want to obtain.
Thus the query recall can be further improved. Section 3.3
puts forward a two-step query interpretation method. The
keyword query can be translated into query subgraphs
with potential structural information through the following
steps: Step 1: translation from keywords to triples; Step 2:
construction of query subgraphs. With the above process of
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Figure 3: Architecture of ReInterpretQE.

query interpretation, the query precision is improved effect-
ively.

3.2. Query Recommendation. It is difficult to specify proper
keywords to express query intention for a common user.
Therefore, a lot of information related to query cannot be
returned as results. This section presents a query recommen-
dation method to extend the original query and derives a
series of queries which have a similar semantic to the original
query. Thus the recall of the query results can be improved.
Assume that a user submits a query 𝑄 = {𝑘1, 𝑘2, . . . , 𝑘𝑚}.
First, Section 3.2.1 constructs the term similarity matrix to
find the top-𝑛 keywords 𝑘1𝑖 , 𝑘2𝑖 , . . . , 𝑘𝑛𝑖 related to any keyword𝑘𝑖 in original query 𝑄. Second, Section 3.2.2 proposes a
probabilistic recommendation algorithm. It uses dynamic
programming to build Viterbi model for translating the
original query keyword 𝑄 = {𝑘1, 𝑘2, . . . , 𝑘𝑚} to a query list
𝑄1 = (𝑞11, 𝑞12, . . . , 𝑞1𝑚) ⋅ ⋅ ⋅ 𝑄𝑘 = (𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑚).

3.2.1. Construction of Term Similarity Matrix. In the con-
struction phase of term similarity matrix, from two aspects
of intrasimilarity and intersimilarity, this paper calculates
the similarity between keywords based on the structure
information and content information.

(a) Intrasimilarity. Normally, in information retrieval if two
keywords often appear in the same documents, thus key-
words are regarded as semantically related. In relational
databases, tuples are generally taken as virtual documents.
Similarly, the higher the cooccurrence of two keywords in
the same tuples, the higher the degree of similarity between

Table 1: Relational database DBLP.

Pid Title
𝑃1 Database, query, structured information
𝑃2 Query, statistical analysis, machine learning
𝑃3 Probability, machine learning, data mining
𝑃4 Structured information, database, data mining

two keywords. The intrasimilarity between two keywords is
measured using Jaccard similarity coefficient, as shown in

simiin (𝑘𝑖, 𝑘𝑗)

=
{{{
{{{
{

𝐽 (𝑘𝑖, 𝑘𝑗) =
󵄨󵄨󵄨󵄨󵄨TS (𝑘𝑖) ∩ TS (𝑘𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨TS (𝑘𝑖) ∪ TS (𝑘𝑗)󵄨󵄨󵄨󵄨󵄨

𝑖 = 𝑗
1 𝑖 ̸= 𝑗,

(1)

where TS(𝑘𝑖) and TS(𝑘𝑗) are tuple sets containing 𝑘𝑖 and 𝑘𝑗,
respectively.

We can obtain the intrasimilarity between any two key-
words in databases by formula (1). Example 2 will further
show the calculation process above.

Example 2. To facilitate explanation of the approach, we
simplify the structure and content of database as shown in
Table 1. There is a data table with four tuples 𝑃1, 𝑃2, 𝑃3, and𝑃4 in DBLP database. We use da, qe, si, sa, ml, pr, and dm to
represent database, query, structured information, statistical
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analysis, machine learning, probability, and data mining.The
intrasimilarity between keywords da and qe is as follows:

simiin (da, qe) = 𝐽 (𝑘𝑖, 𝑘𝑗) =
󵄨󵄨󵄨󵄨{𝑃1, 𝑃4} ∩ {𝑃1, 𝑃2}󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{𝑃1, 𝑃4} ∩ {𝑃1, 𝑃2}󵄨󵄨󵄨󵄨

= 0.3.
(2)

Similarly, we can calculate the intrasimilarity between any
two keywords and get the following intrasimilarity matrix
Min:

Min =

[[[[[[[[[[[[[[[[[
[

da qe si sa ml pr dm
da 1 0.3 1 0 0 0 0.3
qe 0.3 1 0.3 0.5 0.3 0 0
si 1 0.3 1 0 0 0 0.3
sa 0 0.5 0 1 0.5 0 0
ml 0 0.3 0 0.5 1 0.5 0.3
pr 0 0 0 0 0.5 1 0.5
dm 0.3 0 0.3 0 0.3 0.5 1

]]]]]]]]]]]]]]]]]
]

. (3)

(b) Intersimilarity. The intrasimilarity reflects the direct
semantic similarity according to the cooccurrence of key-
words. Additionally, there is also indirect semantic similarity
between keywords. For example, although da and sa do not
appear in a tuple at the same time, they have the indirect
similarity via keyword qe, because da and qe appear in the
same tuple 𝑃1, while sa and qe appear in the same tuple
𝑃2. Keyword qe is called the semantic associative term; thus
keywords da and sa have the indirect semantic similarity.
Next, we will detail the computing process of intersimilarity.

Suppose keywords 𝑘𝑖 and 𝑘𝑗 belong to different tuples and
the set of semantic associative terms is 𝑇. If 𝑘𝑚 is any element
in𝑇, then the intersimilarity between 𝑘𝑖 and 𝑘𝑗 via associative
term 𝑘𝑚 is as shown in

simiout (𝑘𝑖, 𝑘𝑗 | 𝑘𝑚)
= min {simiin (𝑘𝑖, 𝑘𝑚) , simiin (𝑘𝑗, 𝑘𝑚)} .

(4)

The intersimilarity between 𝑘𝑖 and 𝑘𝑗 is as shown in

simiout (𝑘𝑖, 𝑘𝑗)

=
{{
{{
{

∑∀𝑘
𝑚
∈𝑇 simiout (𝑘𝑖, 𝑘𝑗 | 𝑘𝑚)

|𝑇| 𝑖 ̸= 𝑗
1 𝑖 = 𝑗.

(5)

Example 3. We take the DBLP database in Table 1, for
example, as well. Example 2 leads us to know that the
intrasimilarity between keywords si andml is simiin(si,ml) =
0. They have the intersimilarity via keywords qe and dm,

where simiin(si, qe) > 0, simiin(ml, qe) > 0, simiin(si, dm) >
0, and simiin(ml, dm) > 0. Thus the intersimilarity between
si and ml via qe is as follows:

simiout (si,ml | qe)
= min {simiin (si, qe) , simiin (ml, qe)} = 0.3. (6)

The intersimilarity between si andml via dm is as follows:

simiout (si,ml | dm)
= min {simiin (si, dm) , simiin (ml, dm)} = 0.3. (7)

In conclusion, the intersimilarity between si and ml is as
follows:

simiout (si,ml) = ∑∀𝑘
𝑚
∈{qe,dm} simiout (si,ml | 𝑘𝑚)󵄨󵄨󵄨󵄨{qe, dm}󵄨󵄨󵄨󵄨

= 0.3.
(8)

The intersimilarity matrix of DBLP database in Table 1 is
as follows:

Mout =

[[[[[[[[[[[[[[[[[
[

da qe si sa ml pr dm
da 1 0 0 0.3 0.3 0.3 0
qe 0 1 0 0 0 0.3 0.3
si 0 0 1 0.3 0.3 0.3 0
sa 0.3 0 0.3 1 0 0.5 0.3
ml 0.3 0 0.3 0 1 0 0
pr 0.3 0.3 0.3 0.5 0 1 0
dm 0 0.3 0 0.3 0 0 1

]]]]]]]]]]]]]]]]]
]

. (9)

(c) Construction of Term Similarity Matrix. Formula (10)
integrates the intrasimilarity and intersimilarity to calculate
the similarity between any two keywords

simi (𝑘𝑖, 𝑘𝑗) = 𝛼 simiin (𝑘𝑖, 𝑘𝑗)
+ (1 − 𝛼) simiout (𝑘𝑖, 𝑘𝑗) ,

(10)

where 𝛼 ∈ [0, 1] is the balance factor to adjust the contri-
bution of two similarities to the final results. From the result
of parameter setting experiment in Section 4.2, the precision
of term similarity calculation reaches the maximum when 𝛼
equals 0.5. So we can get the following term similarity matrix
of DBLP database in Table 1:

M =

[[[[[[[[[[[[[[[[[
[

da qe si sa ml pr dm
da 1 0.15 0.5 0.15 0.15 0.15 0.15
qe 0.15 1 0.15 0.25 0.15 015 0.15
si 0.5 0.15 1 0.15 0.15 0.15 0.15
sa 0.15 0.25 0.15 1 0.25 0.25 0
ml 0.15 0.15 0.15 0.25 1 0.25 0.15
pr 0.15 0.15 0.15 0.25 0.25 1 0.25
dm 0.15 0.15 0.15 0.15 0.15 0.25 1

]]]]]]]]]]]]]]]]]
]

. (11)
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Input: Keyword query 𝑄 = {𝑘1, 𝑘2, . . . , 𝑘𝑚}, list of related keywords 𝑘1𝑖 , 𝑘2𝑖 , . . . , 𝑘𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑚
Out: 𝑄1, 𝑄2, . . . , 𝑄𝑘, where 𝑄𝑖 = (𝑞𝑖1, 𝑞𝑖2, . . . , 𝑞𝑖𝑚)
Method:
(1) Delete the redundant related keywords

{𝑘󸀠1, 𝑘󸀠2, . . . , 𝑘󸀠𝑔} ← {𝑘11, 𝑘21, . . . , 𝑘𝑛1} ∪ {𝑘12, 𝑘22, . . . , 𝑘𝑛2} ∪ ⋅ ⋅ ⋅ ∪ {𝑘1𝑚, 𝑘2𝑚, . . . , 𝑘𝑛𝑚} (𝑔 ≤ 𝑚 ⋅ 𝑛)
(2) Build Viterbi model 𝜆 = (𝐴, 𝐵, 𝜋)

𝐴𝑔,𝑔 = {𝑎𝑖𝑗 ‖ 1 ≤ 𝑖, 𝑗 ≤ 𝑔} , 𝑎𝑖𝑗 = simi(𝑘󸀠𝑖 , 𝑘󸀠𝑗)
𝐵𝑔,𝑚 = {𝑏𝑖𝑗 ‖ 1 ≤ 𝑖 ≤ 𝑔, 1 ≤ 𝑗 ≤ 𝑚} , 𝑏𝑖𝑗 = simi(𝑘󸀠𝑖 , 𝑘𝑗)𝜋𝑖 = 𝑃(𝑘󸀠𝑖 ) = simi(𝑘󸀠𝑖 , 𝑘1)(3) Initialize
//Variable 𝛿𝑡(𝑖) is the maximum probability in all paths whose state is 𝑖 at time 𝑡.
//Variable 𝜓𝑡(𝑖) the 𝑖 − 1th node of path with the maximum probability in state 𝑖 at time 𝑡.
𝛿1 (𝑖) = 𝜋𝑖𝑏𝑖 (𝑘1) , 𝑖 = 1, 2, . . . , 𝑔
𝜓1(𝑖) = 0, 𝑖 = 1, 2, . . . , 𝑔

(4) Loop
For 𝑡 = 2, 3, . . . , 𝑚
𝛿𝑡 (𝑖) = max

1≤𝑗≤𝑔
[𝛿𝑡−1 (𝑗) 𝑎𝑗𝑖] 𝑏𝑖 (𝑘𝑡) , 𝑖 = 1, 2, . . . , 𝑔

𝜓𝑡 (𝑖) = arg max
1≤𝑗≤𝑔

[𝛿𝑡−1 (𝑗) 𝑎𝑗𝑖] , 𝑖 = 1, 2, . . . , 𝑔
(5) End

Set 𝑃{𝑃1, 𝑃2, . . . , 𝑃𝑘} = top-𝑘1≤𝑖≤𝑔𝛿𝑚(𝑖)
Set 𝑞𝑚{𝑞1𝑚, 𝑞2𝑚, . . . , 𝑞𝑘𝑚} = arg top-𝑘1≤𝑖≤𝑔[𝛿𝑚(𝑖)](6) Paths backtracking
For 𝑡 = 𝑚 − 1,𝑚 − 2, . . . , 1
𝑞1𝑡 = 𝜓𝑡+1(𝑞1𝑡+1) ⋅ ⋅ ⋅ 𝑞𝑘𝑡 = 𝜓𝑡+1(𝑞𝑘𝑡+1)(7) Return top-𝑘 keyword queries
𝑄1 = (𝑞11, 𝑞12, . . . , 𝑞1𝑚) ⋅ ⋅ ⋅ 𝑄𝑘 = (𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑚)

Algorithm 1: Probabilistic recommendation algorithm.

When a user submits a query𝑄 = {𝑘1, 𝑘2, . . . , 𝑘𝑚}, we can
get the keyword lists 𝑘1𝑖 , 𝑘2𝑖 , . . . , 𝑘𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑚, related to the
original query according to the term similarity matrixM.

3.2.2. Probabilistic Recommendation Algorithm. This section
comes up with a probabilistic recommendation algorithm.
We build the Viterbi model using dynamic programming and
generate the query list related to query input, as shown in
Algorithm 1.

3.3. Query Interpretation. As a fuzzy querymethod, keyword
query cannot reflect query intention accurately. This section
translates the keyword query 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚) to a set of
query subgraphs𝑄𝐺𝑆{𝑄𝐺1, 𝑄𝐺2, . . . , 𝑄𝐺𝑛} by the translation
algorithm of triples and construction algorithm of query sub-
graphs, where 𝑄𝐺𝑖 is the schema subgraph. Compared with
the keyword query, the query subgraph not only contains the
content information but also carries structural and semantic
information. Thus it can more accurately reflect the users’
query intention.

3.3.1. Translation from Keywords to Triples. In order to
identify users’ query intention, we should know exactly the
role of a keyword in databases, that is, to know whether it
is Metadata or content data. Thus each keyword should be
extended to include the table name, attribute names, and
attribute values of the table where the keyword is located.

Table 2: Table names statistics.

Keywords Table names
paper Paper
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Table 3: Attribute names statistics.

Keywords Attribute names
name Paper.Name
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Table 4: Attribute values statistics.

Keywords Attribute values
database Paper.Name.𝑃1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The paper proposes the triple structure 𝑇𝑟𝑖(𝑇𝑁,𝐴𝑁,𝐴𝑉)
to describe the above information. Before introducing the
translation algorithm of triples, we first define the following
three statistics tables: statistics table 𝑇𝑁 of table names,
statistics table 𝐴𝑁 of attribute names, and statistics table 𝐴𝑉
of attribute values. They make statistical analysis on the table
names, attribute names, and attribute values, respectively.
These three statistics tables have similar structures, as shown
in Tables 2, 3, and 4.
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By analyzing the statistics tables, it is obvious that every
keyword in query 𝑄 may correspond to several different
semantic interpretations; namely, keyword 𝑘𝑖 can be trans-
lated to a set of triples. Query 𝑄 is also translated to several
sets of triples. In most relational databases, the numbers of
table names and attribute names are far less than the number
of attribute values, so most ambiguities occur during the
translation process of attribute values. Therefore, when we
conduct the translation, we first try to match the keywords
to the table names and attribute names. Then we match the
remaining keywords to the attribute values to get the final sets
of triples. Algorithm 2 shows the details of this translation
process.

Lines (1)–(9), (10)–(24), and (25)–(39) in Algorithm 2,
respectively, match the keywords in query 𝑄 to statistics TN
of table names, statistics AN of attribute names, and statistics
AVof attribute values. Triples corresponding to each keyword
in query𝑄 can be obtained. As each keywordmay correspond
to more than one attribute name or attribute value, lines
(40)–(46) and (47)–(52) handle these cases, respectively.
It makes the different attribute names or attribute values
corresponding to the same keyword translated to multiple
sets of triples. All possible sets of triples are generated by the
algorithm.

3.3.2. Query Subgraphs Construction. Before the construc-
tion of query subgraphs, we should combine the triples in
𝑇𝑟𝑖𝑆[𝑖] = (𝑇𝑟𝑖𝑖1, 𝑇𝑟𝑖𝑖2, . . . , 𝑇𝑟𝑖𝑖𝑚). The paper makes the
following merger rules.

We assume that 𝑇𝑟𝑖𝑆[𝑖] is the set of triples corresponding
to query 𝑄. 𝑇𝑟𝑖𝑖𝑗 ∈ 𝑇𝑟𝑖𝑆[𝑖] will be added to a new group, if
𝑇𝑟𝑖𝑖𝑗 satisfied the following three cases.

Case 1. The table name of 𝑇𝑟𝑖𝑖𝑗 is different from all the table
names of 𝑇𝑟𝑖𝑖𝑘 ∈ 𝑇𝑟𝑖𝑆[𝑖], 𝑘 ∈ [1, 𝑗 − 1].
Case 2. The table name of 𝑇𝑟𝑖𝑖𝑗 is the same as the one of
𝑇𝑟𝑖𝑖𝑘 ∈ 𝑇𝑟𝑖𝑆[𝑖], 𝑘 ∈ [1, 𝑗 − 1], but the attribute name and
attribute value of 𝑇𝑟𝑖𝑖𝑗 are null.
Case 3. The table name and attribute name of 𝑇𝑟𝑖𝑖𝑗 are the
same as the ones of 𝑇𝑟𝑖𝑖𝑘 ∈ 𝑇𝑟𝑖𝑆[𝑖], 𝑘 ∈ [1, 𝑗 − 1], but the
attribute of 𝑇𝑟𝑖𝑖𝑗 is single-valued.

These merger rules are intended to add the triples
corresponding to different entities into different groups, so
that the interpretation process of triples is further refined.
After the translation from keywords to triples and the
mergers of triples, this paper translates the merged triples
𝑇𝑟𝑖𝐺[𝑖](𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑛) to query subgraphs, where ∀𝑔𝑖𝑗 ∈
𝑇𝑟𝑖𝐺[𝑖] contains all the triples belonging to the same entity.
Algorithm 3 describes the construction process of query
subgraphs in detail.

Lines (1)-(2) of Algorithm 3 initialize variables. Lines
(3)–(7) create node V󸀠𝑗 for the triple group 𝑔𝑖𝑗 in triple queries
𝑇𝑟𝑖𝐺[𝑖](𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑛) and add it to the query subgraph
𝑄𝐺. Line (8) traverses the schema graph 𝐺 to match the
minimal subgraph 𝑆𝐺 corresponding to the above nodes.
Lines (9)-(10) and (11)-(12) add the intermediate nodes

Table 5: Description of attributes in datasets.

Datasets Number of tuples Number of relationships
DBLP 4.3M 16.5M

and edges of 𝑆𝐺 to query subgraph 𝑄𝐺, respectively. Lines
(13)-(14) return the set 𝑄𝐺𝑆 of query subgraphs.

4. Results and Discussion

Our experiments are conducted on the real dataset DBLP
[29]. The experiments mainly deal with the selection of
balance factor 𝛼 in the calculation process of term similarity
and the performance evaluation of our query expansion
method ReInterpretQE. Section 4.1 introduces the dataset,
query sets, and experimental environment used in the
experiment. Section 4.2 compares the precisions of the term
similarity calculation with different parameters to choose the
optimal value of 𝛼. Section 4.3 gives contrast experiments
using Metadata [3] and 𝐾-coupling [11] as the baselines. The
performance of these algorithms is evaluated, respectively.
Performance metrics include precision, recall, and 𝐹-score.
The experiment is used to verify the performance of the
method ReInterpretQE.

4.1. Experimental Setup

4.1.1. Dataset. The paper uses the DBLP dataset released
in March 2015 [29]. The address of downloading is
http://dblp.uni-trier.de/. The main statistics of the dataset are
as shown in Table 5. DBLP is a computer bibliography dataset
widely used for query expansion in relational databases.
The dataset records the information about papers published
by scholars. Its original form is XML and we use the Java
SAX API to parse the XML file. Then we can obtain five
data tables, where tables Author, Paper, and Conference
contain information about scholars, papers, and conferences,
respectively. Tables Cite and Write are relationship tables.
The former specifies the reference relationships and the
latter contains the writing relationships between scholars
and papers. Figure 4 shows a sample of five tables from
the DBLP dataset. The database DBLP contains a number
of tuples. They have semantic relevance in content and
primary-foreign key relationships in structure. So the DBLP
dataset is very appropriate for testing the performance of our
query expansion method.

4.1.2. Query Sets. In the experiment, we invite researchers
to choose keywords from DBLP dataset and then build the
keyword query they want to perform. By this method, 6 sets
of querieswith length ranging from 1 to 6 are obtained to form
the query sets. Each set contains 10 queries. According to the
above method, the researchers constantly submit queries in
an extensive scope andwe collect 600 queries from researches
as the query history.

4.1.3. Experimental Environment. Our experiments are per-
formed on a computer running Windows 10 with Intel(R)

http://dblp.uni-trier.de/
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Input: 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑚)
Output: 𝑇𝑟𝑖𝑆[1], 𝑇𝑟𝑖𝑆[2], . . . , 𝑇𝑟𝑖𝑆[𝑖]; 𝑇𝑟𝑖𝑆[𝑖] = (𝑇𝑟𝑖𝑖1, 𝑇𝑟𝑖𝑖2, . . . , 𝑇𝑟𝑖𝑖𝑚)
Method:
(1) if (𝑄 is not Null) then
(2) for 𝑖 = 1 to |𝑄| do
(3) scan Table 𝑇𝑁;
(4) if (matched(𝑞𝑖) == TRUE) then
(5) (𝑞𝑖, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙).add To(𝑇𝑁𝑆);
(6) 𝑄.remove(𝑞𝑖);(7) end if
(8) end for
(9) end if
(10) if (𝑄 is not Null) then
(11) for 𝑗 = 1 to |𝑄| do
(12) scan Table 𝐴𝑁;
(13) IsAN = FLASE;
(14) foreach ANi in AN do:
(15) if (matched(𝑞𝑗) == TRUE) then
(16) (𝑞𝑗.𝑇𝑁, 𝑞𝑗, 𝑛𝑢𝑙𝑙).add To(𝐴𝑁𝑆𝑗);(17) IsAN = TRUE;
(18) end if
(19) end foreach;
(20) if (IsAN == TRUE) then
(21) 𝑄.remove(𝑞𝑗);(22) end if
(23) end for
(24) end if
(25) if (𝑄 is not Null) then
(26) for𝑚 = 1 to |𝑄| do
(27) scan Table AV ;
(28) IsAV = FLASE;
(29) foreach AVi in AV do:
(30) if (matched(𝑞𝑚) == TRUE) then
(31) (𝑞𝑚.𝑇𝑁, 𝑞𝑚.𝐴𝑁, 𝑞𝑚).add To(AVSj);(32) IsAN = TRUE;
(33) end if
(34) end foreach;
(35) if (IsAN == TRUE) then
(36) 𝑄.remove(𝑞𝑚);(37) end if
(38) end for
(39) end if
(40) 𝑇𝑟𝑖𝑆[1] = (𝑇𝑁𝑆1, 𝑇𝑁𝑆2, . . . , 𝑇𝑁𝑆|𝑇𝑁𝑆|, 1, 1, . . . , 1);(41) for 𝑘 = 1 to |𝐴𝑁𝑆| do
(42) Lth = Length(𝑇𝑟𝑖𝑆[ ]);
(43) for 𝑛 = 0 to |𝐴𝑁𝑆𝑘| − 1
(44) 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 1], 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 2], . . . , 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + Lth] =

(𝑇𝑟𝑖𝑆[1], 𝑇𝑟𝑖𝑆[2], . . . , 𝑇𝑟𝑖𝑆[Lth]) ∗ (1, 1, . . . , 1, 𝐴𝑁𝑆𝑘𝑛, 1, . . . , 1)T;𝐴𝑁𝑆𝑘𝑛 is the (|𝑇𝑁𝑆| + 𝑘)th
(45) end for
(46) end for
(47) for 𝑘 = 1 to |𝐴𝑉𝑆| do
(48) Lth = Length(𝑇𝑟𝑖𝑆[ ]);
(49) for 𝑛 = 0 to |𝐴𝑉𝑆𝑘| − 1
(50) 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 1], 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 2], . . . , 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + Lth] =

(𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 1], 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + 2], . . . , 𝑇𝑟𝑖𝑆[𝑛 ∗ Lth + Lth]) ∗ (1, 1, . . . , 1, 𝐴𝑉𝑆𝑘𝑛, 1, . . . , 1)T;𝐴𝑉𝑆𝑘𝑛 is the (|𝑇𝑁𝑆| + |𝐴𝑁𝑆| + 𝑘)th
(51) end for
(52) end for
(53) Result: 𝑇𝑟𝑖𝑆[1], 𝑇𝑟𝑖𝑆[2], . . . , 𝑇𝑟𝑖𝑆[𝑖];

Algorithm 2: Translation algorithm of triples.
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Figure 4: Example of relational database DBLP.

Input: Merged triples 𝑇𝑟𝑖𝐺[𝑖](𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑛), Schema
graph 𝐺
Output: Set of Query Subgraphs 𝑄𝐺𝑆
Method:
(1) 𝑄𝐺𝑆 ← 𝜙; 𝐵𝑁󸀠 ← 𝜙; 𝐵𝑁 ← 𝜙
(2) Let 𝑄𝐺 be a query subgraph;
(3) for 𝑗 = 1 to |𝑇𝑟𝑖𝐺[𝑖]| do
(4) Create a node V󸀠𝑗 for group of 𝑔𝑖𝑗;
(5) Let V󸀠𝑗 corresponds to V𝑗 in 𝐺;
(6) 𝐵𝑁󸀠 = 𝐵𝑁󸀠 ∪ {V󸀠𝑗}; 𝐵𝑁 = 𝐵𝑁 ∪ {V𝑗}
(7) Insert V󸀠𝑗 into 𝑄𝐺;
(8) 𝑆𝐺 = 𝑓𝑖𝑛𝑑𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐵𝑁,𝐺);
(9) foreach intermediate node 𝑖V in 𝑆𝐺 do
(10) Create a node 𝑖V󸀠 and insert it into 𝑄𝐺;
(11) foreach edge 𝑒(𝑖V𝑥, 𝑖V𝑦) in 𝑆𝐺 do
(12) Create an edge 𝑒(𝑖V󸀠𝑥, 𝑖V󸀠𝑦) in 𝑄𝐺;
(13) Add 𝑄𝐺 into 𝑄𝐺𝑆;
(14) Return 𝑄𝐺𝑆;

Algorithm 3: Query subgraph construction algorithm.

Core(TM) i5-4570 CPU @ 3.20GHz, 4GB of RAM, and 1 TB
Disk. All the algorithms are implemented in Java.

4.2. Parameter Setting. The experiment in this section is to
evaluate the impact of𝛼 on the precision of calculation results
and provides us guidelines in choosing a good value of 𝛼.
First, we randomly select 8 keywords from the query sets in
Section 4.1. For each keyword 𝑘𝑖, we can get the correspond-
ing top-6 related keywords by formula (10). Further, we can
get 11 different sets of results by adjusting the parameter 𝛼
from 0 to 1. Second, we integrate the related keywords in
the above results to get the set 𝐾𝑖 (set size ≤ 66). Finally,
we calculate the cooccurrence rate of keywords in set 𝐾𝑖
and 𝑘𝑖. Mark the keywords ranked top-10 as real set related
to 𝑘𝑖. For keyword 𝑘𝑖 and based on real set, the precisions
under different 𝛼 are as follows: the ratio between the number
of keywords related to 𝑘𝑖 through formula (10) and the
total number of the received keywords (13). The precisions
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Figure 5: Precision of results for different values of 𝛼.

corresponding to 8 keywords are summed and averaged to
get the final precision. Figure 5 illustrates how the precision
is adjusted by the parameter 𝛼.

As shown from Figure 5, the precision of the terms
similarity calculation is the maximum, 0.87, when 𝛼 equals
0.5. So we choose the parameter 𝛼 = 0.5 for the following
experiments.

4.3. Performance Study. In this subsection, we report the
performance of the query expansion method ReInterpretQE
in comparisonwith the state-of-the-art approaches,Metadata
[3] and 𝐾-coupling [11]. The performance is measured by
three evaluation metrics: precision, recall, and 𝐹-score. A
corresponding SQL statement is generated for each query in
the query set. The results obtained through SQL statement
are perceived as real query results and added in the test set
Test. Given the result set Result and real result set Test, the
precision, recall, and 𝐹-score can be calculated as follows:

precision = Result ∩ Test
Result

, (12)

recall = Result ∩ Test
Test

, (13)

𝐹-score = 2 × precision × recall
precision + recall

. (14)
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Figure 6: Precision comparison on DBLP database.
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Figure 7: Recall comparison on DBLP database.

Figures 6, 7, and 8 show the comparisons in terms of
precision, recall, and 𝐹-score. Each data point on the 𝑥-axis
of Figures 6, 7, and 8 corresponds to the number of keywords.
The 𝑦-axis presents the corresponding precision, recall, and
𝐹-score.

As we can see in Figure 6, the query expansion method
ReInterpretQE proposed in this paper achieves much higher
precision than the methods such as Metadata and 𝐾-
coupling significantly. For example, the average precision of
ReInterpretQE reaches 0.81, 20.9% and 26.6% higher than
Metadata and𝐾-coupling, respectively. Specifically, when the
number of keywords is 4, the precision of ReInterpretQE
is 0.76, while the precision of Metadata and 𝐾-coupling
is 0.64 and 0.62. The ReInterpretQE method increases the
precision by 18.8% and 22.6%, compared with Metadata and
𝐾-coupling, respectively. Overall, the precision of Metadata
method is little higher than 𝐾-coupling. And the precision
of ReInterpretQE is improved obviously compared with the
other two. This comparison shows the significance of our
proposed query interpretation, which can help to describe
the semantics of keyword queries and thus significantly
improve the query precision. More specifically, the reason
for the poor performance of 𝐾-coupling, as compared to
Metadata and ReInterpretQE, is that 𝐾-coupling method
focuses on identifying a set of keyword queries related to
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Figure 8: 𝐹-score comparison on DBLP database.

the given keyword query. The expanded queries obtained by
the𝐾-coupling method are still keyword queries without the
structure information between keywords. Yet the inherent
ambiguity of keyword queries may directly affect the query
precision. Methods Metadata and ReInterpretQE transform
the initial keyword query into SQL and query subgraphs,
respectively. The expansions of both methods contain struc-
tural information, which is helpful to improve the query
precision. The reason for effective and improved expansion
of ReInterpretQE over Metadata is that Metadata does not
consider themultiple connection between keywords and var-
ious explanations for a keyword query, while ReInterpretQE
translates the keyword query to a set of query subgraphs with
structural and semantic information through the translation
algorithm of triples and construction algorithm of subgraphs.
The subgraphs can locate the query results more precisely.

To further evaluate the performance of our method, we
vary different numbers of input keywords and compare the
corresponding recalls. Figure 7 plots the average recall of the
different query expansion methods. The evaluation results
show that ReInterpretQE generally produces expansion of
higher recall compared to the other two, suggesting that
query recommendation is crucial to obtain good perfor-
mance.More precisely, when the number of keywords is 4, the
recall of Metadata and 𝐾-coupling is 0.63 and 0.73, respec-
tively, while the one of ReInterpretQE is 0.80. As expected,
the recall of ReInterpretQE is approximately 9.6%higher than
that of the 𝐾-coupling method, and it is even higher when
compared with the other method, Metadata. We observe that
the methods 𝐾-coupling and ReInterpretQE beat Metadata
significantly. This is so because the Metadata method does
not take similar words and related items into account, while
the methods 𝐾-coupling and ReInterpretQE deal with the
problem accordingly, which can help to progressively and
efficiently make query expansion and thus lead to higher
query recall. ReInterpretQE always generates better results
than 𝐾-coupling. For example, ReInterpretQE achieves 0.82
average recall, which leads to about 5.1% over 𝐾-coupling.
The reason for this phenomenon is that 𝐾-coupling only
uses keyword coupling relationship matrix to analyze the
original query, while ReInterpretQE conducts the similar
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words and related items expansion for every keyword and
expands the query to a query list using probabilistic recom-
mendation algorithm. ReInterpretQE builds Viterbi model
using dynamic programming and generates the query list
related to query input. After this operation, the query results
can include more complete and comprehensive information.
And the recall of results has been further improved.

Figure 8 further illustrates that the query expansion
method ReInterpretQE outperforms the baseline methods
through the comparison analysis of these methods on 𝐹-
score. The overall trend is clear. At all thresholds we evalu-
ated, the results produced by ReInterpretQE are significantly
better than the other two methods. For example, when
the number of keywords is 4, the 𝐹-score of Metadata
and 𝐾-coupling is 0.63 and 0.67, respectively, while the 𝐹-
score of ReInterpretQE is 0.78. The ReInterpretQE method
increases the 𝐹-score by 23.8% and 16.4%, compared with
Metadata and 𝐾-coupling. We investigated the reasons that
ReInterpretQE has higher performances than the baseline
methods. On the one hand, ReInterpretQE calculates the
term similarity considering both intrasimilarity and inter-
similarity. Thus the similarity calculation between terms is
more reasonable.ThenAlgorithm 1, probabilistic recommen-
dation algorithm, is proposed based on the term similarity. It
constructs the Viterbi model using dynamic programming,
which can improve the query recall. On the other hand,
ReInterpretQE designs Algorithm 2, translation algorithm of
triples, to perform the translation from keywords to triples.
Then Algorithm 3, query subgraph construction algorithm,
is used to transform the triples to query subgraphs. In the
construction of the query subgraphs, ReInterpretQE not only
considers the expansion in the structure and content of
keyword query, but also considers the various explanations
for a keyword query. So the query precision is further
improved.

Summary. Based on this observation, we realize that ReInter-
pretQE indeed boosts the performance of query expansion
and has a clear positive effect on quality of query results.
ThusReInterpretQE can be considered as a quite effective and
practicable algorithm for query expansion.

5. Conclusions

Aiming at addressing the problems of semantic fuzziness and
expression limits, the paper proposes a novel two-step query
expansion method, ReInterpretQE. The method translates
the keyword query to query subgraphs with potential struc-
tural and semantic information. Compared with the tradi-
tional methods, the method completes the query expansion
and analysis only depending on the structure and content
information of databases, without the requirement of query
logs. In addition, the method uses query recommendation
and query interpretation to balance the precision and recall of
query results. Finally, experimental results on DBLP dataset
verify the effectiveness of the proposed method. There are
many open questions in the research of query expansion in
relational databases. In the future work, we will make further
research and discussion on it. For instance, we will take into

account the influence of feedback on the performance of
query expansion.
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