
M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 1

APPENDIX A: VISUAL EDITOR FOR FLORA-2 BASED SWS SPECIFICATIONS (VSCHOR)

 Visual Semantic Choreography (VSChor) is a visual software environment which we developed to facilitate designing and
deploying goals and web services with Flora-2 specifications. Choreography designers can define concepts, frames, predicates
and specify the structures of goals and web services by filling-out the prepared forms and automatically generate Flora-2
specifications that are ready to run on the developed choreography engine. The software also embeds the engine code and
related libraries in a deployment folder. The user can test the choreography by just running a single batch file, provided the
Flora-2 system is already installed on the local platform.

The main window of the program is shown in Figure 1. The left tool box contains five icons: from top to down, Repository,
Add Concept, Add Goal, Add Web Service, and Deploy, respectively. The repository button is used to show the currently
registered concepts, frames, predicates, goals, and web services (Figure 2). It also allows the user to change the definitions of
goals and web services.

Figure 2. Repository form

 Repositories can be saved and loaded by the Repository menu located at the top-left corner of the main form (Figure 3).

Figure 1. Main entrance form of VSChor

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Figure 3. Loading and saving repositories

 Concepts can be defined by Add Concept form (Figure 4). The user can enter concept attributes and their types by fill-
ing out the available grid and determine the proper mode type by using the available combobox.

Figure 4. Add Concept form

 Goals and web services can use instances of the concepts in their specifications. The Add Goal and Add Service forms are
essentially the same, so here we only illustrate Add Goal form, depicted in Figure 5.

Figure 5. Add Goal form

The Add Goal form contains places for the name, description, local ontology, capabilities, pre and post conditions, and

transition rules. The Semantic description box shows the current textual description of the goal in Flora-2. The Add relation
and Add frame buttons let the user define new (or use already defined) relations and rules respectively (Figure 6).

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 3

Figure 6. Add Frame form

 Post-condition of a goal may contain a complex logic expression consisting of the and, or, and not operators, as well as
frames and predicates. VSChor lets the user create a logic tree representing the logic expression of the goal post-condition
(Figure 5. Post-condition view).

Transition rules are created through another form (Figure 7), accessible by clicking on the Add rule button on Add Goal
and Add Web Service forms. The user can specify the name, rule type (either Forall or Choose), antecedent (left-hand side),
and consequent (right-hand side) of the rules. Similar to the goal post-condition, the antecedent can contain a logic expression
of any complexity. The consequent can consist of a set of actions, which should be one of %deltaInsert, %deltaDelete, or
%deltaUpdate.

Figure 7. Add transition rule form

 At any stage the user can modify the contents of goals (web services) using the change semantic goal (web service) form, ac-
cessible through the repository form.
 After the choreography design is completed, a deployment package is generated by clicking on the deployment button
(Figure 1. last button). The deployment package contains all the files related to goals, web services, common ontology, chore-
ography engine, function libraries, as well as a batch file called "Run.bat" (Figure 8). The batch file allows the user to test the
choreography simply by double clicking on it.

Figure 8. Deployment folder

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 5

APPENDIX B: E-BNF GRAMMAR FOR FLORA-2 GOAL AND WEB SERVICE SPECIFICATIONS

 Here, we present the current grammar of goal and web service specifications written in E-BNF [26] (Table 1).

Table 1. E-BNF grammar for goal and web service specifications

<webservice> ::= <oid> : WebService '['
 importOntology -> <symbolString> ,
 capability -> $ '{'
 pre -> $ '{' <condition> '}' ,
 post -> $ '{' <andcondition> '}'
 '}'
 [, <wstransitionrules>] ']' .

<goal> ::= <oid> : Goal '['
 importOntology -> <symbolString> ,
 capability -> $ '{'
 pre -> $ '{' <andcondition> '}' ,
 post -> $ '{' <condition> '}'
 '}'
 [, <gtransitionrules>] ']' .

<andcondition> ::= (<frame> | <predicate>) {, (<frame> | <predicate>) }

<condition> ::= <condition> ; <term> | <term>

<term> ::= <term> , <factor> | <factor>

<factor> ::= <frame> | <predicate> | '(' <condition> ')' | '(' \+ <condition> ')'

<wstransitionrules> ::= <wsrule> {, <wsrule> }

<gtransitionrules> ::= <grule> {, <grule> }

<wsrule> ::= wsRule (<oid>) : <ruletype> -> $ '{'
 \if <condition>
 \then '(' <actions> ')'
 [\else '(' <actions> ')'] '}'

<grule> ::= gRule (<oid>) : <ruletype> -> $ '{'
 \if <condition>
 \then '(' <actions> ') '
 [\else '(' <actions> ')'] '}'

<ruletype> ::= ForallRule | ChooseRule

<actions> ::= <action> { , <action> }

<action> ::= %deltaInsert '(' <frame> ')' |
 %deltaInsert '(' <predicate> ')' |
 %deltaDelete '(' <restrictedframe> ')' |
 %deltaDelete '(' <predicate> ')' |
 %deltaUpdate '(' <objname> , <attrname> , <f_term> , <f_term> ')'

<predicate> ::= <predname> ['(' [<f_term> {, <f_term> }] ')']

<frame> ::= <objname> : <concept> '[' [<attribute-value-pairs>] ']'

<attribute-value-pairs> ::= <attrname> -> <f_term> { , <attrname> -> <f_term> }

<restrictedframe> ::= <objname> '[' [<attribute-value-pairs>] ']'

<concept> ::= <oid>

<attrname> ::= <oid>

<objname> ::= <oid>

<predname> ::= <oid>

<symbolString> ::= '''<string>'''

<string> ::= Any sequence of characters

<oid> ::= Any valid Flora-2 object identifier

<f_term> ::= Any valid Flora-2 term

APPENDIX C: MORE CHOREOGRAPHY EXAMPLES

1 Semantic authentication

Service requesters usually are asked to be authenticated by online services before being able to utilize them. Authentica-
tion information can be asked at the beginning, in the middle or in last steps of the service consumption process. Here we
present a semantic choreography for the authentication process. If the service requester (goal) and service provider (web ser-
vice) use the same terminology, the requester can pass authentication information in a choreography to the web service. List-
ings 1 and 2 depict the semantic choreography specifications of the goal and the web service respectively.

Listing 1. Goal choreography specification for semantic authentication

Listing 2. Web Service choreography specification of semantic authentication

// Local ontology (will be stored on a separate file after deployed)
/*
myUserName('Riccardo').
myPassword('98765').
*/
myGoal:Goal.
myGoal[
 importOntology -> '../Auth/GoalsOntology.flr',

 capability -> ${
 pre -> ${
 ar:AuthenticationRequest[UserName->?UN, Password->?PW],
 AuthenticationRequest(UserName,?UN),
 AuthenticationRequest(Password,?PW)
 },

 post -> ${
 ?AV:AuthenticationValidation[?X->?Y] \or
 AuthenticationValidation() \or
 AuthenticationValidation(?Z) \or
 AuthenticationValidation(?W,?S)
 }
 },
 gRule(R01):ForallRule -> ${
 \if (
 ?X:QuestionByWS[UserName->?Y]@WM,
 myUserName(?UN)@WM
)
 \then (
 %deltaInsert(${A:AnswerByGoal[UserName->?UN]})
)
 },
 gRule(R02):ForallRule -> ${
 \if (
 ?X:QuestionByWS[Password->?Y]@WM,
 myPassword(?PW)@WM
)
 \then (
 %deltaInsert(${A:AnswerByGoal[Password->?PW]})
)
 },
 gRule(R03):ForallRule -> ${
 \if (
 QuestionByWS(UserName,?X)@WM,
 myUserName(?UN)@WM
)
 \then (
 %deltaInsert(${AnswerByGoal(UserName,?UN)})
)
 },
 gRule(R04):ForallRule -> ${
 \if (
 QuestionByWS(Password,?X)@WM,
 myPassword(?PW)@WM
)
 \then (
 %deltaInsert(${AnswerByGoal(Password,?PW)})
)
 }
].

// Local ontology (will be stored on a separate file after deployed)
/*
DB_UserName_Password('PeterJM','12345').
DB_UserName_Password('Angel83','112233').
DB_UserName_Password('Riccardo','98765').
DB_UserName_Password('Agent007','7777777').
*/
AuthenticationService:WebService.
AuthenticationService[
 importOntology -> '../Auth/WebServicesOntology.flr',

 capability -> ${
 pre -> ${
 ?AR:AuthenticationRequest[?X->?Y]
 },

 post -> ${
 ?AV:AuthenticationValidation[?X->?Y]
 }
 },
 wsRule(R01):ForallRule -> ${
 \if (
 (?AR:AuthenticationRequest[?X->?Y])@WM
)
 \then (
 %deltaInsert(${Q:QuestionByWS[UserName->_]}),
 %deltaInsert(${Q:QuestionByWS[Password->_]})
)
 },
 wsRule(R02):ForallRule -> ${
 \if (
 (?X:AnswerByGoal[UserName->?UN])@WM,
 (?Y:AnswerByGoal[Password->?PW])@WM,
 DB_UserName_Password(?UN,?PW)@WM
)
 \then (
 %deltaInsert(${av:AuthenticationValidation[
 UserName->?UN, Password->?PW]})
)
 },
 wsRule(R03):ForallRule -> ${
 \if (
 (?X:AnswerByGoal[UserName->?UN])@WM,
 (?Y:AnswerByGoal[Password->?PW])@WM,
 (\+ DB_UserName_Password(?UN,?PW))@WM
)
 \then (
 %deltaInsert(${M:Message[
 WS->'Incorrect username or password.']})
)
 }
].

In this example, precondition of the goal contains two presentations of the request: one in the form of the frame

ar:AuthenticationRequest[UserName->?UN, Password->?PW] and one in the form of the predicate pair { AuthenticationRequest(UserName,?UN),
AuthenticationRequest(Password,?PW)} . Also, the post-condition can be satisfied in different ways. On the other side, the web ser-
vice only understands the requests in the form of frame. Similar to Flight Reservation Service, the choreography is progressed
through a semantic conversion between the goal and web service.

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 7

2 Flight reservation with data granularity mismatch

Here we show that the choreography specifications of the goal and web service used in Flight Reservation Service can
have different data granularity. As Flora-2 keeps the frames in the form of separated attribute->value pairs, this mismatch is
handled by the choreography engine. Listings 3 and 4 contain the specifications of the goal and web service respectively.

Listing 3. Goal semantic choreography specification for flight reservation Listing 4. Web Service semantic choreography specification for flight
reservation

// Local ontology (will be stored on a separate file after deployed)
/*
Name('Peter').
DateOfBirth(19830622).
Gender('Male').
CreditCardNo('1234432156788765').
CreditCardHolder('PETER JACKSON').
CreditCardCVV(123).
*/
myGoal:Goal.
myGoal[
 importOntology -> '../Flight/GoalsOntology.flr',
 capability -> ${
 pre -> ${
 myRequest:RequestFlight[
 From->'Paris',
 To->'Chicago',
 Departure->23,
 Return->30]
 },

 post -> ${
 (?R:Reservation[?X->?Y])
 }
 },
 gRule(R01):ChooseRule -> ${
 \if
 (tripChoice(?fl_dep,?fl_ret,?P), (\+ trip:Trip))@WM
 \then (%deltaInsert(${trip:Trip[Dep->?fl_dep,Ret->?fl_ret]}))
 },

 gRule(R02):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[Name->?X], Name(?N))@WM
)
 \then (%deltaInsert(${answer:AnswerByGoal[Name->?N]}))
 },

 gRule(R03):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[DateOfBirth->?Y], DateOfBirth(?DoB))@WM
)
 \then (%deltaInsert(${answer:AnswerByGoal[DateOfBirth->?DoB]}))
 },

 gRule(R04):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[Gender->?Z], Gender(?G))@WM
)
 \then (%deltaInsert(${answer:AnswerByGoal[Gender->?G]}))
 },

 gRule(R05):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM,
 (CreditCardNo(?CCN),
 CreditCardHolder(?CCH),
 CreditCardCVV(?CCCVV))@WM
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 CreditCardNo->?CCN,
 CreditCardHolder->?CCH,
 CreditCardCVV->(?CCCVV)]})
)
 }
].

// Local ontology (will be stored on a separate file after deployed)
/*
flight(F100,Paris,Chicago,23,250).
flight(F101,Paris,Chicago,23,350).
flight(F102,Paris,Chicago,25,400).
flight(F103,Chicago,Paris,29,150).
flight(F104,Chicago,Paris,30,200).
flight(F105,Chicago,Paris,30,150).
*/
FlightReservationService:WebService.
FlightReservationService[
 importOntology -> ../Flight/WebServicesOntology.flr',
 capability -> ${
 pre -> ${ ?Req:RequestFlight[?X1->?Y1] },

 post -> ${ (?Res:Reservation[?X2->?Y2]) }
 },
 wsRule(R01):ForallRule -> ${
 \if (
 (?R:RequestFlight[From->?X,To->?Y,Departure->?Z,Return->?W])@WM,
 (flight(?fl_dep,?X,?Y,?Z,?priceDep))@WM,
 (flight(?fl_ret,?Y,?X,?W,?priceRet))@WM,
 (%sum(?priceDep,?priceRet,?priceTot))
)
 \then (
 %deltaInsert(${tripChoice(?fl_dep,?fl_ret,?priceTot)})) },
 wsRule(R02):ForallRule -> ${
 \if
 (?T:Trip[Dep->?fl_dep,Ret->?fl_ret])@WM
 \then (
 %deltaInsert(${question:QuestionByWS[
 Name->?X,
 DateOfBirth->?Y,
 Gender->?Z]})) },
 wsRule(R03):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 Name->?X,
 DateOfBirth->?Y,
 Gender->?Z])@WM
 \then (
 %deltaInsert(${question:QuestionByWS[
 CreditCardNo->?XX,
 CreditCardHolder->?YY,
 CreditCardCVV->?ZZ]})) },
 wsRule(R04):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM
 \then (
 %deltaInsert(${validation:CreditCardValidation[
 Number->?X,
 Holder->?Y,
 CVV->?Z]})) },
 wsRule(R05):ForallRule -> ${
 \if (
 (YesNoAnswer('Yes'))@WM,
 (trip:Trip[Dep->?fl_dep,Ret->?fl_ret])@WM)
 \then (
 %deltaInsert(${reservation:Reservation[
 Number->11100,
 Flight1->?fl_dep,
 Flight2->?fl_ret]})) },
 wsRule(Bank_R01):ForallRule -> ${
 \if (
 (?R:CreditCardValidation[Number->?X,Holder->?Y,CVV->?Z])@WM,
 (DB_CreditCard(?X,?Y,?Z))@WM
)
 \then (
 %deltaInsert(${YesNoAnswer('Yes')})) }
].

Rule wsRule(R02) in the web service specification poses a question asking for passenger name, date of birth and gender in

the form of a frame. In the goal specification, the answer to each of these items are provided by rules gRule(R01), gRule(R02),
and gRule(R03). However, the left-hand side of rule wsRule(R03) in the web service choreography specification still can be
proven when all items are inserted by the goal and the rule can fire.

3 Choosing a branch by the goal or web service

There are situations where either the goal or web service wants to continue the choreography in the specific branch they
choose. For example, in an online payment scenario a goal can either choose to do the payment via credit card or PayPal. De-
pending on the goal choice, the choreography moves on. Here, we show this possibility in an abstract example. Listings 5 and
6 depict the semantic goal and web service choreography specifications.

Listing 5. Goal semantic choreography specification

Listing 6. Web Service semantic choreography specification

// Local ontology (will be stored on a separate file after deployed)
/*
CreditCardNo('1234432156788765').
CreditCardHolder('PETER JACKSON').
CreditCardCVV(123).
PayPalThreshold(1000).
PayPal(UserName,'PetJack').
PayPal(Password,'1234').
*/
myGoal:Goal.
myGoal[
 importOntology -> '../PayPal/GoalsOntology.flr',

 capability -> ${
 pre -> ${ myRequest:RequestPurchase[Item->'ABC'] },
 post -> ${ ?R:PurchaseReceipt[?X->?Y] }
 },
 gRule(R01):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 price-> ?P,
 paymentMethod->?PM])@WM,
 (PayPalThreshold(?T))@WM , (?P > ?T)
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 paymentMethod->'CreditCard']})) },
 gRule(R02):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 price-> ?P,
 paymentMethod->?PM])@WM,
 (PayPalThreshold(?T))@WM, (?P =< ?T)
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 paymentMethod->'PayPal']})) },
 gRule(R03):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM,
 (CreditCardNo(?CCN),
 CreditCardHolder(?CCH),
 CreditCardCVV(?CCCVV))@WM
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 CreditCardNo->?CCN,
 CreditCardHolder->?CCH,
 CreditCardCVV->(?CCCVV)]})) },
 gRule(R04):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 PayPalUserName->?UN,
 PayPalPassword->?PW])@WM,
 (PayPal(UserName,?myUN),PayPal(Password,?myPW))@WM
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 PayPalUserName->?myUN,
 PayPalPassword->?myPW]})) }
].

// Local ontology (will be stored on a separate file after deployed)
/*
*/
OnlinePayment:WebService.
OnlinePayment[
 importOntology -> '../PayPal/WebServicesOntology.flr',

 capability -> ${
 pre -> ${ ?Req:RequestPurchase[?X1->?Y1] },
 post -> ${ ?Rec:PurchaseReceipt[?X2->?Y2] }
 },
 wsRule(R01):ForallRule -> ${
 \if (
 (?R:RequestPurchase[Item->?X])@WM
)
 \then (
 %deltaInsert(${Q:QuestionByWS[
 price-> 1700,
 paymentMethod->_]})) },
 wsRule(R02):ForallRule -> ${
 \if
 (?A:AnswerByGoal[paymentMethod->'PayPal'])@WM
 \then (
 %deltaInsert(${Q:QuestionByWS[
 PayPalUserName->_,
 PayPalPassword->_]})) },
 wsRule(R03):ForallRule -> ${
 \if
 (?A:AnswerByGoal[paymentMethod->'CreditCard'])@WM
 \then (
 %deltaInsert(${Q:QuestionByWS[
 CreditCardNo->_,
 CreditCardHolder->_,
 CreditCardCVV->_]})) },
 wsRule(R04):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM
 \then (
 %deltaInsert(${Rec1:PurchaseReceipt[Method->'CreditCard']})) },
 wsRule(R05):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 PayPalUserName->?myUN,
 PayPalPassword->?myPW])@WM
 \then (
 %deltaInsert(${Rec2:PurchaseReceipt[Method->'PayPal']})) }
].

In this example, the goal specification contains two rules which have complementary left-hand side conditions: gRule(R01)

checks if the price of the requested item is more than the specified threshold (in this case 1000), and gRule(R02) checks if the
price is less than or equal to the threshold. Based on the price, one of the answers paymentMethod->'CreditCard' or paymentMeth-
od->'PayPal' is provided by the goal and the web service continues the choreography based on it. As it can be seen, the Flora-
2 relational operators such as > or =< are available for the choreography specification.

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 9

4 Using utility predicates

A web service can offer some utility predicates to its requesters, so requesters can utilize these predicates in their choreog-
raphy specifications. The signature of the predicate should be known to the requester at the time of writing specification.
These predicates can be imported into the common ontology with static access; so both the web service and goal can utilize
them. Here, we show the Flight Reservation System example utilizing the utility predicate %cheapestFlight to select the
cheapest roundtrip flight among the suggested ones. The predicate is defined as below in the common ontology. It uses Flora-
2 min operator to find the minimum value among the values which are unified with ?priceTot.

%cheapestFlight(?price) :- ?price = min {?priceTot | tripChoice(?fl_dep,?fl_ret,?priceTot)@WM}.

Listings 7 and 8 contain the goal and web service choreography specifications respectively. To fit the listings on this page,

local ontologies have been removed. The predicate %cheapestFlight is used in gRule(R01).

Listing 7. Goal semantic choreography specification

Listing 8. Web Service semantic choreography specification

myGoal:Goal.
myGoal[
 importOntology -> '../Flight/GoalsOntology.flr',
 capability -> ${
 pre -> ${
 myRequest:RequestFlight[
 From->'Paris',
 To->'Chicago',
 Departure->23,
 Return->30] },

 post -> ${ ?R:Reservation[?X->?Y] }
 },
 gRule(R01):ForallRule -> ${
 \if
 (%cheapestFlight(?P),(tripChoice(?fl_dep,?fl_ret,?P))@WM)
 \then (
 %deltaInsert(${ trip:Trip[Dep->?fl_dep,Ret->?fl_ret]})) },
 gRule(R02):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 Name->?X,
 DateOfBirth->?Y,
 Gender->?Z])@WM,
 (Name(?N),DateOfBirth(?DoB),Gender(?G))@WM
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 Name->?N,
 DateOfBirth->?DoB,
 Gender->?G]})) },
 gRule(R03):ForallRule -> ${
 \if (
 (?Q:QuestionByWS[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM,
 (CreditCardNo(?CCN),
 CreditCardHolder(?CCH),
 CreditCardCVV(?CCCVV))@WM
)
 \then (
 %deltaInsert(${answer:AnswerByGoal[
 CreditCardNo->?CCN,
 CreditCardHolder->?CCH,
 CreditCardCVV->(?CCCVV)]})) }
].

FlightReservationService:WebService.
FlightReservationService[
 importOntology -> '../Flight/WebServicesOntology.flr',
 capability -> ${
 pre -> ${ ?Req:RequestFlight[?X1->?Y1] },
 post -> ${ (?Res:Reservation[?X2->?Y2]) }
 },
 wsRule(R01):ForallRule -> ${
 \if (
 (?R:RequestFlight[From->?X,To->?Y,Departure->?Z,Return->?W])@WM,
 (flight(?fl_dep,?X,?Y,?Z,?priceDep))@WM,
 (flight(?fl_ret,?Y,?X,?W,?priceRet))@WM,
 (%sum(?priceDep,?priceRet,?priceTot))
)
 \then (
 %deltaInsert(${tripChoice(?fl_dep,?fl_ret,?priceTot)})) },
 wsRule(R02):ForallRule -> ${
 \if
 (?T:Trip[Dep->?fl_dep,Ret->?fl_ret])@WM
 \then (
 %deltaInsert(${question:QuestionByWS[
 Name->?X,
 DateOfBirth->?Y,
 Gender->?Z]})) },
 wsRule(R03):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 Name->?X,
 DateOfBirth->?Y,
 Gender->?Z])@WM
 \then (
 %deltaInsert(${question:QuestionByWS[
 CreditCardNo->?XX,
 CreditCardHolder->?YY,
 CreditCardCVV->?ZZ]})) },
 wsRule(R04):ForallRule -> ${
 \if
 (?A:AnswerByGoal[
 CreditCardNo->?X,
 CreditCardHolder->?Y,
 CreditCardCVV->?Z])@WM
 \then (
 %deltaInsert(${validation:CreditCardValidation[
 Number->?X,Holder->?Y,CVV->?Z]})
)
 },
 wsRule(R05):ForallRule -> ${
 \if (
 (YesNoAnswer('Yes'))@WM,
 (trip:Trip[Dep->?fl_dep,Ret->?fl_ret])@WM
)
 \then (
 %deltaInsert(${reservation:Reservation[
 Number->11100,
 Flight1->?fl_dep,
 Flight2->?fl_ret]})) },
 wsRule(Bank_R01):ForallRule -> ${
 \if (
 (?R:CreditCardValidation[
 Number->?X,
 Holder->?Y,
 CVV->?Z])@WM,
 (DB_CreditCard(?X,?Y,?Z))@WM
)
 \then (
 %deltaInsert(${YesNoAnswer('Yes')})
)
 }
].

5 Shipwire example

Shipwire is "a Fortune 100 company helping brands expand to new markets all around the world with [its] technology
platform and distribution centers in more than 45 countries" 1. The company has authenticated open API facilities for devel-
opers. As a tutorial of working with APIs, Shipwire provides a scenario consisting of step-by-step REST requests and re-
sponses showing how a developer can accomplish a shipment order. This scenario is semi-choreographic (because it involves
human specific behavior as well) and is described in

Figure 9 2.

1. The app checks stock availability of products and updates its catalog.
2. Audrey browses the catalog and picks items to fill her shopping cart.
3. When Audrey is ready, she proceeds to checkout, where she must select among different

shipment rates and services.
4. After Audrey confirms checkout, the app places a shipping order with Shipwire.
5. Audrey realizes her order is one item short, so she modifies the original order and checks out

again. The app updates the order with Shipwire.
6. Once Shipwire ships Audrey’s packages, the app automatically sends Audrey a shipping

confirmation email with her tracking number.

Figure 9. Shipwire semi-choreographic scenario 2

Here, we show how such choreography scenario can also be modeled by our choreography specification (Listings 9 and

10). To make the presentation clearer, we removed un-essential details; however, the original scenario can be modeled in full
in the same way.

Listing 9. Goal choreography specification for user

Listing 10. Web Service choreography specification of simlulated Shipwire

// Local ontology (will be stored on a separate file after deployed)
/*
myUserName('Audrey').
myAuth('TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK').
myAddress('6501 Railroad Avenue SE-Room 315').
WantToBuy('Laura-s_Lament',10).
*/
myGoal:Goal.
myGoal[
 importOntology -> '../Shipwire/GoalsOntology.flr',

 capability -> ${
 pre -> ${
 run:System[state->on]
 },
 post -> ${
 RESPONSE:MESSAGE[
 PurchaseDone->?_X,
 TrackingNumber->?_Y
]
 }
 }
 ,
 gRule(R01):ForallRule -> ${
 \if (
 (
 (\+ g_Rule:Control[R01->off])@WM,
 (run:System[state->on])@WM,
 myUserName(?user)@WM,
 myAuth(?auth)@WM,
 WantToBuy(?sku,?_quan)@WM
)
)
 \then (
 %deltaInsert(${g_Rule:Control[R01->off]}),
 %deltaInsert(${REQUEST:MESSAGE[
 TYPE->'Search',
 SKU->?sku,
 USER->?user,
 AUTH->?auth
]})
)
 }
 ,
 gRule(R02):ForallRule -> ${
 \if (
 (
 (\+ g_Rule:Control[R02->off])@WM,
 (RESPONSE:MESSAGE[
 Available->'TRUE',
 ProductID->?PrdId
])@WM,
 myAuth(?auth)@WM,
 WantToBuy(?_prod,?quan)@WM
)
)
 \then (
 %deltaInsert(${g_Rule:Control[R02->off]}),
 %deltaInsert(${REQUEST:MESSAGE[
 TYPE->'Order',
 ORDER->?PrdId,
 QUANTITY->?quan,
 AUTH->?auth

// Local ontology (will be stored on a separate file after deployed)
/*
Product('Laura-s_Lament','1361533',20).
User('Audrey', 'TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK').
*/

Shipwire:WebService.
Shipwire[
 importOntology -> ../Shipwire/WebServicesOntology.flr',

 capability -> ${
 pre -> ${
 REQUEST:MESSAGE[?_X1->?_Y1]
 },

 post -> ${
 RESPONSE:MESSAGE[?_X2->?_Y2]
 }
 }
 ,
 wsRule(R01):ForallRule -> ${
 \if (
 (\+ ws_Rule:Control[R01->off])@WM,
 REQUEST:MESSAGE[
 TYPE->'Search',
 SKU->?sku,
 USER->?user,
 AUTH->?auth
]@WM,
 User(?user, ?auth)@WM,
 Product(?sku,?PrdId,?_Quan)@WM
)
 \then (
 %deltaInsert(${ws_Rule:Control[R01->off]}),
 %deltaInsert(${RESPONSE:MESSAGE[
 Available->'TRUE',
 ProductID->?PrdId
]})
)
 }
 ,
 wsRule(R02):ForallRule -> ${
 \if (
 (\+ ws_Rule:Control[R02->off])@WM,
 REQUEST:MESSAGE[
 TYPE->'Order',
 ORDER->?PrdId,
 QUANTITY->?quanReq,
 AUTH->?auth
]@WM,
 Product(?_sku,?PrdId,?Quan)@WM,
 ?Quan >= ?quanReq
)
 \then (
 %deltaInsert(${ws_Rule:Control[R02->off]}),
 %deltaInsert(${RESPONSE:MESSAGE[
 AcceptOrder->'TRUE',
 ProductID->?PrdId
]})
)
 }
 ,
 wsRule(R03):ForallRule -> ${

1 https://www.shipwire.com/
2 https://www.shipwire.com/w/developers/tutorial/

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 11

]})
)
 }
 ,
 gRule(R03):ForallRule -> ${
 \if (
 (
 (\+ g_Rule:Control[R03->off])@WM,
 (RESPONSE:MESSAGE[
 AcceptOrder->'TRUE',
 ProductID->?PrdId
])@WM,
 myAuth(?auth)@WM,
 WantToBuy(?_prod,?quan)@WM
)
)
 \then (
 %deltaInsert(${g_Rule:Control[R03->off]}),
 %deltaInsert(${REQUEST:MESSAGE[
 TYPE->'Checkout',
 ORDER->?PrdId,
 QUANTITY->?quan,
 AUTH->?auth
]})
)
 }
 ,
 gRule(R04):ForallRule -> ${
 \if (
 (
 (\+ g_Rule:Control[R04->off])@WM,
 (RESPONSE:MESSAGE[
 Question->'ADDRESS'
])@WM,
 myAddress(?add)@WM
)
)
 \then (
 %deltaInsert(${g_Rule:Control[R04->off]}),
 %deltaInsert(${REQUEST:MESSAGE[
 TYPE->'Answer',
 Data->?add
]})
)
 }

].

 \if (
 (\+ ws_Rule:Control[R03->off])@WM,
 REQUEST:MESSAGE[
 TYPE->'Checkout',
 ORDER->?PrdId,
 QUANTITY->10,
 AUTH->'TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK'
]@WM
)
 \then (
 %deltaInsert(${ws_Rule:Control[R03->off]}),
 %deltaInsert(${RESPONSE:MESSAGE[
 Question->'ADDRESS'
]})
)
 }
 ,
 wsRule(R04):ForallRule -> ${
 \if (
 (\+ ws_Rule:Control[R04->off])@WM,
 REQUEST:MESSAGE[
 TYPE->'Answer',
 Data->?_address
]@WM
)
 \then (
 %deltaInsert(${ws_Rule:Control[R04->off]}),
 %deltaInsert(${RESPONSE:MESSAGE[
 PurchaseDone->'TRUE',
 TrackingNumber->'1234567890'
]})
)
 }
].

In this example, each rule can only be fired once. We enforce this restriction by putting proper flags in the rules' left-sides.

If a rule gets fired, subsequent firing of the same rule is prevented since the flag will be false after the first firing.
Step 5 of Shipware scenario denotes the situation where the user decides to change her/his mind. Although such decisions

are normally made by a human agent, they can also be modeled by our specifications. For example, a predicate like UserChan-
geMind('TRUE') can be inserted as a pre-condition at the beginning and by using the above mentioned flagging technique, we
can give only one chance to the goal to update its choice. Another way is to define a random function that activates a proper
condition, simulating the user's change of mind.

6 Using well-known vocabularies (schema.org)

Flora-2 inherently supports defining the membership relation. The frame A:C[B->1] means that object A is a member of
class C and its B attribute has value 1. In general, membership relation is defined by the : operator. This feature is very suitable
to link Flora-2 concepts to well-known vocabularies like the one available on schema.org 3 . For example, we can define the
flight predicate used in the previous examples as an instance of http://schema.org/Flight by
flight:'http://schema.org/Flight'. This relation can be stored in the common ontology and can be validated during the cho-
reography runs. Here we rewrite the authentication example (Example 1) with schema.org annotations. Table 2 shows the con-
cepts which can be mapped to the current version of schema.org vocabulary.

Table 2. Schema.org mapping

Concept schema.org type
QuestionByWS http://schema.org/Question

AnswerByGoal http://schema.org/Answer (stack overflow answer)
myUserName http://schema.org/identifier

myPassword http://schema.org/accessCode
UserName http://schema.org/identifier

Password http://schema.org/accessCode
Message http://schema.org/Message

Goal http://schema.org/agent
WebService http://schema.org/Service

Listings 11 and 12 show the authentication goal and web service specifications respectively using the schema.org vocabu-

lary. Vocabulary validation lines are bolded.

Listing 11. Goal choreography specification for semantic authentication

Listing 12. Web Service choreography specification of semantic authentication

// Local ontology (will be stored on a separate file after deployment)
/*
myUserName('Riccardo').
myPassword('98765').
*/
myGoal:Goal.
myGoal[
 importOntology -> '../Auth/GoalsOntology.flr',

 capability -> ${
 pre -> ${
 ar:AuthenticationRequest[UserName->?UN, Password->?PW],
 AuthenticationRequest(UserName,?UN),
 AuthenticationRequest(Password,?PW)
 },

 post -> ${
 ?AV:AuthenticationValidation[?X->?Y] \or
 AuthenticationValidation() \or
 AuthenticationValidation(?Z) \or
 AuthenticationValidation(?W,?S)
 }
 },
 gRule(R01):ForallRule -> ${
 \if (
 ?X:QuestionByWS[UserName->?Y]@WM,
 myUserName(?UN)@WM,
 QuestionByWS:'http://schema.org/Question',
 myUserName:'http://schema.org/identifier'
)
 \then (
 %deltaInsert(${A:AnswerByGoal[UserName->?UN]})
)
 },
 gRule(R02):ForallRule -> ${
 \if (
 ?X:QuestionByWS[Password->?Y]@WM,
 myPassword(?PW)@WM,
 QuestionByWS:'http://schema.org/Question',
 myPassword:'http://schema.org/accessCode'
)
 \then (
 %deltaInsert(${A:AnswerByGoal[Password->?PW]})
)
 },
 gRule(R03):ForallRule -> ${
 \if (
 QuestionByWS(UserName,?X)@WM,
 myUserName(?UN)@WM,
 QuestionByWS:'http://schema.org/Question',
 myUserName:'http://schema.org/identifier'
)
 \then (
 %deltaInsert(${AnswerByGoal(UserName,?UN)})
)
 },
 gRule(R04):ForallRule -> ${
 \if (
 QuestionByWS(Password,?X)@WM,
 myPassword(?PW)@WM,
 QuestionByWS:'http://schema.org/Question',
 myUserName:'http://schema.org/identifier'
)
 \then (
 %deltaInsert(${AnswerByGoal(Password,?PW)})
)
 }].

// Local ontology (will be stored on a separate file after deployment)
/*
DB_UserName_Password('PeterJM','12345').
DB_UserName_Password('Angel83','112233').
DB_UserName_Password('Riccardo','98765').
DB_UserName_Password('Agent007','7777777').
*/
AuthenticationService:WebService.
AuthenticationService[
 importOntology -> '../Auth/WebServicesOntology.flr',

 capability -> ${
 pre -> ${
 ?AR:AuthenticationRequest[?X->?Y]
 },

 post -> ${
 ?AV:AuthenticationValidation[?X->?Y]
 }
 },
 wsRule(R01):ForallRule -> ${
 \if (
 (?AR:AuthenticationRequest[?X->?Y])@WM
)
 \then (
 %deltaInsert(${Q:QuestionByWS[UserName->_]}),
 %deltaInsert(${Q:QuestionByWS[Password->_]})
)
 },
 wsRule(R02):ForallRule -> ${
 \if (
 (?X:AnswerByGoal[UserName->?UN])@WM,
 (?Y:AnswerByGoal[Password->?PW])@WM,
 DB_UserName_Password(?UN,?PW)@WM,
 AnswerByGoal:'http://schema.org/Answer',
 UserName:'http://schema.org/identifier',
 Password:'http://schema.org/accessCode'
)
 \then (
 %deltaInsert(${av:AuthenticationValidation[
 UserName->?UN,
 Password->?PW]})
)
 },
 wsRule(R03):ForallRule -> ${
 \if (
 (?X:AnswerByGoal[UserName->?UN])@WM,
 (?Y:AnswerByGoal[Password->?PW])@WM,
 (\+ DB_UserName_Password(?UN,?PW))@WM,
 AnswerByGoal:'http://schema.org/Answer',
 UserName:'http://schema.org/identifier',
 Password:'http://schema.org/accessCode'
)
 \then (
 %deltaInsert(${M:Message[
 WS->'Incorrect username or password.']})
)
 }
].

3 http://schema.org/

http://schema.org/Question
http://schema.org/Answer
http://schema.org/identifier
http://schema.org/accessCode
http://schema.org/identifier
http://schema.org/accessCode
http://schema.org/Message
http://schema.org/agent
http://schema.org/Service

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 13

7 HTTP messages

As mentioned before REST APIs are very popular. Here, we show how HTTP messages can be encoded to Flora-2 chore-
ography specifications. In Example 5, we demonstrated a choreographic scenario provided by the Shipwire website. We ab-
stractly showed how this scenario can be modeled with the choreography specification. At a lower level, REST APIs are called
in single step request/response pairs and because HTTP is a stateless protocol, control flow is managed at higher levels.

Here, we show how a sample REST request/response pair can be modeled by the Flora-2 choreography specification. The
sample GET request/response taken from TIBCO® 4 and is shown below:

Request
http://localhost:8090/tpmRest/v1/participants/transports/all?
participantName=partner1&protocolName=EZComm

Response {"result":[{"name":"file","type":"FILE"},{"name":"http","type":"HTTP"}]}

We use the JSON to Flora-2 conversion presented in Appendix E to specify the JSON response provided by the web ser-

vice. Listings 13 and 14 show the goal and web service specifications. We use the attribute ID to make correlation between the
request and response messages.

Listing 13. Goal choreography specification for semantic GET request

Listing 14. Web Service choreography specification of semantic GET

response
myGoal:Goal.
myGoal[
 importOntology -> '../Tibco/GoalsOntology.flr',

 capability -> ${
 pre -> ${ run:System[state->on] },
 post -> ${
 RESPONSE:'HTTP_1.1_MESSAGE'[
 ID->123,
 STATUS->200,
 BODY->?format[content -> ?top(?topId)]
]
 }
 }
 ,
 gRule(R01):ForallRule -> ${
 \if (
 (
 (\+ g_Rule:Control[R01->off])@WM,
 (run:System[state->on])@WM
)
)
 \then (
 %deltaInsert(${g_Rule:Control[R01->off]}),
 %deltaInsert(${
 REQUEST:'HTTP_1.1_MESSAGE'[
 ID->123,
 METHOD->'GET',
 URI->'http://localhost:8090/tpmRest/v1/
 participants/transports/all',
 PARAMS->participantName('partner1'),
 PARAMS->protocolName('EZComm')
 // , HEADER->Accept('text/json'),
 // BODY->Optional
]})
)
 }
].

Tibco:WebService.
Tibco[
 importOntology -> '../Tibco/WebServicesOntology.flr',

 capability -> ${
 pre -> ${ REQUEST:'HTTP_1.1_MESSAGE'[?_X1->?_Y1] },

 post -> ${ RESPONSE:'HTTP_1.1_MESSAGE'[?_X2->?_Y2] }
 }
 ,
 wsRule(R01):ForallRule -> ${
 \if (
 (\+ ws_Rule:Control[R01->off])@WM,
 REQUEST:'HTTP_1.1_MESSAGE'[
 ID->?id,
 METHOD->'GET',
 URI->?uri,
 PARAMS->?_param(?val)
 // , HEADER->Optional,
 // BODY->Optional
]@WM
 // , call the appropriate function with
 // the provided parameters
)
 \then (
 %deltaInsert(${ws_Rule:Control[R01->off]}),
 %deltaInsert(${RESPONSE:'HTTP_1.1_MESSAGE'[
 ID->?id,
 STATUS->200,
 BODY->json[content->object(obj_01)],

 object(obj_01,'result')-> array(arr_01),

 array(arr_01,1)->object(obj_02),

 object(obj_02,'name')->'file',
 object(obj_02,'type')->'FILE',

 array(arr_01,2)->object(obj_03),

 object(obj_03,'name')->'http',
 object(obj_03,'type')->'HTTP'
]})
)
 }
].

Since there is only one request/response step, the request method can be also defined in goal.pre. In this form, goal will

be rule-free however.

4 https://docs.tibco.com/pub/tpm-rest/1.0.1/doc/html/GUID-BAA2DC07-D7DC-49BD-80A5-B4998B56B9BF.html

APPENDIX D: CHOREOGRAPHY ENGINE PREDICATE LIST

Predicate Defined in Functionality
%checkAllRHS(?gOrWS,?List) Library.flr Picks each of the collected RHSs in the ?List and passes it to %checkRHS. It is used to see if

there is any usage of membership operators in deltaDelete actions.
%checkExistanceOfColon
(?gOrWS,?Action)

Library.flr If the specified action (?Action) is deltaDelete, then it checks whether there is any mem-
bership operator used in the action subject.

%checkMembershipOperator(?Obj) Library.flr Converts the reified Flora-2 object (?Obj) into string and then passes its characters one-by-
one to %noColonExists.

%checkModule(?M) Utility.flr Checks existence of module ?M, if not creates it.

%checkRHS(?gOrWS,?P) Library.flr If ?P is a pair it decomposes it, otherwise it sends ?P to %checkExistanceOfColon.

%checkUsageOfMembershipOpera-
torInDeltaDelete
(?gOrWS)

Library.flr Prepares the list of all RHSs belonging to ?gOrWs which can be either a goal or a web ser-
vice.

%contained(?X, ?A) Utility.flr Checks whether ?X exists in ?A. ?A is conjunction of literals.

%contradictory(?WM, ?DeltaWM) Choreography.flr Checks whether there are any contradictory actions who are pending in Delta Working
Memory. WM and DeltaWM are in ?WM and ?DeltaWM respectively.

%convertReifiedObjectModule
(?obj1, ?M1, ?M2, ?obj2)

Library.flr Copies the reified object ?obj1 into object ?obj2 with the module name changed from ?M1
to ?M2.

%copyReifiedObjectIntoModule
(?obj1, ?M1, ?M2, ?obj2)

Library.flr Makes a copy of the reified object ?obj1 in module ?M1 into ?obj2 and inserts it in ?M2.

%debug(?X) Utility.flr Toggles the debug mode.

%deltaDelete(?obj) Library.flr Inserts deletion of an object into delta working memory.

%deltaInsert(?obj) Library.flr Inserts insertion of an object into delta working memory

%deltaMakesAChange
(?WM, ?DeltaWM)

Choreography.flr Checks whether the pending actions in delta working memory make a new state for chore-
ography

%deltaUpdate(?objOld, ?objNew) Library.flr Inserts updating of an object into delta working memory

%eraseModule(?M) Utility.flr Deletes the content of the specified module.

%extractConcepts
(?Str, ?LstIn, ?LstOut)

Library.flr Finds and extracts the concept terms in the string ?Str.

%extractPredicates
(?Str, ?LstIn, ?LstOut)

Library.flr Finds and extracts the terms which could be object names or predicate names in the string
?Str

%filterOutPredicates
(?List, ?LstIn, ?LstOut)

Library.flr Among list of object names and predicate names represented by ?List ,it extracts the predi-
cate names.

%giveElementAt(?L,?n,?elementAt) Utility.flr Returns the ?nth element of the list ?L in ?elementAt.

%importOntology(?X,?module) Library.flr Loads the specified ontology into the specified module.

%initializations Utility.flr Initializes the choreography engine parameters (currently initialize the RNG seed).

%insertGoalPre
(?goal,?M)

Library.flr Inserts the precondition of goal ?goal into the ?M module.

%invoke(WEBSERVICE,?X) Choreography.flr Fires the forall rules of a web service or a goal.

%invokeChoose(WEBSERVICE,?X) Choreography.flr Fires the choose rules of a web service or a goal.

%isNotFrame([?H|?T]) Library.flr Determines if a string represents a Flora-2 frame.

%makeFileAddress
(?dir,?name,?fileAddress)

Utility.flr Concatenates the directory path and the file name to make a complete file address.

%mergeDeltaIntoWM Choreography.flr Does actual actions which were pending in delta working memory and makes a new state
of working memory.

%noColonExists([]) Library.flr Checks whether there is a ':' in the passed string.

%pause() Utility.flr Stops the reasoner to let the user to enter something.

%prepareModule(?module) Utility.flr Creates a new module if it does not exist.

%preProcessCheckings(?goal,?WS) Library.flr Checks the access modes in the goal precondition and the transition rules.

%prove(?X) Library.flr Tries to prove any logical expression.

%proveGoalPost(?goal) Library.flr Tries to prove the goal post condition.

%rand(?L,?U,?R) Utility.flr Generates a random integer number in the specified range.

%readTheTerm
(?Str, ?termIn, ?termOut, ?re-
mainder)

Utility.flr Extracts terms after specific characters in the string ?Str one at a time.

%reformatToString
(?In, ?Str)

Utility.flr Converts a Flora-2 object definition into a string.

%removeParenthesis
(?Str, ?In, ?Out)

Utility.flr Scans a string and reads the characters until reaching an opening parenthesis.

%replaceAll
(?Str,?Pattern,?Replace,?NewStr)

Utility.flr Replaces all the substrings matching ?Pattern with the string ?Replace and returns the new
string by ?NewStr.

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 15

%runChoreography(?goal, ?WS) Choreography.flr The main predicate of choreography execution.

%runGoalRules(?goal) Choreography.flr Runs the transition rules of the goal.

%runWsRules(?WS) Choreography.flr Runs the transition rules of the web service.

%showModule(?M) Utility.flr Shows the content of a module in the output.

%start(?goal,?WS) Choreography.flr The predicate which should be called to begin the choreography execution engine.

%startsWith
(?Str,?Pattern,?Rest)

Utility.flr Checks whether the string ?Str starts with the string ?Pattern.

%watch(?X) Utility.flr Prints the parameter represented by ?X in the output.

%watchln() Utility.flr Prints the parameter represented by ?X and a new line character in the output.

%check(?gOrWs,?X) ModeChecking.flr Checks if the LHS and RHS of a rule (belonging to goal or web service) are using correct
access modes.

%checkAll(?gOrWs,?L) ModeChecking.flr Extracts the rules of goal and web service in the list ?L and passes them to %check one-by-
one.

%checkAllFramesModes
(?gOrWS, ?reOrWr,?L)

ModeChecking.flr Extracts the concept names from the list ?L and passes them to %checkFrameMode one-
by-one.

%checkAllPredicatesModes
(?gOrWS, ?reOrWr,?L)

ModeChecking.flr Extracts the predicate names from the list ?L and passes them to %checkPredicateMode
one-by-one.

%checkFrameMode(GOAL,READ,?F) ModeChecking.flr Checks the access modes of the specified frame based on the reading/writing of goal/web
service

%checkGoalPreMode(?fOrP,?F) ModeChecking.flr Checks the access modes of goal precondition.

%checkModeDeltaDelete
(GOAL/WS,READ/WRITE,?N)

ModeChecking.flr Checks the access modes of the either frames or predicates used in deltaDelete.

%checkModeOfDeltaDeleteObject
(?gOrWs, ?Z)

ModeChecking.flr Separates deltaDelete actions from the others in RHS and passes them to %checkModeDel-
taDelete one-by-one.

%checkModeOfDeltaDeleteObjects
(?gOrWs, ?Z)

ModeChecking.flr If RHS (?Z) contains more than one actions, it decomposes it; otherwise passes it to
%checModeDeltaDelete.

%checkPredicateMode
(GOA/WS,READ/WRITE,?F)

ModeChecking.flr Checks the access modes of the specified predicate based on the reading/writing of
goal/web service

%decomposeRHS
(?X, ?LstIn, ?LstOut)

ModeChecking.flr Makes a list containing all the reified objects and predicates existing in delta actions.

%extractConceptsForDeltaDelete
(?Str, ?LstIn, ?LstOut)

ModeChecking.flr Finds the concepts of the object names in the string ?Str.

%preProcessCheckModes
(?gOrWs,?X)

ModeChecking.flr Checks the access modes in the LHS and RHS of the transition rules.

%preProcessCheckModesForGoalPre
(?goal)

ModeChecking.flr Checkes the access modes in the goal precondition.

%readTheTermForDeltaDelete
(?Str, ?termIn, ?termOut, ?re-
mainder)

ModeChecking.flr Extracts a term in the string ?Str which exists in the deltaDelete object or predicate.

APPENDIX E: CONVERTING JSON TO FLORA-2

Currently, REST (REpresentational State Transfer) is the most popular architecture in the development of web services. In
RESTful architectures, message passing and data transfer is done via HTTP over the network. Clients use methods such as
GET, POST, and PUT to trigger actions or to retrieve resources held by web services. Web services, on the other hand, re-
spond to these methods with HTTP messages containing formatted (and possibly annotated) information. The dominant for-
mats in use are XML (eXtensible Markup Language) and JSON (JavaScript Object Notation). Between these two, JSON is the
preferred format in REST because of its simplicity and readability. However, as it is a minimal type-free data format it does
not support semantic annotations. It should be kept in mind that XML and JSON are not equivalent because the former is a
language with schema, types and links but the latter is just a data presentation format. JSON-LD (JSON for Linked-Data)5 is a
typed version of JSON and has the potential to be used in semantic based systems, but it is not integrated with the most of the
popular available web services yet. In this appendix we present a scheme to map JSON context to an equivalent Flora-2 con-
text. This scheme paves the way for our Flora-2 choreography solution to interact with the currently available REST APIs.

JSON supports only two types of structure, namely objects and arrays. Objects are anonymous and contain comma sepa-
rated key-value pairs. Keys are always strings and values can be other objects, string/Boolean/numerical literals, or arrays.
Arrays contain series of objects and can be nested as well. JSON grammar is given in

Figure 10.

object
{}

{ members }

members

pair

pair , members

pair

 string : value

array
[]

[elements]

elements

value

value , elements

value

string

number

object

array
true

false

null

Figure 10. JSON grammar 6

In Flora-2, frames model objects. Unlike JSON, frames have names in the form of object identifiers and can be instantiated

from a concept (class). Frames are composed of attribute-value pairs which are similar to JSON key-value pairs. But because
objects are anonymous in JSON it is not straightforward to directly map key-value pairs in JSON to attribute-value pairs in
Flora-2. Another consideration is that in JSON, objects are referenced by their relative position and path in the whole struc-
ture and there is no direct pointer to a specific data, but in Flora-2 frames are decomposed and stored in form of predicates.
Data in Flora-2 is retrieved by unification, so accessing data is fundamentally different from JSON. Taking into account the
above mentioned issues, below we present a mapping scheme between JSON and Flora-2.

The top-level entity in JSON can be either an object or an array. We can show this by frames json[content-
>object(obj_id)] or json[content->array(arr_id)].

In JSON, key-value pairs belonging to the same object are wrapped together inside the object. We can show this binding
by combining predicate and frame notations in Flora-2. For example, the attribute-value pairs object(id_1,a)->1 and ob-
ject(id_1,b)->2 tell that both attributes a and b belong to the object with id id_1 and their values are 1 and 2 respectively. In
this way, the query object(id_1,?X)->?Y returns all attribute-value pairs belonging to the object with id id_1. Moreover, id_1
can be used as a direct reference to the object; in contrast to JSON wherein objects are anonymous.

The elements of an array in JSON are referenced by their position in a comma separated list. To show JSON lists in Flora-2
we can use again predicate and frame notations. For example, the attribute-value pair array(id_1, 2)->a says that the second
element in array id_1 has the value a.

An array which itself is a value of an attribute can be represented in Flora-2 as the predicate array whose parameter is the
(generated) id of the array. For example the JSON object {"someArray": [10,20]} can be represented in Flora-2 by the facts ob-
ject(id_1, "someArray")->array(id_2) , array(id_2, 1)->10, and array(id_2, 2)->20 where id_1 and id_2 are automatically
generated Flora-2 object identifiers. Using the Flora-2 reasoner, one can query such composite structures in a simple manner.
For example, a query such as someFrame:someConcept[object(id_1, a)->array(id_2), array(id_2, ?X)->?Y] returns all the ele-
ments' index-value pairs of array id_2 which is in turn the value of attribute a of object id_1.

Figure 11 depicts an example of REST response message, both in JSON and its equivalent Flora-2 notations. It is obvious
that data presented in Flora-2 can be simply queried and reasoned about, and these are not possible with JSON.

JSON Flora-2

[
 {
 "firstName": "John",
 "lastName" : "doe",
 "age" : 26,
 "address" : {
 "streetAddress": "naist street",
 "city" : "Nara",
 "postalCode" : "630-0192"
 },

json[content -> array(arr_01)].

array(arr_01,1) -> object(obj_01).
object(obj_01,"firstName") -> "John".
object(obj_01,"lastName") -> "doe".
object(obj_01,"age") -> 26.
object(obj_01,"address") -> object(obj_02).

object(obj_02, "streetAddress") -> "naist street".
object(obj_02, "city") -> "Nara".

5 https://json-ld.org/
6 http://www.json.org/

M. ATAEE AND BAYRAM.: AN IMPROVED ABSTRACT STATE MACHINE BASED CHOREOGRAPHY SPECIFICATION AND EXECUTION ALGORITHM FOR SE-

MANTIC WEB SERVICES 17

 "phoneNumbers": [
 {
 "type": "iPhone",
 "number": "0123-4567-8888"
 },
 {
 "type" : "home",
 "number": "0123-4567-8910"
 }
]
]

object(obj_02, "postalCode") -> "630-0192".

array(arr_01,2) -> object(obj_03).
object(obj_03,"phoneNumbers") -> array(arr_02).
array(arr_02,1) -> object(obj_04).
object(obj_04,"type") -> "iPhone".
object(obj_04,"number") -> "0123-4567-8888".

array(arr_02,2) -> object(obj_05).
object(obj_05,"type") -> "home".
object(obj_05,"number") -> "0123-4567-8910".

Figure 11. An example of JSON to Flora-2 conversion

