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This paper studies the problemof stowage planningwithin a vessel bay in amultiple port transportation route, aiming atminimizing
the total container shifting fee. Since the access to containers is in the top-to-bottom order for each stack, reshuffle operations occur
when a target container to be unloaded at its destination port is not stowed on the top of a stack at the time. Each container shift via a
quay crane induces one unit of shifting fee that depends on the charge policy of the local container port. Previous studies assume that
each container shift consumes a uniform cost in all ports and thus focus onminimizing the total number of shifts or the turnaround
time of the vessel. Motivated by the observation that different ports are of nonuniform fee for each container shift, we propose a
mixed integer programming (MIP)model for the problem to produce an optimal stowage planning withminimum total shifting fee
in this work. Moreover, as the considered problem is NP-hard due to the NP-hardness of its counterpart with uniform unit shifting
fee, we propose an improved genetic algorithm to solve the problem.The efficiency of the proposed algorithm is demonstrated via
numerical experiments.

1. Introduction

In the world seaborne trade, most goods are transported
by containerships. Containership maritime transports have
occupied the vastmajority of themaritime transport industry,
among which container trade is now becoming the fastest-
growing freight segment (see [1]).

An efficient stowage planning is one of the most impor-
tant factors in saving the transportation cost of shipping
companies. One vessel may visit several container ports
during a voyage, and containers are loaded onto the vessel
from some upstream ports and later unloaded from the vessel
at downstream ports. If a target container to be unloaded
from the vessel is not stowed on the top of a stack, it incurs
reshuffle operations as the access to containers follows the
top-to-bottomorder for any stack. All the involved containers
piled above the target one have to be removed temporarily
and later reloaded back to the stack after the target container
has been unloaded. The unloading/reloading operations of
the involved nontarget containers cause extra shifting fees

as well as time consumption. An efficient stowage solution
to the vessel may greatly reduce such shifting fees in a
transportation route.

Most previous studies aim to minimize the total number
of shifts for nontarget containers at each container port and
therefore to minimize the turnaround time of a vessel. By
field investigation, however, we observe that the shifting fee
is also an important consideration, and a key point is that
the unit shifting fee varies vastly at different container ports.
For example, the unit shifting fee for one container move at
Ningbo-Zhoushan port is 49.5 RMB, while it is 100 RMB at
Guangzhou port. The observation motivates us to investigate
the stowage planning problem such that the total shifting fee
other than the total number of shifts for a vessel is minimized
in a multiple port transportation route. As the containers in
each bay of the vessel are individually handled at each port, we
consider the stowage planning within a bay on the vessel. We
claim that the stowage planning problemunder consideration
is NP-hard since its counterpart with uniform unit shifting
fee, that is, the problem to minimize the number of shifts, is
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already NP-hard [2]. We have not found any related work on
total shifting fee minimization for the case with nonuniform
unit shifting fee. Aiming at this problem, we establish anMIP
model and design an efficient algorithm to produce good
stowage planning solutions.

The rest of this work is organized as follows. Section 2
gives a brief literature review of related works, and Section 3
describes the considered problem formally. In Section 4, we
present the MIP mathematical formulation, and in Section 5
we propose a genetic algorithm for the problem. Numerical
results are given in Section 6, and finally we conclude the
paper in Section 7.

2. Literature Review

In recent decades, the problem of containership stowage
planning has been extensively investigated [3–6].

2.1. Stowage Planning in Single Port. Delgado et al. [7] study
the stowage planning problem and propose an approach that
generates a near optimal plan for a large container vessel
within a fewminutes.The approach solves the problem in two
steps. In the first step it decomposes the vessel into master
bays and assigns containers to the master bays. In the second
step, the containers in eachmaster bay are further assigned to
specific slots of the bay.

Monaco et al. [8] are involved in the problem of deter-
mining the optimal positions of containers to be stowed in a
vessel. They assume that the vessel berthing along the quay
consists of a number of slots and propose a binary integer
programand a two-step heuristic algorithm to obtain efficient
solutions to the stowage planning problem.

Ambrosino et al. [9] study the Master Bay Plan Problem
(MBPP) and propose a tabu search metaheuristic approach
to look for the global ship stability of the overall stowage
plan. The proposed tabu search algorithm can improve
planning management in the visualization of stowage plans
in a software support system. It also performs well on some
real-life test cases related to a terminal located at the port of
Genoa, Italy.

Liu et al. [10] investigate the quay crane double-cycling
problem with internal-reshuffling operations and present a
polynomial-time heuristic algorithm to reduce the number of
container moves in a bay of a vessel. By comparing their algo-
rithm with the state-of-the-art heuristic, they demonstrate
that their model can be solved more efficiently than the one
proposed in Meisel and Wichmann [11].

2.2. Stowage Planning in Multiple Port. Avriel et al. [2] deal
with a stowage plan for container ships tominimize the num-
ber of shifts and first present a binary linear programming
formulation to find optimal solutions for stowage planning.
Due to many binary variables and constraints, they develop
the so-called Suspensory Heuristic Procedure.

Araújo et al. [12] consider a three-dimensional container
ship stowage planning problem.They develop amathematical
model with the objective of minimizing the number of
container moves and ship instability. A hybrid method is

proposed to solve the model and obtain a good approx-
imation to the Pareto front. Computational results reveal
that the proposed method provides better solutions than the
monoobjective simulated annealing algorithm.

Ding and Chou [13] consider the stowing planning prob-
lem where a vessel visits a series of ports sequentially. They
develop a heuristic algorithm for generating stowage plans
with a reasonable number of container shifts and show that
the algorithm performs better than the Suspensory Heuristic
Procedure proposed in Avriel et al. [2].

Ambrosino et al. [4] extend the MBPP to the Multiport
Master Bay Plan Problem (MP-MBPP), and propose a heuris-
tic algorithm based on an exact MIP model to minimize
the total berthing time of the vessel. The proposed efficient
heuristic algorithm can find good solutions to the whole trip
planning.

The above literature analyzes both single-port and multi-
port container loading/unloading scenarios. For more results
on the stowing planning problem, please refer to Wang [14]
and Ramos et al. [15]. All these previous works concern the
minimum reshuffles or turnaround times in the route; that is,
they all assume that each container shift is of identical cost
in all the ports. Some authors also build linear programming
models for their respective problems [2, 12]. However, as
we have previously mentioned, different ports are usually
of nonuniform operational costs and unit shifting fee of
a container in practice. Thus we establish a mixed integer
programming model for the case with nonuniform unit
shifting fee together with load balance requirement in this
work. To the best of our knowledge, there are no relevant
studies in literature that consider the case with nonuniform-
shifting fee and aiming to minimize the total cost of shifting
containers in a route.

3. Problem Description

We consider the stowage planning problem on a container
vessel in multiple ports and focus on the container shifting
operations within one of the bays on the vessel. The bay
consists of a number 𝐶 of container columns or stacks where
there may be at most 𝑅 containers stowed in each vertical
stack. Each container occupies one layer of the stack or
equally a slot of the bay. We assume that all the containers are
TEU (Twenty-foot Equivalent Unit) ones. Figure 1 is a two-
dimensional coordinate illustration where there is a side view
and a bird’s eye view of the containers on a vessel. A more
detailed description of container bays on the vessel is referred
to by Ambrosino et al. [3].The slot location of each container
in the bay is denoted by the combination of column and layer
indices, that is, slot (𝑐, 𝑟) where 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑟 ≤ 𝑅.

The vessel departs from the first port 𝑡 = 1 and
sequentially visits ports 𝑡 = 2, . . . , 𝑇 − 1, 𝑇. Initially, there are
no containers in the bay before loading at the first departure
port. Notice that there are no container shifts at 𝑡 = 1 port
since there are only loading containers. Similarly, at the final
port 𝑇, all the remaining containers on the vessel are to be
unloaded from the vessel, and there exist no container shifts
either.
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Figure 1: Illustration of a container vessel [3].

In the bay, there are totally 𝑁 target containers to be
loaded and then unloaded in the 𝑇 ports. Each container 𝑖
with weight 𝑤𝑖 is loaded at port 𝑠𝑖 and then unloaded at port
𝑑𝑖. The containers in any stacks are stowed in a way such that
heavier containers are in lower layers and lighter containers
are in higher layers. Consider any target container 𝑖 at port
𝑑𝑖 such that another nontarget container 𝑗 is stowed above 𝑖
in the same stack. As 𝑑𝑗 > 𝑑𝑖, container 𝑗 is called a blocking
container, and it has to be reshuffled once for unloading the
target container 𝑖. The reshuffle of 𝑗 causes one unit shifting
fee𝐶𝑑𝑗 at the port. Since the unit shifting fee varies in different
ports, the stowage planning problem under consideration is
to produce a feasible reshuffle schedule such that the total
shifting fee in the 𝑇 ports is minimized. It means that the
numbers of shifts in those ports with highest unit shifting fees
shall be minimized to some extent. Moreover, due to the load
balancing requirement for the whole vessel, it requires load
balance in different columns of the bay, and we accordingly
assume there is an upper bound on the weight of each stack
at any time.

4. Mathematical Formulation

In this section we first give basic notations and then present
the objective function and constraints of the MIP model.

4.1. Notations

Indices

𝑡: the index of ports
𝑖, 𝑗: the indices of containers
𝑐: the index of container columns or stacks in the bay
𝑟: the index of layers, and 𝑟 = 1, 𝑅 for the highest and
lowest layers respectively

Input Parameters

𝑇: the number of ports

𝑁: the total number of containers to be loaded/
unloaded in the 𝑇 ports
𝐶: the number of columns or stacks in the bay
𝑅: the number of layers in each stack
𝑤𝑖: the weight of container 𝑖
𝑠𝑖: the departure port for loading container 𝑖
𝑑𝑖: the destination port for unloading container 𝑖
𝐷𝑡: the set of target containers at port 𝑡, that is, 𝐷𝑡 =
{𝑖 | 𝑑𝑖 = 𝑡} ∪ {𝑖 | 𝑠𝑖 = 𝑡}
𝑈𝑡: the set of nontarget containers at port 𝑡, that is,
𝑈𝑡 = {𝑖 | 𝑠𝑖 < 𝑡 < 𝑑𝑖}
𝐶𝑡: the unit shifting fee at port 𝑡
𝑊: the maximum allowable weight of containers
stowed in each stack
𝑀: a sufficiently large positive integer

Decision Variables

𝑋𝑡𝑖,𝑐,𝑟: equals 1 if container 𝑖 is located in slot (𝑐, 𝑟)
when the vessel arrives port 𝑡, 0 otherwise
𝑌𝑡𝑖,𝑐,𝑟: equals 1 if container 𝑖 is located in slot (𝑐, 𝑟)when
the vessel leaves port 𝑡, 0 otherwise
𝑍𝑡𝑖,𝑐,𝑟: equals 1 if container 𝑖 is reshuffled once in slot
(𝑐, 𝑟) at port 𝑡, 0 otherwise

4.2. MIP Formulation

4.2.1. The Objective Function. Each shift of a blocking con-
tainer in the bay produces one unit of shifting fee 𝐶𝑡 at port
𝑡, and the objective is to minimize the total shifting fee in all
the 𝑇 ports:

min
𝑇

∑
𝑡=1

𝑁

∑
𝑖=1

𝐶𝑡𝑍
𝑡
𝑖,𝑐,𝑟, ∀𝑐 ≤ 𝐶, 𝑟 ≤ 𝑅. (1)
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4.2.2. The Model Constraints. Container 𝑖 cannot be stowed
at any slot (𝑐, 𝑟) of the bay either before its departure port 𝑠𝑖
or after its destination port 𝑑𝑖:

𝐶

∑
𝑐=1

𝑅

∑
𝑟=1

𝑌𝑡𝑖,𝑐,𝑟 = 0, ∀𝑖 ≤ 𝑁, 𝑡 < 𝑠𝑖,

𝐶

∑
𝑐=1

𝑅

∑
𝑟=1

𝑌𝑡𝑖,𝑐,𝑟 = 0, ∀𝑖 ≤ 𝑁, 𝑡 ≥ 𝑑𝑖.

(2)

The total weight of containers in each stack 𝑐 cannot
exceed the upper bound𝑊 at any port 𝑡:

𝑁

∑
𝑖=1

𝑅

∑
𝑟=1

𝑤𝑖𝑌
𝑡
𝑖,𝑐,𝑟 ≤ 𝑊, ∀𝑐 ≤ 𝐶, 𝑡 ≤ 𝑇. (3)

After finishing loading/unloading operations at any port
𝑡, no more than 𝑅 containers in each stack or column 𝑐 are
stowed:

𝑁

∑
𝑖=1

𝑅

∑
𝑟=1

𝑌𝑡𝑖,𝑐,𝑟 ≤ 𝑅, ∀𝑐 ≤ 𝐶, 𝑡 ≤ 𝑇. (4)

In any stack a heavier container is not allowed to be laid
above a lighter container at any port:

𝑤𝑖𝑌
𝑡
𝑖,𝑐,𝑟 −

𝑁

∑
𝑗=1,𝑗 ̸=𝑖

𝑤𝑗𝑌
𝑡
𝑗,𝑐,𝑟+1 ≤ 0,

∀𝑖 ≤ 𝑁, 𝑐 ≤ 𝐶, 𝑡 ≤ 𝑇, 𝑟 ≤ 𝑅 − 1.

(5)

Each slot (𝑐, 𝑟) of the bay is stowed with at most one
container at any time, and each container is stowed in a single
slot during its transportation:

𝑁

∑
𝑖=1

𝑌𝑡𝑖,𝑐,𝑟 ≤ 1, ∀𝑡 ≤ 𝑇, 𝑐 ≤ 𝐶, 𝑟 ≤ 𝑅,

𝐶

∑
𝑐=1

𝑅

∑
𝑟=1

𝑌𝑡𝑖,𝑐,𝑟 = 1, ∀𝑖 ≤ 𝑁, 𝑡 ∈ [𝑠𝑖, 𝑑𝑖 − 1] .

(6)

If container 𝑖 is not stowed in the bottom of some stack,
then there must exist another container stowed beneath it:

𝑌𝑡𝑖,𝑐,𝑟 ≤
𝑁

∑
𝑗=1,𝑗 ̸=𝑖

𝑌𝑡𝑗,𝑟+1,𝑐,

∀𝑖 ≤ 𝑁, 𝑡 ≤ 𝑇, 𝑐 ≤ 𝐶, 𝑟 ∈ [1, 𝑅 − 1] .

(7)

The slot locations of containers in the bay may change
only at ports during loading/unloading operations, but not
on the way between any two ports. That is, the slot status at
the time when the vessel is leaving some port is the same as
when the vessel arrives the next port. Especially at the last
port 𝑇, all the remaining containers in the bay are unloaded:

𝑋𝑡+1𝑖,𝑐,𝑟 = 𝑌
𝑡
𝑖,𝑐,𝑟, ∀𝑖 ≤ 𝑁, 𝑐 ≤ 𝐶, 𝑟 ≤ 𝑅, 𝑡 ≤ 𝑇 − 1,

𝑌𝑇𝑖,𝑐,𝑟 = 0, ∀𝑖 ≤ 𝑁, 𝑐 ≤ 𝐶, 𝑟 ≤ 𝑅.
(8)

If a nontarget container 𝑖 changes its slot location in the
bay at port 𝑡, then it must be shifted once at the port:

𝑍𝑡𝑖,𝑐,𝑟 ≥ 𝑋
𝑡
𝑖,𝑐,𝑟 − 𝑌

𝑡
𝑖,𝑐,𝑟, ∀𝑐 ≤ 𝐶, 𝑟 ≤ 𝑅, 𝑡 ≤ 𝑇, 𝑖 ∈ 𝑈𝑡. (9)

If a nontarget container 𝑖 is loaded on the top of a
target container 𝑗 in the same stack at port 𝑡. After finishing
loading/unloading operations, container 𝑖 does not change its
location, but container 𝑖must be shifted at the port:

𝑍𝑡𝑖,𝑐,𝑟1 ≥ 1 −𝑀 ⋅ (2 − 𝑋
𝑡
𝑖,𝑐,𝑟1
− 𝑋𝑡𝑗,𝑐,𝑟2) ,

∀𝑐 ≤ 𝐶, 𝑡 ≤ 𝑇, 𝑟1 < 𝑟2, 𝑖 ∈ 𝑈𝑡, 𝑗 ∈ 𝐷𝑡.
(10)

Nontarget container 𝑗 is loaded on the top of non-
target container 𝑖 in one stack at port 𝑡. After finishing
loading/unloading operations, although container 𝑗 has not
changed its location, it must be shifted once at the port:

𝑍𝑡𝑗,𝑐,𝑟1 ≥ 𝑋
𝑡
𝑗,𝑐,𝑟1
+ 𝑌𝑡𝑗,𝑐,𝑟1 + 𝑋

𝑡
𝑖,𝑐,𝑟2
+ 𝑌𝑡𝑖,𝑐,𝑟2 − 2,

∀𝑐 ≤ 𝐶, 𝑡 ≤ 𝑇, 𝑟1 < 𝑟2, 𝑖, 𝑗 ∈ 𝑈𝑡.
(11)

4.2.3. Variable Ranges. The ranges of decision variables are
given as follows:

𝑋𝑡𝑖,𝑐,𝑟, 𝑌
𝑡
𝑖,𝑐,𝑟, 𝑍

𝑡
𝑖,𝑐,𝑟 ∈ {0, 1} ,

𝑟 ≤ 𝑅, 𝑐 ≤ 𝐶, 𝑡 ∈ 𝑇, 𝑖 ≤ 𝑁.
(12)

5. Solution Procedure

5.1. Optimal Solutions by Cplex for Small Instances. In this
section we first consider a small instance where the bay
consists of three columns by four layers. That is, there are
totally 3 × 4 = 12 slots for stowing at most 12 containers
at a time in the bay. The vessel visits four ports (1, 2, 3, 4)
sequentially. The weight of each container ranges from 1 to
3 where a larger number means a heavier weight. A heavier
container is to be stowed in a lower layer of a stack at any
time.Themaximum loadable weight of the containers in each
stack is 8 at any time.Notice that there are no containers in the
bay before loading operations at port 1, and all the remaining
containers in the bay at port 4 are to be unloaded. It implies
that there occurs no shifting fee at either the first port or
the last port, while container shifts may happen at ports 2
and 3. The unit shifting fees are 15 and 40 at ports 2 and 3,
respectively.

In the instance, there are totally 20 target containers to be
loaded and unloaded in the 4 ports. The detailed data of the
containers, including their indices, weights, departure, and
destination ports, are listed in Table 1. For example, container
1 with weight 1 is to be loaded at port 1 and unloaded at port
3.

We solve the above small instance with Cplex 12.6 solver
and the computational results are shown in Figure 2 which
illustrates the stowage of the containers in the first three ports.
There are four rectangles in each column representing the
four layers of each stack, and the digit inside each rectangle
denotes the container index. For example, in port 1, there
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Table 1: Input data of the containers in the small instance.

Container ID Weight Departure port Destination port
1 1 1 3
2 1 1 2
3 2 1 4
4 2 1 4
5 3 1 2
6 1 1 4
7 1 1 4
8 1 1 4
9 3 1 2
10 1 1 2
11 3 1 3
12 2 1 2
13 3 2 3
14 2 2 4
15 1 2 3
16 3 2 3
17 2 3 4
18 2 3 4
19 1 3 4
20 2 3 4

2

5

9

10

6

4

7

8

1

11

3

12

Port 1

13

16

14

4

1

11

3

15

Port 2

7

8

6

18

14

3

4

7

8

20

19

Port 3

17 61

3

14

Figure 2: An optimal stowage plan of the small instance by Cplex.

are 12 containers to be loaded and stowed at different slots
according to their relative weights and their unloading port
sequences. During the voyage, only three containers 1, 3, and
14 are shifted at ports 2 and 3, respectively. It results in a total
shifting fee of 1 × 15 + 2 × 40 = 95.

For a slightly larger instance where there are five columns
by six layers in the bay, 55 target containers are involved
in the four ports. The computation time of the solver rises
exponentially as the input size increases. Together with the
NP-hardness of the considered problem,we propose a genetic
algorithm to solve larger instances.

5.2. Genetic Algorithm. As we known, the genetic algorithm
has been extensively applied in various applications due to
its efficient performance. Its basic procedure is shown in
Figure 3. In this paper, we adopt the genetic algorithm to solve
large instances of the stowage planning problem.We describe
it in detail in the following.

5.2.1. Chromosome Representation. We determine the chro-
mosomal gene segments by the number of ports excluding the

last port at which all the remaining containers are unloaded
and no shifting fee occurs. That is, there are 𝑇 − 1 gene
segments. Each chromosome is a solution of the stowage
planning.

The length of each gene segment represents the number of
containers to be loaded at the corresponding port. Each gene
in the gene segment denotes the stack location of a container
and is of a value within 0, . . . , 𝐶, where 0 means there is no
container to be loaded at all. For example, the third gene of
the first gene segment is equal to 2, representing that the third
container is loaded in stack 2 at port 1 (see Figure 4). Since
each container is of a different weight, its layer location is
accordingly determined by the ranking of its weight in the
stack. In this way, it comes to the container’s stowage plan.

5.2.2. Population Initialization and Individual Feasibility. We
present a distribution mechanism to guarantee that each
generated solution is feasible. The mechanism is described as
follows. The individual feasibility is verified via the weight
limitation of the containers in each stack and the height
constraint of the stack. We repeatedly produce a number
of individuals and discard the infeasible individuals among
them until the number of feasible individuals satisfies the
required specific scale.

5.2.3. Fitness Evaluation. We calculate the fitness value of
each individual based on the value of the objective function.
With the minimization objective, the smaller the objective
function value, the better the fitness, and it is more likely to
be selected as parents. Calculations of the fitness values are
based on the slot position of the containers in the bay.
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Figure 3: The flowchart of GA algorithm [16].
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Figure 4: Illustration of chromosome representation.

5.2.4. Crossover and Mutation. There are several typical ways
for crossover operation such as single-point crossover, two-
point crossover, multipoint crossover, and uniform crossover.
In this work, we adopt two-point crossover for crossover
operation as follows. Firstly twodifferent crossover points in a
gene segment are randomly generated for two chromosomes
selected for crossover operation and the value of the crossover
points did not exceed the length of chromosome. The digits
between the crossover points in the two chromosomes are
then exchanged, while keeping the other parts of each
chromosome unchanged. After the exchange two new chro-
mosomes are generated (see Figure 5 for an illustration).

The mutation operation of each chromosome occurs
randomly with a predetermined probability, which is called
the mutation rate. In the mutation, two mutation positions
in the chromosome are randomly selected and the two

corresponding digits are exchanged, generating a new chro-
mosome. The feasibility of the new chromosome is to be
verified in the next step of the algorithm.

5.2.5. Feasibility Verification. Theoperations of crossover and
mutation may result in infeasible solutions or chromosomes.
Therefore it is necessary to verify and justify them. The
fundamental verifying rules are as follows: (1) the total weight
of each stack is no more than 𝑊; (2) there are at most 𝑅
containers in each stack; (3) each containermust be stowed in
the bay on leaving its departure port and before its destination
port; (4) in any stack a heavier container is not allowed
to be laid above a lighter container at any port. In each
generation, we repeatedly generate new chromosomes and
then identify and discard the ones violating any of the above
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Figure 5: Illustration of crossover operation.

1 2 3 4
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Port 1 Port 2 Port 3

Chromosome

43214321

�e third container is loaded in 
fourth container box at port 1

Container box number

No container is loaded in third 
container box at port 3

Figure 6: The new chromosome representation.

rules until the number of offsprings satisfies the population
size requirement.

5.3. An Improved Genetic Algorithm

5.3.1. The New Chromosome Representation. We repeatedly
produce the feasible individuals until they satisfy the required
constraints, but the chromosome length of the first algorithm
is too long and the effect of cross-mutation operation on
improving the fitness of the initial population is affected.
So, the main result is derived from the solution of the
initial population generated. In this section, based on the
original genetic algorithm, we propose an improved genetic
algorithm. We called the original algorithm GAI and the
improved one GAII.

The improved chromosome is also composed of 𝑇 − 1
gene segments, the length of each segment is no longer the
total number of containers in the route, but the total number
of container boxes in the bay. The improved chromosome
structure is shown in Figure 6. In the chromosome, there are
four container boxes in the bay, and the third container is
loaded in fourth container box at port 1. By the chromosome,
the third container is unloaded at port 2. Note that if there
is no container loaded in a container box, the chromosome
gene value is equal to 0. In each gene segment, the containers
will be loaded according to their weight at every stack. We
repeatedly produce the feasible individuals until satisfying the
required scale. Besides, fitness function and cross-mutation
operations are the same as in GAI.

5.3.2. Feasibility Verification. After cross-mutation opera-
tions, the test rules are as follows: (1) there are no repeated
digits in each chromosome segment, except for the number
0; (2) the total weight of each stack is no more than 𝑊;

(3) each container must be stowed in the bay on leaving its
departure port and before its destination port. After cross-
mutation operations, if the chromosome does not satisfy all
the test rules, then it is discarded.

6. Numerical Experiments

6.1. Performance Comparison of GAI and GAII. As we
described in previous section, the stowage plan can be pro-
duced by Cplex on small-scale instances. In order to measure
the solution quality obtained by GAI and GAII, we first
solve the problem by Cplex on small-scale instances. The GA
simulation is set up to 100 populations and performed with
the limit of 100 generations, coding with Matlab language on
a computer (Inter Core i5 CPU, 3.00GHz;Memory, 4G).The
instances used in the experiment are randomly generated.
We assume that the shipping line contains 8 ports and the
unit shifting fees in each port are 30, 15, 40, 50, 80, 50, 70,
and 25 (RMB), respectively. With different capacities of the
bay (𝐶, 𝑅) and the number of loaded containers in the route,
we test both small and large instances. The total shifting fees
and CPU running times in seconds of the solutions produced
by Cplex, GAI, and GAII, respectively, on the instances are
shown in Table 2.

From the numerical results in Table 2, Cplex can solve
the small instances with up to 147 containers efficiently but it
cannot output solutions for large instances with 196 or more
containers (it is denoted by “/”). The GAI can solve the large-
scale instances, while the solutions are of low qualities. GAII
can achieve better load planning and especially obtains an
optimal solution for the instance with 196 containers. It can
effectively solve this kind of stowage problem in a short time,
which helps to save operational cost for the shipping company
during the route.
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Table 2: Computational results of Cplex, GAI, and GAII algorithms.

Total number of containers (𝐶, 𝑅) Cplex solution CPU time (s) GAI solution CPU time (s) GAII solution CPU time (s)
42 (4, 3) 0 82 120 280 0 198
70 (5, 4) 0 468 280 650 0 324
105 (6, 5) 0 2422 1320 968 0 483
147 (7, 6) 0 29587 2300 1324 15 673
196 (8, 7) / / 1870 1726 0 1003
252 (9, 8) / / 4080 2446 205 1224
315 (10, 9) / / 4950 2719 335 1466
385 (11, 10) / / 3745 2882 210 1731

Table 3: Computational results of the GAII for uniform and nonuniform unit shifting fee cases.

Total number of containers (𝐶, 𝑅) Uniform-shifting amount Uniform-shifting fees Nonuniform amount Nonuniform fees
42 (4, 3) 0 0 0 0
70 (5, 4) 0 0 0 0
105 (6, 5) 0 0 0 0
147 (7, 6) 0 0 0 0
196 (8, 7) 3 146.25 3 125
252 (9, 8) 8 390 13 380
315 (10, 9) 17 828.75 17 545
385 (11, 10) 20 975 22 650

6.2. PerformanceComparison ofGAII betweenCaseswithUni-
form and Nonuniform Shifting Fees. As previously described,
shifting activities in different container ports result in dif-
ferent costs. Besides, minimizing the shifting amounts of
container is a special case ofminimizing shifting fees. In order
to show the influence of shifting fee on stowage planning,
we design the numerical experiments on both problems and
solve them by GA.We assume that the shipping line contains
8 ports, and again all the instances used in the experiment
are randomly generated. For the nonuniform shifting fee case,
we assume that the unit shifting fees in the 8 ports are equal
to 30, 15, 45, 60, 100, 50, 70, and 20 (RMB), respectively.
For the uniform shifting fee case, without loss of generality,
we set its unit shifting fee as the average fee over the 8
ports; that is, the uniform unit shifting fee in each port is
48.75 (RMB). The results of GAII for the above two cases on
a set of instances are shown in Table 3. “Uniform-shifting
amount” and “uniform-shifting fees” represent the total shift-
ing amount and shifting fees, respectively, in the uniformunit
shifting fee case. “Nonuniform amount” and “nonuniform
fees” denote, respectively, the total shifting amount and
shifting fees in the nonuniform unit shifting fee case.

By Table 3, for both cases with uniform and nonuniform
unit shifting fees, the GAII optimally solves the first four
instances with at most 147 containers. For all the rest four
instances with 196 or more containers, we observe that the
solutions in the case with nonuniform unit shifting fees
correspond to smaller objective values than that in the other
case with uniform unit shifting fees. It implies that in the
nonuniform unit shifting fee case, most shifting activities
are assigned to those ports with the cheapest shifting fees,

although it may cause a few more shifts of reshuffle contain-
ers. For example, for the last instance with 385 containers,
there are 22− 20 = 2more shifts of reshuffling containers but
975−650 = 325RMB less shifting fee in the nonuniform unit
shifting fee case, compared to the uniform unit shifting fee
case. Therefore, we conclude that when the shifting fees are
nonuniform in different ports, in order to avoid generating
a large amount of shifting fee in the ports with expensive
shifting fees, shifting activitiesmay happen in somepreceding
ports with cheaper shifting fees. Although such adjustment
may cause more container shifts in total, the total cost of
shifting containers can be well reduced.

7. Conclusion

In this paper, we study the stowage planning of a single
bay of a vessel in multiple container ports, focus on the
case with nonuniform-shifting fees, and establish a mixed
integer programming model. The genetic algorithm and
improved genetic algorithm are proposed to solve the model.
Experiment results show the validity of the model and the
proposed genetic algorithms.What ismore, by comparing the
stowage planning between the case with nonuniform shifting
fee and the case with uniform shifting fee, we conclude that
a stowage planning in the former case may result in more
container shifts but less shifting fees than in the latter case.
Since load balance of a vessel is also important in shifting
activities and it can be affected by several factors, such as
the gravity of the vessel and container types. Considering a
variety of constraints about stowage planning is the next focus
of our research.
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