
Research Article
An Improved Abstract State Machine Based
Choreography Specification and Execution Algorithm for
Semantic Web Services

Shahin Mehdipour Ataee and Zeki Bayram

Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey

Correspondence should be addressed to Shahin Mehdipour Ataee; shahin.mpa@gmail.com

Received 13 June 2017; Revised 20 September 2017; Accepted 4 October 2017; Published 24 January 2018

Academic Editor: Mario Alviano

Copyright © 2018 Shahin Mehdipour Ataee and Zeki Bayram. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

We identify significant weaknesses in the original Abstract State Machine (ASM) based choreography algorithm of Web Service
Modeling Ontology (WSMO), which make it impractical for use in semantic web service choreography engines. We present an
improved algorithm which rectifies the weaknesses of the original algorithm, as well as a practical, fully functional choreography
engine implementation in Flora-2 based on the improved algorithm. Our improvements to the choreography algorithm include (i)
the linking of the initial state of the ASM to the precondition of the goal, (ii) the introduction of the concept of a final state in the
execution of the ASM and its linking to the postcondition of the goal, and (iii) modification to the execution of the ASM so that
it stops when the final state condition is satisfied by the current configuration of the machine. Our choreography engine takes as
input semantic web service specifications written in the Flora-2 dialect of F-logic. Furthermore, we prove the equivalence of ASMs
(evolving algebras) and evolving ontologies in the sense that one can simulate the other, a first in literature. Finally, we present a
visual editor which facilitates the design and deployment of our F-logic based web service and goal specifications.

1. Introduction

The idea of using service oriented architecture (SOA) to
form an IT infrastructure for carrying out business-to-
business interactions has gained a lot of attention in the
last 15 years. In this context, service composition has been
studied and analyzed inmany researches. Two important and
complementary aspects of service composition are service
orchestration and service choreography.

Service orchestration is the process of coordinating two
or more services for the purpose directing them toward the
accomplishment of a specific task in a centralizedway. Service
choreography however (as pointed out in [1–3] as well) does
not have a unique understanding among researchers. In the
Business ProcessModeling (BPM) community, choreography
is known as a general predefined collaboration scenario that
should be agreed upon and adhered to by two or more
web services in order to accomplish a business goal, without
the presence of a central coordinator (unlike orchestration).

The choreography engine checks whether the participants
are passing proper messages at the right time and in the
correct order specified by the choreography designers [4].
In this paradigm, choreography is considered as a global
collaboration, rather than bidirectional interaction between
a service requester and a service provider.

The global collaboration view forms the basis ofmodeling
languages such as WSCI [5], WS-CDL [6], BPEL4Chor [7,
8], Let’s Dance [9], Multi-Agent Protocol (MAP) [10], and
BPELgold [11]. The dominant common features of this type of
choreography languages are

(i) being process-driven: a service is modeled as a pro-
cess composed of series of milestones,

(ii) having no role for goals: there is no concept of a
service requester,

(iii) staticity: the overall sequence of events is specified at
design time,

Hindawi
Scientific Programming
Volume 2018, Article ID 4094951, 20 pages
https://doi.org/10.1155/2018/4094951

http://orcid.org/0000-0002-8917-612X
http://orcid.org/0000-0003-4878-357X
https://doi.org/10.1155/2018/4094951

2 Scientific Programming

(iv) being nonsemantic: no ontology is used, which is the
main feature of a semantic system [12],

(v) not having any inferencing capability.

In contrast, the concept of choreography among semantic
web service developers is understood as the behavioral
interface of a single web service when it is interacting with its
client (so-called goal), which results in an automatic, flexible
conversation (dialog) between the two. In other words, it is
the implicit communication protocol between two (and only
two) counterparts that should be dynamically carried out
in order to realize a conversation. The role of choreography
engine is to dynamically control the conversation and see
whether it is successful or not. This concept has been named
choreography interface in [13].

In the rest of this article, we use the term choreography
only in the semantic web sense. Our work also falls strictly in
the semantic web view of choreography and consequently is
not directly comparable to choreography languages adapted
by the BPM community.

To fully automate service choreography, there is the
need for unambiguous, computer processable semantics that
can be used for automated reasoning [13]. A well-known
semantic web service framework is Web Service Modeling
Ontology (WSMO) [14]. In WSMO, the specification and
behavior of the service provider (web service) and the service
requester (goal) are described using a rich semantic notation.
WSMO choreography is a component ofWSMO interface that
deals with choreographing ofWSMO-based web services and
goals.

Although WSMO based its choreography algorithm on
the well-founded theory of Abstract State Machines (ASMs)
[15, 16], the algorithm is less than perfectly suited for the
job at hand. In fact, our literature search has failed to
reveal any choreography engine that implements it exactly
as specified. For example, current implementations (such as
WSMX [17] and IRS-III [2]) do not fully adhere to the ASM
theory. Our own investigation into the algorithmhas revealed
certain important shortcomings which make it unsuitable
for driving the correct interaction between goal and web
service choreographies, and helps explain its lack of proper
adaptation in existing choreography engine implementations.

In previous work [18], we used F-logic [19] for the
WSMO capability specification of web services and goals. A
capability involves pre- and postconditions of web services
and goals. Capabilities are used in the service discovery
stage. In the current work, we focus on WSMO interfaces,
which mainly include choreography specification and are
used in the service interaction stage. Our main contributions
here can be summarized as (i) rectifying the original ASM-
based choreography algorithm, (ii) proposing an F-logic
specification of WSMO goal and web service choreographies
as an effective alternative to the current specifications in
WSML [20] and OCML [21], (iii) implementing the recti-
fied choreography algorithm in Flora-2 [22, 23] with novel
technics that adhere to theory of ASMs (missing in other
implementations), (iv) validating the implemented Flora-2
engine through several realistic scenarios, (v) developing
a visual editor to facilitate the design and deployment of

semantic web services in a subset of the Flora-2 language that
we adopted as our specification language, and (vi) proving the
equivalence of ASMs (also known as evolving algebras [24])
and WSMO choreography specifications (commonly called
evolving ontologies [25]) by providing appropriate mappings
between them.

The rest of this article is organized as follows. In Sec-
tion 2, the preliminaries are briefly explained, including ASM
theory, F-logic, Flora-2, and WSMO choreography concepts,
which are needed to understand the subsequent sections.
In Section 3, we give the existing WSMO choreography
execution algorithm, point out its weaknesses, and present
a rectified version. In Section 4, the general form of goal
and web service specifications in F-logic is given, as well
as the implementation details of the improved algorithm,
which works on the specifications. In Section 5, we provide a
realistic choreography example and explain it. Section 6 is the
discussion, where we describe how our choice of Flora-2 as
the specification language helps resolve the data granularity
mismatch problem that can occur between the goal and web
service. Section 7 contains related work on choreography
specification, matching, and execution, with appropriate
comparison with our approach. Finally, in Section 8 we have
the conclusion and future research directions. In Appendix A
in the Supplementary Materials, we illustrate the developed
visual editor for semantic web service specification in a subset
of Flora-2. In Appendix B in the SupplementaryMaterials, we
give the grammar of the web service and goal specifications in
EBNF [26] notation. AppendixC in the SupplementaryMate-
rials contains seven more choreography scenario examples,
demonstrating the capabilities of the proposed choreography
specification and engine. Appendix D in the Supplementary
Materials contains a description of the predicates used in
the implementation, which itself is available for download at
[27]. Lastly, inAppendix E in the SupplementaryMaterials we
describe a scheme for converting JSON content into its Flora-
2 equivalent, a step that will be useful in grounding Flora-2
specified semantic web services into RESTful web services.

2. Preliminaries

In this section, essential concepts that have been used in this
work are briefly reviewed.

2.1. Abstract State Machine (ASM). ASMs or evolving alge-
bras were first introduced by Gurevich [15, 16]. ASM theory
says that every algorithm can be modeled as a step-by-step
evolving system containing two main components: a state
signature which represents the current status of the system
and a finite set of transition rules which determine the next
state of the system based on the current one. Finite State
Machines (FSMs) [28] can be seen as a specific instance of
ASMs. An important point about ASMs is that transition
rules are applied in parallel at each evolution step and they
are categorized into three types: if-rule(-else), forall-rule, and
choose-rule [29].

ASMs are generally categorized into Basic ASMs and
Multiagent ASMs. The discussion here is based on Basic
ASMs, similarly to WSMO which configured and extended

Scientific Programming 3

Basic ASMs to model choreographies. In WSMO, evolving
ontologies (ontologized ASM [30]) are used to represent the
state of the choreography, instead of the evolving algebra of
ASMs. It turns out that evolving ontologies are equivalent to
evolving algebras, andweprove this in Section 3.2. For further
reading about ASMs, the reader is referred to [24, 31, 32].

2.2. WSMO and WSMO Choreography. Web Service Mod-
eling Ontology (WSMO) is a comprehensive framework
that has the aim of enabling automatic service discovery,
invocation, and composition [14]. It identifies four major
concepts in semantic service oriented architecture: ontology
(provides the common terminology between goals and web
services), web service (models the functionality of the web
service at a high, semantic level), goal (models the request
of client at a high, semantic level), and mediator (resolves
different types of possible incompatibilities, including process
and terminological, between goals and web services).

The concept of web service in turn contains nonfunctional
properties, ontologies, mediators, capability, and interface ele-
ments.The functionality of aWSMOweb service is described
by the capability element which contains precondition, post-
condition, assumption, and effect. Precondition specifies what
the web service requires from the goal before it can start
execution. Postcondition specifies what the web service can
provide to the client (i.e., goal) upon successful completion
of its execution. Assumption is the state of the world which
must hold true before the web service can be called. Effect
is the change(s) caused to the state of the world through
the execution of the web service. A WSMO web service
guarantees its postcondition and effect if its precondition and
assumption are true. This feature of WSMO web services is
used for automatic discovery purposes.

Choreography is part of web service Interface element
which specifies the behavioral interaction of the web service
with its client.

2.3. F-Logic. Introduced by Kifer and Lausen, Frame Logic
[19] or in short F-logic is a formalism that integrates first-
order logic and the object-oriented paradigm [19]. Equipped
with predicate calculus [33], F-logic can easily model con-
cepts, facts, rules, and specially ontologies in a very declar-
ative fashion and is considered a rule-integrated ontological
language [34]. In F-logic, classes and subclasses are modeled
as concepts and subconcepts, respectively. Also, data mem-
bers are represented by attributes and their assigned values.
Detailed discussion about F-logic can be found in [35–37].

2.4. Flora-2. Flora-2 is a powerful, integrated system based
on F-logic, HiLog [38, 39], and Transaction Logic [40].
It offers syntax similar to F-logic and by using the XSB
inferencing engine [41], it can do reasoning on the facts
and knowledge represented in F-logic or HiLog. The variety
and multiplicity of logic and predicate operators make Flora-
2 a powerful reasoning system. Moreover, Flora-2 is being
continuously extended and developed [42, 43] and it can be
integrated with Java through the provided APIs [44]. We use
the latest version of Flora-2 [22] to implement a new semantic
web service choreography engine.

2.4.1. Flora-2 Syntax Summary. In Table 1, some of the more
prominent constructs of Flora-2 syntax, which we use in the
choreography engine implementation, are given.

2.4.2. Flora-2 Main, Built-In, and User Modules. Flora-2
keeps knowledge in logical storage places namedmodules. By
default, all the information and knowledge is stored in the
main module. The user can create an arbitrary number of
independent modules for organizing knowledge (referred to
as user-defined modules). Flora-2 also has built-in modules
which contain predefined predicates, such as the \prolog
module where useful Prolog [46] utility predicates are kept.

3. ASM-Based Choreography in WSMO

The state-basedmodel ofWSMO choreography is inspired by
ASM theory. Choreography working group has chosen ASM
because of the following features [47]:

(i) Minimality: ASMs are based on a small assortment of
modeling primitives.

(ii) Expressivity: ASMs can model arbitrary computa-
tions.

(iii) Formality: ASMs provide a formal framework to
express dynamics.

Moreover, steps of evolution in ASM match the stepwise
nature of interaction between a web service and its users.

To apply ASM theory in practice, WSMO choreography
authors modified Basic-ASM concepts in several aspects.The
concept of signature inASMhas been replaced by the concept
of WSMO ontology, which involves concepts, attributes,
relations, and axioms. The concept of dynamic functions in
ASM has been replaced by dynamic changes of instances
and their attribute values, effectively, replacing the concept of
evolving algebra [15] by the concept of evolving ontology [25].
This replacement, however, has not been formally justified so
far, so in Section 3.2, we prove the equivalence of evolving
algebras and evolving ontologies, filling this gap.

3.1. Specification of Choreographies in WSMO. In WSMO,
the choreography concept has four components: nonFunc-
tionalProperties, stateSignature, state, and transitionRules.
nonFunctionalProperties refers the nonfunctional properties
of the choreography, such as its author, date of creation, and
other metainformation about the choreography, described in
detail in [48].

3.1.1.TheModes of Concepts. Modes are used to define precise
access rights on instances of concepts to be exercised by the
environment (the client in this context) and the machine (the
web service in this context). Fivemodes are defined inWSMO
choreography, namely, static, controlled, in, shared, and out,
which control reading and writing access of the machine and
the environment. Table 2 summarizes the encapsulation effect
of each mode [14].

3.1.2. State. State component of WSMO choreography repre-
sents the dynamic part of the ongoing choreography instance
and consists of actual objects, that is, instances of concepts,

4 Scientific Programming

Table 1: Summary of Flora-2 syntax [45] used in the implementation.

Flora-2 syntax Meaning
concept[|attribute => type|]. Defines a concept, its attributes, and their types
object[attribute -> value]. Specifies the value of an instance attribute
subconcept::concept. Defines inheritance between two concepts
object:concept. Instance declaration
$ {. . .} Reifies any kind of object in Flora-2
∼ Metaunification operator
\object Top-most object in Flora-2
\if. . .\then. . .\else If-then-else formula
Predicate(parameters) A tabled predicate
%Predicate(parameters) A nontabled predicate
?variable Logic variable
? Don’t care logic variable
? name Don’t care identifiable logic variable
,(\and) ;(\or) \+ Logical AND, Logical OR, Negation as Failure
L :- R Clause definition
! The cut operator
\prolog Module containing Prolog predefined predicates
\btp Module containing embedded base-types or predicates

setof{?X | any formula containing variable ?X}
Generates the list of all X’s such that the formula where it occurs as a free
variable is true

//comment /∗comment∗/ Comments

Table 2: The modes of concept in WSMO choreography.

If the concept is Static Controlled In Shared Out
Web Service can Read Read/Write Read Read/Write Read/Write
Goal can Read - Read/Write Read/Write Read

as well as instances of relations. The state is changed through
the insertion of new instances, deletion of instances, or the
update of attribute values in concept instances.

3.1.3. Transition Rules. In WSMO, transition rules are in the
form of the following expressions:

(i) If guard then do rules.
(ii) Forall variables with guard do rules.
(iii) Choose variables with guard do rules.

In (i), guard should be an arbitrary logic formula without
free variables; if the guard is true, then the rules on its right-
hand side are executed. In (ii), the list of variables after Forall
should be free in the guard and the scope of these variables
extend to the rules on the right-hand side. For every value of
the variables such that the guard becomes true, the actions on
the right-hand side are executed in parallel. In (iii), for only
one instantiation of the free variables in the guard (chosen
at random), the actions on the right-hand side are executed
[49].

In accordance with the original ASM definition, all rules
at the top level, as well as rules on the right-hand side, are
meant to be executed in parallel. Note that, in the case of a

Forall rule, an extra level of parallelism is introduced through
the different instantiations of the variables listed after the
Forall keyword.

Rules on the right-hand side, also called actions, are
categorized into three basic update functions as follows:

(i) Adding a fact

(ii) Deleting a fact

(iii) Updating a fact (changing the values of the attributes).

3.2. Relationship between EvolvingAlgebras (ASMs) and Evolv-
ing Ontologies. In ASM theory, functions can be partial and
can evolve as time passes. For a function, not only can its
previous range change, but also members of the domain
that were not mapped to values in the codomain under the
function can be mapped to a value at a later stage. For
example, if f(a) is 1, f(b) is 2, and f(c) is undefined, after
a while (based on the transition rules) f might change in a
way that f(a) remains 1, but f(b) is mapped to 3 and f(c)
is mapped to 4.

Evolving ontologies deal with objects, attributes, and
values of attributes, as well as relations.The state of the system
at a given moment is determined by the objects that exist

Scientific Programming 5

at that moment, the specific values of the attributes of each
existing object, and instances of relations. Ontologies evolve
through the insertion/deletion of objects and relations, aswell
as updates to the values of object attributes.

It turns out that evolving algebras and evolving ontologies
are in fact equivalent to each other in the sense that, through
appropriate mappings, a choreography engine can simulate
ASM, and vice versa. Below, we give a brief formal definition
of Abstract State Machines, evolving ontologies, and the
mappings between the two that allow each one to simulate
the other.

Definitions [50]. In an ASM state, domains (also called uni-
verses) contain data, with functions defined over the domains.
The superuniverse is the union of all domains. Relations are
treated as Boolean valued functions, and domains are used
interchangeably with characteristic functions (e.g., if 𝑏 ∈ 𝐴,
then 𝐴(𝑏) = True). A vocabulary Σ is collection function
names. Nullary function names (those with zero parameters)
are called constants. The pair (𝑓, (𝑎1, . . . , 𝑎𝑛)), where 𝑓 is
a function name and (𝑎1, . . . , 𝑎𝑛) are parameters that the
function can be applied to, is called a location. Every ASM
vocabulary is assumed to contain the static constants undef,
True, and False. A state 𝑈 of the vocabulary Σ consists of (i)
the superuniverse of 𝑈 (which we shall call 𝑋 or |U|) and
(ii) interpretations of the function names in Σ. For any 𝑛-ary
function name 𝑓 in Σ, its interpretation fU is a function from
𝑋𝑛 into𝑋. If c is a constant ofΣ, cU is an element of𝑋.undef is
the default value𝑋 and represents and undetermined object.
The notions of terms, formulas, substitutions, quantifiers,
logical connectives, and interpretations of terms and formulas
are exactly the same as in first-order logic. Each state is
an algebra in the mathematical sense of the word, with the
exception that, for 𝑓 in Σ, 𝑓(V1, . . . , V𝑛) = 𝑢𝑛𝑑𝑒𝑓 is permitted
(i.e., functions can be partial). Furthermore, as the ASM is
executing its transition rules, function interpretations can
change over time, leading to the term evolving algebras. We
should note, however, that the update rule in ASMs is of the
form 𝑓(𝑡1, . . . , 𝑡𝑛) fl 𝑡𝑛+1, where both the arguments and
result of the function application are terms, not values in
|U|. From a logic programming point of view, where we use
terms to represent data, we can reasonably assume that |U| is
nothing more than 𝐻∞, the Herbrand universe (i.e., the set
of all ground terms) [51], and functions really map (tuples of)
terms to other terms in𝐻∞.

On the ontology side, we have concepts (classes in pro-
gramming language parlance), instances (also called individ-
uals) that are members of concepts, attributes that are used to
describe properties of instances, relations that relate instances
to one another, and axioms (logic statements that say what is
true in the domain of application). C is the set of concepts, T
is the set of all terms, I ⊆ T is the set of object identifıers
denoting instances, R is the set of relation names, and A
is the set of attributes. The term evolving ontologies comes
about because update rules are used to change the values of
object attributes and add/delete relation or concept instances
to/from the working memory to obtain a modified working
memory. The complete contents of the working memory
represent a state.

3.2.1. Simulation of Choreography Engine Execution via ASM.
One way to view members of A is as functions with domain
I and codomain T; that is, a ∈ A : I → T. Since I ⊆ T, it
is also true that a ∈ A : T → T, with the provision that if
e ∈ (T − I) then A(e) = undef ; that is, A is not defined for
elements ofT that are not in I. For any ontologywith attribute
set A, the actions of the choreography execution engine can
be simulated by an ASM with vocabulary Σ = R ∪ A. Table 3
gives the action to be performed by anASM that simulates the
choreography engine execution. Remember that predicates in
ASMs can be represented as Boolean valued functions.

Definition 1. An ASM state 𝑆𝐴 is said to correspond to an
ontological state 𝑆𝐶 iff

(i) whenever 𝑏 ∈ 𝐼 and 𝑎 ∈ 𝐴 and b[a->c] is true in 𝑆𝐶,
then 𝑎 ∈ Σ and 𝑎(𝑏) = 𝑐 in 𝑆𝐴,

(ii) whenever 𝑟 ∈ 𝑅 and 𝑟(𝑎1, . . . , 𝑎𝑛) is true in 𝑆𝐶, then
𝑟 ∈ Σ and 𝑟(𝑎1, . . . , 𝑎𝑛) = True in 𝑆𝐴.

Definition 2 (move of an ASM). 𝜎 ∼> 𝜌 denotes one step
move of an ASMwhen it goes from abstract state 𝜎 to abstract
state 𝜌. 𝜎 ∼>n 𝜌 denotes the fact that an ASM goes from
abstract state 𝜎 to abstract state 𝜌 in nmoves.

Definition 3 (move of a choreography engine). 𝜇 => 𝛽
denotes one step move of the choreography engine when it
goes from ontological state 𝜇 to ontological state 𝛽. 𝜇 =>n 𝛽
denotes the fact that the choreography engine goes from
ontological state 𝜇 to ontological state 𝛽 in nmoves.

Theorem 4 (simulation of choreography engine execution
by ASM actions). Let 𝜎 be a state of an ASM and 𝜇 be an
ontological state. Let Σ = R ∪ A. If 𝜎 corresponds to 𝜇
and 𝜇 =>n 𝛽 then 𝜎 ∼>n 𝜌 and 𝜌 corresponds to 𝛽, provided
that each action of the choreography engine is replaced by its
corresponding action as specified in Table 3.

Proof. Straightforward induction can be done on the number
of moves performed by the choreography engine (omitted).

3.2.2. Simulation of ASM Execution via Choreography Engine.
The execution of any ASM can be simulated by a choreogra-
phy engine using evolving ontologies.The requirement is that
functions need to be represented somehow in the ontology.
The reverse of themapping given in the previous Section 3.2.1
(i.e., whenever 𝑎(𝑏) = 𝑐 in 𝑆𝐴 then 𝑏[𝑎 -> 𝑐] is true in 𝑆𝐶)
does not always work, since a function may be 𝑛-ary, where
𝑛 > 1. One possibility is to map functions of the ASM to
relations of the ontology. Specifically, every 𝑛-ary function of
the ASM can be considered an (𝑛 + 1)-ary predicate of the
ontology. Another possibility is to have an object called func,
with locations as attribute names, and the value associated
with the location as the value of the attribute. For example,
if 𝑓(𝑎, 𝑏, 𝑐) = 𝑑 in the ASM, then 𝑓𝑢𝑛𝑐[𝑓(𝑎, 𝑏, 𝑐) -> 𝑑] is its
representation in the ontology. We use the second approach,
since we can update objects in an atomicmanner, but relation
instances are not updatable in one step.

6 Scientific Programming

Table 3: Simulating a move of the choreography engine with an ASM.

Choreography engine action ASM action
Insertion of b[a->c] a(b) fl c

Deletion of b[a->c] a(b) fl undef

Update of the a attribute of b to value c a(b) fl c

Insertion of relation instance r(a1, . . . , an) r(a1, . . . , an) fl True

Deletion of relation instance r(a1, . . . , an) r(a1, . . . , an) fl False

Table 4: Simulating a move of the ASM with a choreography engine.

ASM action Choreography engine action
f(b1, . . . , bn) fl
bn+1 (bn+1 ̸= undef)

Update the func object’s f(b1, . . . , bn) attribute to bn+1 (if the attribute f(b1, . . . , bn) does not exist
for func, it is created in the update procedure)

f(b1, . . . , bn)fl undef
Delete func[f(b1, . . . , bn)-> ?], where ? is a free variable (if f(b1, . . . , bn) does not exist in func,
nothing is done in the delete procedure)

Definition 5. An ontological state 𝑆𝐶 is said to correspond to
an ASM state 𝑆𝐴 iff whenever 𝑓 ∈ Σ and f (𝑏1, . . . , 𝑏𝑛) =
𝑏𝑛+1 in S𝐴 then 𝑓𝑢𝑛𝑐 ∈ I and 𝑓(𝑏1, . . . , 𝑏𝑛) ∈ A and
𝑓𝑢𝑛𝑐[𝑓(𝑏1, . . . , 𝑏𝑛) -> 𝑏𝑛+1] is true in 𝑆𝐶.

Theorem 6 (simulation of ASM execution by choreography
actions). Let 𝜇 be an ontological state and 𝜎 be a state of an
ASM. Let 𝐴 = {𝑓(𝑎1, . . . , 𝑎𝑛) | (𝑓, (𝑎1, . . . , 𝑎𝑛)) be a location of
the ASM}. Let 𝐼 = {𝑓𝑢𝑛𝑐}. If 𝜎 ∼>n 𝜌 and 𝜇 corresponds to 𝜎
then𝜇=>n 𝛽 and𝛽 corresponds to𝜌, provided that each action
of the ASM is replaced by its corresponding action as specified
in Table 4.

Proof. Straightforward induction can be done on the number
of moves performed by the ASM (omitted).

3.3. Choreography Matching Algorithm in WSMO. The origi-
nal algorithmofWSMOchoreography is about validation of a
choreography interface run. As such, it provides only indirect
operational semantics of how a choreography engine should
run. For the sake of completeness, it is given in Algorithm 1,
exactly as it is in [49]. In the algorithm, an update set is not
consistent if it contains an insertion and a deletion of the
same data simultaneously; otherwise it is consistent. A run
is terminated if either (a) there is an update set 𝑈 associated
with 𝑆𝑛, 𝑂, and 𝑇 such that 𝑈 is not consistent with 𝑆𝑛 with
respect to 𝑂, or (b) there is an update set 𝑈 associated with
𝑆𝑛, 𝑂, and 𝑇 such that 𝑆𝑛 = 𝑈(𝑆𝑛), where 𝑈(𝑆𝑛) denotes the
state obtained after the actions specified in the update set 𝑈
are implemented.

3.4. Problems with the WSMO Choreography Algorithm. The
algorithm presented in Section 3.3 verifies whether the
choreography run is valid without addressing the role of the
client of the web service. Indeed, by definition, choreography
should model the interactive behavior of a web service from
the client’s point of view, which is not truly addressed by the
algorithm.

This algorithm has three major missing ingredients that
make it an incomplete way of specifying client interaction
with the web service.

(i) Choreography specification of the goal is completely
ignored.

(ii) It is not clear what the initial state (𝑆0) should be. In
the context of choreography, it should be state of the
world, together with what the client can provide as
input through its precondition component.

(iii) Its termination condition happens either when there
are no more valid actions to take, or when it reaches
a stable state, that is, no more changes are possible
to the current state. A terminated run, however, does
not allow one to draw any conclusions regarding the
suitability of the web services for a given client, since
it is possible that the client requirements are not
satisfied by the state in which the run terminated
(whatever the reason for termination is). On the other
hand, suppose a run is infinite, but at the same time
an intermediate state reached in the execution is satis-
factory from the client’s point of view, at which point
the execution should actually stop.This highlights the
fact that the present algorithm overlooks the obvious
link between the capability required by the goal and
web service choreography.

Inability of the present algorithm to determine whether
the client and web service are compatible can be summarized
with the observation that no formal relationship is established
between what the client provides and the initial state of the
choreography, as well as the requirements of the client and
the termination condition.

These deficiencies in the algorithm are rectified in Sec-
tion 3.5 by (i) taking into account the client choreography
specification in addition to the web service choreography
specification, (ii) establishing the connection between the
initial state of the world plus the input provided by the client
and initial state, and (iii) defining what a successful run is by
taking into account the requirements of the client.

3.5. Improved Choreography Execution Algorithm. In this
section, a modified algorithm for choreography execution is
presented that rectifies the deficiencies identified in the orig-
inal algorithm given in Algorithm 1. The rectified algorithm

Scientific Programming 7

A choreography interface run 𝜌 is defined as a sequence of states (𝑆0, . . . , 𝑆𝑛).
Given a choreography interface 𝐶𝐼 = (𝑂, 𝑇, 𝑆) such that S is consistent with 𝑂, a
choreography interface run 𝜌 = (𝑆0, . . . , 𝑆𝑛) is valid for 𝐶𝐼 iff
(i) 𝑆0 = 𝑆,
(ii) for 0 ≤ 𝑖 ≤ 𝑛 − 1,

(a) 𝑆𝑖 ̸= 𝑆𝑖+1,
(b) 𝑈 = {add(𝑎) | 𝑎 ∈ 𝑆𝑖+1 \ 𝑆𝑖} ∪ {delete(𝑎) | 𝑎 ∈ 𝑆𝑖 \ 𝑆𝑖+1} is an update

set associated with 𝑆𝑖, O and T,
(c) 𝑆𝑖+1 is consistent with O, and

(iii) the run is terminated.

CI: Choreography Interface O: Ontology
T: Set of Transition-rules S: Original State-signature

Algorithm 1: The original WSMO choreography algorithm [49].

A choreography interface run 𝜌 is defined as a sequence of states (𝑆0, . . . , 𝑆𝑛).
Given a choreography interface CI = (Ocommon, Twebservice, Tgoal, 𝑆𝑤𝑒𝑏 𝑠𝑒𝑟V𝑖𝑐𝑒, Sgoal) such
that both 𝑆𝑤𝑒𝑏 𝑠𝑒𝑟V𝑖𝑐𝑒 and Sgoal are consistent with Ocommon, a choreography interface
run 𝜌 = (𝑆0, . . . , 𝑆𝑛) is successful for CI iff:
(i) 𝑆0 = 𝑆𝑤𝑒𝑏 𝑠𝑒𝑟V𝑖𝑐𝑒 ∪ Sgoal ∪ Ocommon
(ii) for 0 ≤ 𝑖 ≤ 𝑛 − 1,

(a) 𝑆𝑖 ̸= 𝑆𝑖+1,
(b) 𝑈 = {add(𝑎) | 𝑎 ∈ 𝑆𝑖+1\𝑆𝑖} ∪ {delete(𝑎) | 𝑎 ∈ 𝑆𝑖\𝑆𝑖+1} is a consistent update

set associated with 𝑆𝑖, Ocommon and Twebservice ∪ Tgoal,
(c) 𝑆𝑖+1 is consistent with Ocommon

(iii) 𝑆𝑛 ⊨ goal.post
(iv) For all 𝑘 < 𝑛, ¬ (𝑆𝑘 ⊨ goal.post)

CI: Choreography Interface
Ocommon: Common Ontology, possibly containing concept definitions, instances and axioms
Twebservice: Web Service Choreography Transition rules
Tgoal: Goal Choreography Transition-rules
𝑆𝑤𝑒𝑏 𝑠𝑒𝑟V𝑖𝑐𝑒: Local state of the web service, possibly consisting of instances and
axioms contributed to the common working memory (WM) of the choreography execution engine
Sgoal: Instances implied by the goal pre-condition that are contributed to the common
working memory of the choreography execution engine

Algorithm 2: Rectified choreography matching algorithm.

(Algorithm 2) takes into account the pre- and postconditions
of the goal, making it stop when the goal can be satisfied with
the current state. The original implicit style has been kept in
order to highlight the differences better.

Our algorithm starts with an initial state consisting of
the facts and instances implied by the goal precondition,
facts, instances, and axioms contributed by the local state of
the web service, as well as the facts, instances, and axioms
contained in the common ontology. Significantly, we note
that the concept of a valid choreography interface run is
replaced by a successful choreography interface run. At each
iteration, the update set is computed, and provided that it is
consistent1, the next state of the system is obtained through
the application of the actions in the update set.The execution
of the choreography engine terminates successfully at the
earliest state which logically implies the goal postcondition.
Any other termination signifies failure and can happen if

(i) the execution engine reaches a stable state (i.e., the state
remains unchanged by the application of the transition rules)
which does not logically imply the goal postcondition, or (ii)
the update set is not consistent at any stage, or (iii) a state is
reached that is not consistent with the common ontology.

The differences between the improved algorithm and
the original algorithm stand out: the concept of a valid
choreography interface run, which says nothing about the
actual suitability of theweb service to satisfy the goal demand,
is abandoned in favor of a successful choreography interface
run, which does give useful information regarding such
suitability. The initial state of the system is linked directly
to the input provided by the goal precondition, reflecting
the actual state of affairs in the real world, and the final
state is linked directly to the postcondition of the goal.
Consequently, it becomes possible to show not only that
a web service can satisfy the demands of the goal, but

8 Scientific Programming

goalName:Goal.
goalName[

importOntology -> address of local ontology,

capability -> ${
pre -> ${ Conjunction of frames and predicates },
post -> ${ F-logic expression }

},
gRule(R01):ForallRule -> ${

\if (F-logic expression)

\then (Actions) },
gRule(R02):ChooseRule -> ${

\if (F-logic expression)

\then (Actions) },
...

].

Box 1: General form of goal specification in Flora-2.

also that there is an actual interaction sequence between
the client (i.e., goal) and the web service which results in
such satisfaction. Furthermore, both goal and web service
choreography specifications participate in the choreography
execution run.

Given the semantic specifications of a goal and web
service, as well as imported ontologies, the job of the chore-
ography engine is to determine if a successful run is possible.

4. Implementing the Improved Choreography
Algorithm in Flora-2

In this section,we present the specification of semantic chore-
ographies and implementation of the improved choreography
algorithm in Flora-2. It has been tested on Flora-2 Reasoner
1.2, which is available since 2017-01-30 (rev: 1258b) [22],
running on Microsoft Windows 7 (64-bit).

The terms below are used in explanations in the following
sections:

(i) Working memory (WM) is the main place for storing
the state of the choreography. It keeps the whole
knowledge produced by the choreography run in real
time. The knowledge can be shrunk, expanded, and
altered.

(ii) Choreography round is the sequence of actions: (i)
starting with the current state of WM, (ii) determin-
ingwhich rules are applicable to this current state, (iii)
determining the changes to WM that the application
of these rules will cause, and (iv) in case there is no
contradiction in the changes (to be explained later),
actually implementing those changes in the current
WM, leading to a newWM.

(iii) DeltaWorkingMemory (ΔWM) is a temporary storage
place for actions to be carried out on WM at each
choreography round.

4.1. Semantic Specification of Goal and Web Service in Flora-
2. As in WSMO, our Flora-2 specifications for goal and web

service are composed of the elements ontology, capability,
and choreography. Ontology contains frames and relations
that represent knowledge used by the web service and goal.
Capability element encloses two subelements, pre and post,
which represent pre- and postconditions. Precondition of
the goal can contain conjunctions of nonnegated frames and
relations. Postcondition of the goal can be an F-logic expres-
sion (including all the logical connectives). Postcondition
of the web service can contain conjunctions of nonnegated
frames and relations. Precondition of the web service can be
an F-logic expression (including all the logical connectives).
Note the similarity between the precondition of the goal
and the postcondition of the web service, as well as the
similarity between the postcondition of the goal and the
precondition of the web service. Choreography element is
modeled by a set of transition rules. Each rule is specified by
ruleId:ruleType -> ruleBody. Goal’s ruleId is in form
of gRule(OID) and web service’s ruleId is in form of
wsRule(OID), where OID is any Flora-2 object identifier
and is used as a label for the rule. ruleType can be either
ForallRule or ChooseRule. ruleBody is a reified Flora-
2 implication shown by an if-then(-else)2 statement. The
implication antecedent (we refer to it as left-hand side) can
be an F-logic expression, and the implication consequent
(we refer to it as right-hand side) contains a set of update
functions (actions). Box 1 depicts the general form of a goal
specification. Specification of web services is also similar.

Appendix B in the Supplementary Materials contains the
EBNF grammar of goal and web service specifications.

4.2. Proposed Architecture. In this section, we describe the
architecture of our choreography engine.

4.2.1. Modules of the System. Our Flora-2 solution for imple-
menting the choreography algorithm utilizes the mainmod-
ule and two Flora-2 user modules: WM for keeping the
current state signature of the choreography andDeltaWM for
keeping the actions formodifying the current state into a new
state. Themainmodule contains the declaration of concepts,

Scientific Programming 9

Working memory (WM)

Delta Working Memory

Consistency checking

Web service Goal

Flora-2
reasoner

Choreography
actions

Choreography
actions

Goal’s capabilitiesWeb service’s
capabilities

Flora-2 main module Common
ontology

(ΔWM)

Figure 1: Architectural view of the choreography engine.

instances, and their modes provided by web service and goal,
as well as the code for the choreography engine. These three
modules (i.e.,main,WM, andDeltaWM) are interconnected,
as shown in Figure 1.

4.2.2. Delta Working Memory (ΔWM): Realizing ASM Paral-
lelism. An auxiliary and transient user module named Delta
Working Memory (ΔWM) is used to temporarily keep single
choreography round updating actions that should be applied
to the main knowledge-base (WM). In each choreography
round, all the updates are aggregated into ΔWM and then
ΔWM is checked whether there exists any contradiction
among the requested actions (explained below). If no contra-
diction is detected, then all the updates are carried out on the
WM, evolving it into a new conflict-free state.

4.2.3. Deterministic Choreography and Contradiction. As
mentioned before, the transition rules must be applied in
parallel. In the absence of any consistency checking, the rules
can do contradictory actions which should be prevented.

The three kinds of contradiction that can occur in a
choreography round are as follows [1]:

(i) Inserting and deleting/updating the same knowledge
simultaneously

(ii) Updating knowledge which does not exist
(iii) Deleting knowledge which does not exist.

It is clear that such contradictory actionsmust be detected
and the choreography execution must be stopped. In the case
of nonexistent knowledge, it makes no sense to remove or
modify it. In the case of simultaneous insertion/deletion of
the same knowledge, if the choreography run is continued,
then it becomes nondeterministic in an unintendedway: even
though theoretically updates are done in parallel, in reality

(1) %start(?goal,?WS) :-

(2) %initializations,

(3) %preProcessCheckings(?goal,?WS),

(4) %prepareModule(WM),

(5) %prepareModule(DeltaWM),

(6) %importOntology(?goal,WM),

(7) %importOntology(?WS,WM),

(8) %insertGoalPre(?goal,WM),

(9) %runChoreography(?goal,?WS).

Listing 1: The top-level predicate of the choreography engine.

they have to be done in a serial fashion, and the order inwhich
they are carried out leads to different WM states.

In each choreography round, in addition to testing for the
above-mentioned issues, checking for any violation on the
modes of concepts (explained in Section 3.1.1) is performed
as well. If one of the participants wants to do an action on a
concept which violates the concept’s access mode, that action
is prevented, leading to choreography execution failure.

4.3. Major Predicates of the Choreography Engine3. Themain
process is started through a call to %start predicate which
is shown in Listing 1. The choreography engine execution
begins with a call to the %initializations predicate on
line (2), which currently resets the seed of the random
number generator that is used to process the choose rule type.
On line (3), goal and web service rules are checked for mode
violations before the choreography rounds start. On lines (4)
and (5), the modules WM and DeltaWM are created if they
do not already exist. On lines (6) and (7), local ontologies of
the goal and web service are loaded into WM. On line (8),

10 Scientific Programming

(1) %runChoreography(?goal, ?WS) :-

(2) %proveGoalPost(?goal), !,

(3) %watchln(['Success! '-?goal-'and'-?WS-'are'-'choreographed!']).
(4) %runChoreography(?goal, ?WS):-
(5) %eraseModule(DeltaWM),

(6) %runWsRules(?WS),

(7) %runGoalRules(?goal),

(8) ((%contradictory(WM,DeltaWM), !,

(9) %watchln('Choreography failed due to CONTRADICTION.')) \or
(10) (\+ %deltaMakesAChange(WM,DeltaWM), !,

(11) %watchln('Choreography failed due to NO CHANGE.')) \or
(12) (%mergeDeltaIntoWM,

(13) %runChoreography(?goal,?WS))).

Listing 2: %runChoreography predicate.

(1) %runWsRules(?WS) :-

(2) ? Temp = setof{ ?ruleID |
(3) ?WS:WebService[wsRule(?ruleID):ForallRule -> ?ruleBody],

(4) %invoke(WEBSERVICE, ?ruleBody) },
(5) ? Temp2 = setof{ ?ruleID |
(6) ?WS:WebService[wsRule(?ruleID):ChooseRule -> ?ruleBody],

(7) %invokeChoose(WEBSERVICE,?ruleBody) }.
/∗---∗/
(8) %runGoalRules(?goal) :-

(9) ? Temp = setof{ ?ruleID |
(10) ?goal:Goal[gRule(?ruleID):ForallRule -> ?ruleBody],

(11) %invoke(GOAL,?ruleBody) },
(12) ? Temp2 = setof{ ?ruleID |
(13) ?goal:Goal[gRule(?ruleID):ChooseRule -> ?ruleBody],

(14) %invokeChoose(GOAL,?ruleBody) }.

Listing 3: Running the goal and web service rules.

the goal precondition is loaded into WM, becoming part of
the initial state of the choreography run, followed by a call to
the predicate %runChoreogarphy on line (9) which tries to
satisfy the goal postcondition through repeated application of
goal and web service transition rules.

%runChoreography implements the improved choreo-
graphy algorithm given in Section 3.5, employing recur-
sion instead of iteration. The definition of the %runChore-
ography predicate is given in Listing 2. It attempts first to
prove the goal postcondition with the current state of WM
in lines (1)–(3); the cut (!) operator on line (2) prevents
backtracking and a success message is shown to the user on
line (3). If the goal postcondition is not satisfied, then the
second definition of %runChoreography is called: ΔWM is
emptied on line (5); web service and goal rules are applied,
populating ΔWM with pending actions to be performed
on the WM (lines (6) and (7)). On lines (8)–(11), ΔWM is
checked for consistency (line (8)) as well as whether pending
actions result in a new state of WM (line (10)). In the case
of inconsistent changes or no change to WM, execution is
stopped to prevent infinite recursion and a failure message

is reported (lines (9) and (11)). Otherwise, the actions in
ΔWM are applied to WM to obtain an updated WM (line
(12)), and the process is repeated through a recursive call to
%runChoreography (line (13)).

4.4. Running (Firing) the Rules. One of the key features of
ASMs is that rules should be fired in parallel. We realize this
by placing all the insertion, deletion, and update actions on
the right-hand sides of the rules that match the current WM
intoΔWM, checking them for consistency, and then applying
them to the previous WM to get an updated WM. The pred-
icates %deltaInsert, %deltaDelete, and %deltaUpdate
represent tentative changes toWM, not actual ones, until they
are verified to not cause any conflicts.

Listing 3 contains the predicates for running goal and
web service rules. The Flora-2 setof operator is used to
iterate over all rules in the choreography specification (lines
(2), (5), (9), and (12)). In the case of forall rules, if the rule
antecedent contains only ground facts, it models the ASM
if-then transition rule type. If the antecedent contains free
variables, it acts like the ASM forall transition rule type.

Scientific Programming 11

(1) %contradictory(?WM, ?DeltaWM) :-

(2) ins action(?A1)@?DeltaWM, del action(?A2)@?DeltaWM,

(3) %contained(?X1,?A1),%contained(?X2,?A2),?X1 = ?X2,!.

(4) %contradictory(?WM, ?DeltaWM) :-

(5) del action(?A)@?DeltaWM,

(6) %convertReifiedObjectModule(?A, ?DeltaWM, ?WM, ?A new),

\+ ?A new@?WM.

(7) %contradictory(?WM, ?DeltaWM) :-

(8) update action(?objOld,?objNew)@?DeltaWM,\+ ?objOld@?WM.

Listing 4: Contradictory cases.

In the case of a choose rule, the predicate %invokeChoose
randomly selects exactly one ground instance of the free
variables existing in the antecedent of the rule.

4.5. Contradictions in Applying the Rules. Checks for con-
tradictory actions are implemented by the definition of the
predicate %contradictory in Listing 4. In lines (1)–(3),
simultaneous insertion and deletion of the same item are
detected; in lines (4)–(6), deletion of a nonexistent item is
detected; finally in lines (7)-(8), update of a nonexistent item
is detected.

4.6. Access Control to Objects of Different Types. ASMs define
access control modes for object manipulation. In the imple-
mentation, this access control has been enforced by checking
whether a given manipulation is legal or not. This depends
on the actor of the manipulation. For example, if an object
has inmode, then only a goal can change its attributes. While
invoking the rules belonging to the goal or web service, the
legality of the access to the object is verified before the real
action.

Listing 5 depicts a part of the implementation of access
control for a goal. Before the rule is tested against the
current WM, its concepts and user predicates on its left-
hand side and right-hand side are extracted through the
%extractConcepts, %extractPredicates, and %fil-
terOutPredicates predicates (lines (4)–(6)), and access
rights of the goal are verified for those concepts via
%checkAllFramesModes and %checkAllPredicates-
Modes (lines (7), (10), (18), and (21)). If a concept is on the
right-hand side of a rule, the goal must have write access to
it. On the other hand, if it is on the left-hand side, only read
access is enough.

%checkAllFramesModes (lines (24) to (27)) checks
modes for a list of extracted frames through calls to
%checkFrameMode (defined on lines (28) to (31)). In case of
failure, error messages are generated on lines (32) to (35).

The complete list of predicates and their explanations are
presented inAppendixD in the supplementarymaterials, and
the full source code of the implementation is available in [27].

5. A Realistic Choreography Example

In this section, we give the choreography specification for
interacting with an online flight reservation service. An

autonomous software agent, acting on behalf of a human,
is used to make the purchase. The behavior of the agent is
described semantically in the form of a goal, with a choreo-
graphy component. Similarly, the behavior of the online
reservation service is described semantically as a web service,
with its own choreography component. A person who wants
to use the service can just provide the required information
to the agent and leave the scene. The agent then interacts
with the web service in accordance with its choreography,
provided that it is compatible with the web service’s chore-
ography.

The essence of this scenario has been inspired by the
online ticket reservation website of an actual airline, similar
to Virtual Travel Agency used in [52].

The actual scenario between a human and a website
providing flight reservation service is as follows. After open-
ing the airline website, the user is able to set six items:
departure city/airport, arrival city/airport, whether the trip
is roundtrip or one-way (only roundtrips are considered
in this case), departure date, return date, and the number
of passengers. After the user submits this information, the
reservation website offers some candidate flight numbers and
their details, including date, time, airport, and price. The
user has to choose one of the candidates. In the next step,
the online ticket reservation site asks for passenger data,
such as the full name, gender, and date of birth. After these
items are provided by the user, the system asks for credit
card information, including the holder’s name, credit card
number, and its CVV code. After the user provides the card
specifications, the online ticket service queries the bank to
validate the card. Depending on the outcome of the bank
query, the flight reservation service completes the transaction
and issues a ticket to the user.

Listings 6 and 7 are Flora-2 specifications of the user
(goal) and the web services (reservation system), respec-
tively. We simulate the conversation which should take place
between the reservation service and the bank because it is a
third party and not directly involved in the choreography.

In the precondition of the goal, the departure and arrival
cities and days have been specified. The postcondition states
that a reservation instance is demanded.

On the flight web service side, the first rule of choreog-
raphy wsRule(R01) checks if there is a request for a flight
consisting of all the necessary items, searches for a roundtrip

12 Scientific Programming

(1) %check(?gOrWs,?X) :-

(2) ?X ∼ ${ \if ?Y \then ?Z }, !,

(3) %reformatToString(?Y, ?YStr),

(4) %extractConcepts(?YStr, [], ?conceptsInY),

(5) %extractPredicates(?YStr, [], ?termList1),

(6) %filterOutPredicates(?termList1, [], ?predicatesInY),

(7) \if (\+ %checkAllFramesModes(?gOrWs,READ,?conceptsInY))

\then
(8) (writeln(['Error: Illegal access mode in '-?gOrWs])@\prolog,!,
(9) \false),
(10) \if (\+ %checkAllPredicatesModes(?gOrWs,READ,?predicatesInY))

\then
(11) (writeln(['Error: Illegal access mode in '-?gOrWs])@\prolog,!,
(12) \false),
(13) %decomposeRHS(?Z, [], ?allFsOrPs),

(14) %reformatToString(?allFsOrPs, ?allFsOrPsStr),

(15) %extractConcepts(?allFsOrPsStr, [], ?conceptsInZ),

(16) %extractPredicates(?allFsOrPsStr, [], ?temp),

(17) %filterOutPredicates(?temp, [], ?predicatesInZ),

(18) \if (\+ %checkAllFramesModes(?gOrWs,WRITE,?conceptsInZ))

\then
(19) (writeln(['Error: Illegal access mode in '-?gOrWs])@\prolog,!,
(20) \false),
(21) \if (\+%checkAllPredicatesModes(?gOrWs,WRITE,?predicatesInZ))

\then
(22) (writeln(['Error: Illegal access in '-?gOrWs])@\prolog,!,
(23) \false).
/∗---∗/
(24) %checkAllFramesModes(?gOrWS, ?reOrWr,[]).

(25) %checkAllFramesModes(?gOrWS, ?reOrWr,[?F|?R]):-
(26) %checkFrameMode(?gOrWS, ?reOrWr,?F),

(27) %checkAllFramesModes(?gOrWS, ?reOrWr,?R).

/∗---∗/
(28) %checkFrameMode(GOAL,READ,?F):-

(29) (?F:In \or ?F:Out \or ?F:Shared \or ?F:Static), !.

(30) %checkFrameMode(GOAL,WRITE,?F):-

(31) (?F:In \or ?F:Shared), !.

(32) %checkFrameMode (GOAL,READ,?F):-

(33) writeln(['Illegal GOAL READ action for' ,?F])@\prolog, !, \false.
(34) %checkFrameMode(GOAL,WRITE,?F):-

(35) writeln(['Illegal GOAL WRITE action for' ,?F])@\prolog, !, \false.

Listing 5: Checking access mode.

on the specified days, and if this search is successful inserts
a new triple into the knowledge-base containing two flight
numbers and their total price. On the goal side, the rule
gRule(R01), which is of rule type choose, is responsible
for checking the existence of any choice on the knowledge-
base. As soon as some flight choices become available in the
knowledge-base, this rule selects just one of them randomly
and inserts this selection into the knowledge-base. Note the
condition (\+ trip:Trip) which prevents the rule from
being fired again.

The rest of the rules in the goal cover the answers
to the general questions such as name, date of birth, and
credit card information. On the flight web service side, rule
wsRule(R02) checks the knowledge-base for any trip choice
by the user; as soon as this choice becomes available, it asks for

all the passenger identities. After receiving the answers from
the goal, it then asks for credit card information and checks
its validity by querying the bank. If it receives a positive reply
from the bank, it puts a reservation into the knowledge-base
which satisfies the goal postcondition and the choreography
terminates successfully; otherwise it fails.

Table 5 shows what new knowledge is added to WM
in each choreography round of a successful choreography,
effectively tracing the execution of the choreography engine.

6. Discussion

Flora-2 has been used not only as the specification language
of semantic web service capability and interface components,
but also as the implementation language of the choreography

Scientific Programming 13

/∗ Local ontology stored in a separate file

Name('Peter').
DateOfBirth(19830622).

Gender('Male').
CreditCardNo('1234432156788765').
CreditCardHolder('PETER JACKSON').
CreditCardCVV(123).
∗/
myGoal:Goal[

importOntology -> '../Flight/GoalsOntology.flr',
capability -> ${

pre -> ${ myRequest:RequestFlight[

From->'Paris',
To->'Chicago',
Departure->23,
Return->30] },

post -> ${ (?R:Reservation[?X->?Y])} },
gRule(R01):ChooseRule -> ${

\if (tripChoice(?fl dep,?fl ret,?P),

(\+ trip:Trip))@WM

\then (

%deltaInsert(${ trip:Trip[
Dep->?fl dep,

Ret->?fl ret]})) },
gRule(R02):ForallRule -> ${

\if ((?Q:QuestionByWS[

Name->?X,
DateOfBirth->?Y,
Gender->?Z])@WM,
(Name(?N), DateOfBirth(?DoB), Gender(?G))@WM)

\then (

%deltaInsert(${ answer:AnswerByGoal[
Name->?N,
DateOfBirth->?DoB,
Gender->?G]})) },

gRule(R03):ForallRule -> ${
\if ((?Q:QuestionByWS[

CreditCardNo->?X,
CreditCardHolder->?Y,
CreditCardCVV->?Z])@WM,
(CreditCardNo(?CCN),

CreditCardHolder(?CCH),

CreditCardCVV(?CCCVV))@WM

)

\then (

%deltaInsert(${ answer:AnswerByGoal[
CreditCardNo->?CCN,
CreditCardHolder->?CCH,
CreditCardCVV->(?CCCVV)]})) }

].

Listing 6: Goal (the user).

execution engine itself. This choice gives the choreography
developer a concise, frame based logical syntax to work with,
as well as all the functionality of the underlying Flora-2
system in terms of its built-in predicates and reasoner. This
is in contrast to WSML, the class of languages developed for
WSMO,which has a verbose syntax, andmust rely on external

reasoners for all semantic computing activities, including
choreography execution.

Our choice of Flora-2 as both the specification and
implementation language also helps us in dealing with the
granularity mismatch problem [17, 53]. As explained in
[17], data granularity can be a barrier to reach a successful

14 Scientific Programming

/∗ Local ontology stored in a separate file

flight(F100,Paris,Chicago,23,250).

flight(F101,Paris,Chicago,23,350).

flight(F102,Paris,Chicago,25,400).

flight(F103,Chicago,Paris,29,150).

flight(F104,Chicago,Paris,30,200).

flight(F105,Chicago,Paris,30,150).
∗/
FlightReservationService:WebService[

importOntology -> '../Flight/WebServicesOntology.flr',
capability -> ${

pre -> ${ ?Req:RequestFlight[?X1->?Y1] },
post -> ${ (?Res:Reservation[?X2->?Y2]) } },

wsRule(R01):ForallRule -> ${
\if ((?R:RequestFlight[

From->?X,
To->?Y,
Departure->?Z,
Return->?W])@WM,
(flight(?fl dep,?X,?Y,?Z,?priceDep))@WM,

(flight(?fl ret,?Y,?X,?W,?priceRet))@WM,

(%sum(?priceDep,?priceRet,?priceTot)))

\then (

%deltaInsert(${ tripChoice (?fl dep,?fl ret,?priceTot)})) },
wsRule(R02):ForallRule -> ${

\if (?T:Trip[

Dep->?fl dep,

Ret->?fl ret])@WM

\then (

%deltaInsert(${ question:QuestionByWS[
Name->?X,
DateOfBirth->?Y,
Gender->?Z]})) },

wsRule(R03):ForallRule -> ${
\if (?A:AnswerByGoal[

Name->?X,
DateOfBirth->?Y,
Gender->?Z])@WM

\then (

%deltaInsert(${question:QuestionByWS[
CreditCardNo->?XX,
CreditCardHolder->?YY,
CreditCardCVV->?ZZ]})) },

wsRule(R04):ForallRule -> ${
\if (?A:AnswerByGoal[

CreditCardNo->?X,
CreditCardHolder->?Y,
CreditCardCVV->?Z])@WM

\then (

%deltaInsert(${ validation:CreditCardValidation[
Number->?X,
Holder->?Y,
CVV->?Z]})) },

wsRule(R05):ForallRule -> ${
\if ((BankYesNoAnswer('Yes'))@WM,

(trip:Trip[

Dep->?fl dep,

Ret->?fl ret])@WM)

\then (

Listing 7: Continued.

Scientific Programming 15

%deltaInsert(${ reservation:Reservation[
Number->11100,
Flight1->?fl dep,

Flight2->?fl ret]})) },
wsRule(Bank R01):ForallRule -> ${

\if ((?R:CreditCardValidation[

Number->?X, Holder->?Y, CVV->?Z])@WM,
(DB CreditCard(?X,?Y,?Z))@WM

)

\then (

%deltaInsert(${BankYesNoAnswer('Yes')})) }
].

Listing 7: Web services (the reservation system and the bank).

choreography. Authors of [2] demonstrate the data gran-
ularity mismatch issue with an example: one web service
requires credit card details to be sent one at a time, whereas
another requires that all details are sent in single message.
Frame structures in Flora-2 intrinsically solve this type of
granularity issue. For example, a credit card can be defined
as follows:

joeCreditCard:CreditCard[

number -> ''1234-5678-9012-3456'',
name -> ''Joe Brown'',
CVV -> 123].

Internally, however, such a frame is represented as the
composition of its data members, and each data member of
a frame can be referred to individually, without the need
to refer to other data members at the same time. Also, a
frame can be built up incrementally through the addition of
its data members. Consequently, the granularity level with
which frames of a certain concept are handled by the goal
or web service becomes insignificant: the web service or goal
can provide the constituents of a frame either in piecemeal
fashion in any order or as a whole at once, and its counterpart
can consume it under both conditions.

7. Related Work

Semantic web service frameworks such asWSMO andOWL-
S [54] use rich semantic reasoning systems to realize seman-
tic web service choreography. They model the interaction
between the client and the service as a bidirectional conversa-
tion, with implementations such asWSMX [1, 17, 55],WSMO
Studio (a visual editor for WSML) [56], WSMO4J API [57],
IRS-III [2, 58], and OWL-S tools [59].

OWL-S is not well aligned with the WSMO framework.
It “does not provide an explicit definition of choreography,
but instead focuses on a process based description of how
complex web services invoke atomic web services” [2]. In
[60], WSMO and OWL-S are compared in detail and the
author concludes that “WSMO presents some important
advantages when compared to OWL-S.” Here, we point out
some general issues about OWL-S:

(i) OWL-S does not properly decouple the viewpoint of
service requester and service provider.

(ii) OWL-S service profile mixes the information of
WSMO goal, WSMO capability, and nonfunctional
properties.

(iii) In OWL-S, the requester has to formulate its request
based on the descriptions of profiles.

(iv) OWL-S does not clearly define how logical expres-
sions are used to describe conditions and results.

(v) In spite of its incompleteness, WSMO choreography
provides ASM as its formal model, whereas a formal
semantic OWL-S process model is still missing.

WSMX is known as the reference prototype implemen-
tation of WSMO [55]. WSMX offers a flexible architecture
that can accept different components as its plug-ins. The
project has been implemented in Java, can handle service
and goal specifications that are written in WSML [20, 61],
and uses WSML2Reasoner [62], which converts WSML into
the internal representation of external reasoning engines in
order to do the reasoning tasks. KAON2 [63] is the external
reasoner used to deal with choreography reasoning tasks [30].

We have thoroughly investigated WSMX using publicly
available documents, including published papers and source
code [64, 65]. We have found that

(i) the implementation of choreography in WSMX was
started but not completed,

(ii) the implementation does not support parallelism and
consequently inconsistency checking is not even an
issue,

(iii) the implementation does not support intentional
nondeterministic behavior necessitated by theChoose
rule type,

(iv) in the case of if-then rules, if more than one left-
hand side (antecedent) is satisfied by the current
ontology state, right-hand sides of all matching rules
are executed sequentially, without any consistency
check of the actions performed, resulting in behavior
that depends on the order of the rules.

16 Scientific Programming

Table 5: Items added to WM at each choreography round.

Round 0

Name('Peter').
DateOfBirth(19830622).

Gender('Male').
CreditCardNo('1234432156788765').
CreditCardHolder('PETER JACKSON').
CreditCardCVV(123).

flight(F100,Paris,Chicago,23,250).

flight(F101,Paris,Chicago,23,350).

flight(F102,Paris,Chicago,25,400).

flight(F103,Chicago,Paris,29,150).

flight(F104,Chicago,Paris,30,200).

flight(F105,Chicago,Paris,30,150).

DB CreditCard('876543212345678','PAUL BROWN',123).
DB CreditCard('1234432156788765','PETER JACKSON',123).

Round 1

myRequest:RequestFlight[From->Paris]

myRequest:RequestFlight[To->Chicago]

myRequest:RequestFlight[Departure->23]

myRequest:RequestFlight[Return->30]

Round 2

tripChoice(F100,F104,450)

tripChoice(F100,F105,400)

tripChoice(F101,F104,550)

tripChoice(F101,F105,500)

Round 3 trip:Trip[Dep->F101]

trip:Trip[Ret->F105]

Round 4
question:QuestionByWS[Name-> h592309]

question:QuestionByWS[DateOfBirth-> h592309]

question:QuestionByWS[Gender-> h592309]

Round 5
answer:AnswerByGoal[Name->Peter]

answer:AnswerByGoal[DateOfBirth->19830622]

answer:AnswerByGoal[Gender->Male]

Round 6
question:QuestionByWS[CreditCardNo-> h592309]

question:QuestionByWS[CreditCardHolder-> h592309]

question:QuestionByWS[CreditCardCVV-> h592309]

Round 7
answer:AnswerByGoal[CreditCardNo->1234432156788765]

answer:AnswerByGoal[CreditCardHolder->PETER JACKSON]

answer:AnswerByGoal[CreditCardCVV->123]

Round 8
validation:CreditCardValidation[Number->1234432156788765]

validation:CreditCardValidation[Holder->PETER JACKSON]

validation:CreditCardValidation[CVV->123]

Round 9 BankYesNoAnswer(Yes)

Round 10
reservation:Reservation[Number->11100]

reservation:Reservation[Flight1->F101]

reservation:Reservation[Flight2->F105]

Furthermore, in the last version of WSML2Reasoner,
which is used by WSMX to translate WSML logical expres-
sions to the native language of the used reasoner, there is
no translation of the Forall or Choose rule types, confirming

our findings. It is clear that several of the most fundamental
features of ASMs remain unimplemented in WSMX.

IRS-III (the Internet Reasoning Service: 3rd version) [2,
58, 66] provides an infrastructure that utilizes the WSMO

Scientific Programming 17

framework.The IRS system is composed of three major com-
ponents: server, client, and publisher. Choreography between
a client and a web service is not done directly, but through the
IRS choreography engine, which acts as a broker between the
availableweb services anduser requests. IRS takes the respon-
sibility of service discovery, mediation, communication, and
invocation of the web services and provides the result for the
goal; however, clients should formulate their needs to IRS in
the specific representation language of IRS [58]. IRS uses the
OCML ontology representation language and its server has
been implemented in Lisp [67].

IRS does not adhere to either original ASM, or WSMO
choreography, because

(i) transition rules of IRS are not run in parallel. In the
case that more than one transition rule applies to the
current state of the choreography, only one is selected
using an internal function forwhich no further details
are available,

(ii) actions in the rules are tightly coupled with the actual
messages sent to the web service, which makes the
choreography specification inflexible; the actual call
sequence of operations is predetermined for different
kinds of requests,

(iii) goals are modeled by pre- and postconditions only
and do not contain a choreography component at all.
The interaction is between the IRS, acting on behalf
of the goal, and the web service, using solely the
choreography specification of the web service,

(iv) the concept of modes is completely absent; flexi-
ble interaction between the requester and service
provider that is made possible by having modes is
replaced by a rigid communication model where the
actor which has the initiative can update data.

In comparison with our approach, IRS does not support
parallel firing of transition rules and does not check for
consistency of the updates. Consequently, the next state of the
ontology is not unique and depends on the choice of the rule
to be fired, leading to nondeterministic behavior. Whereas
we make full use of modes and enforce their compliance,
as already mentioned, IRS completely ignores them. Most
importantly, it ignores the obvious connection between the
initial choreography execution state and the precondition
of the goal, as well as the final state of the choreography
execution and the goal postcondition, relying instead on
the built-in predicate init-choreography to start the chain
of rule firing and the action end-choreography to terminate
the choreography run. If the choreography is not designed
carefully, the situation where the choreography run termi-
nates without the goal postcondition being satisfied could
arise.

There are other notable works on the analysis, formal-
ization, and modeling of choreographies. Roman et al. in
[68] argue that choreographies specified in the original ASM
model become quite involved when they contain contracting
and enactment (additional policies and constraints imposed
by web service and goal). In [68], they extend the cur-
rent model of WSMO with Concurrent Transaction Logic

(CTR) [69, 70] to simplify the representation; however, the
CTR implementation is still in its prototype stage [71]. Bonner
and Kifer in [40] discuss the main reasoning and mediation
activities required for choreography and orchestration, both
in general and in the context ofWSMO. SWORD authors use
rule-based expert systems to “determine whether a desired
composite service can be realized using existing services”
[72]. This approach is similar to ours in that it uses forward-
chaining reasoning to develop knowledge in a stepwise
manner, but for the purpose of web service composition, and
not choreography.

8. Conclusion and Future Work

In this work, we identified important weaknesses in the
original ASM-based choreography execution algorithm for
WSMO, which prevented it from being useful in a practical
way, and improved it in order to remedy the identified weak-
nesses. The improved ASM-based choreography execution
algorithm establishes the missing connection between the
capability and interface components of WSMO. We used
F-logic and Flora-2 to specify ASM-based choreographies
of semantic web services in a concise and logical manner
and implemented a fully functional choreography execution
engine based on our improved algorithm in Flora-2. The full
functionality of Flora-2 and its underlying reasoning system
is available for developing ontologies and writing transition
rules in the choreography specification. To the best of our
knowledge, this work is the first fully functional WSMO
choreography implementation that fires rules in parallel,
as required in the theory of ASMs, and models the ASM
if-then(-else), forall, and choose rule types authentically,
while enforcing access modes of concepts and relations. We
demonstrated the workings of our algorithm through a real-
life example, concerning a flight reservation scenario, where
both web service and goal choreographies were specified in
our F-logic based syntax (seven more real-life examples are
provided inAppendixC in the SupplementaryMaterials).We
also developed a visual tool that helps choreography engi-
neers write specifications in a convenient manner, reducing
the chance of mistakes in the specification.

Another important contribution of our work is that we
proved for the first time the equivalence of evolving alge-
bras (ASMs) and evolving ontologies (the basis of semantic
choreography engines) through the definition of bidirectional
mappings between them.

For future work, we are planning to develop our system
through the addition of a grounding mechanism, as well
as a mediation component. We also intend to identify
and classify different types of general requests and general
responses among software components and present them in
the form of an ontology. Such a classification schemewill help
in the development of accurate and commonly acceptable
choreographic interactions.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

18 Scientific Programming

Endnotes

1. The meaning of the term consistent is essentially the
same as in the original algorithm, but involves accessi-
bility checks required by the declared modes of concepts
as well.

2. In Flora-2, logical implication (𝑝 ⇒ 𝑞) can be shown by
either p∼∼>q or \if p \then q. It is equivalent to ∼ 𝑝∨
𝑞; however, Flora-2 also offers \if p \then q \else r
which is equivalent to (𝑝 ∧ 𝑞) ∨ (∼ 𝑝 ∧ 𝑟); so in this case,
if 𝑝 is not true, the proposition’s value depends on the
value of 𝑟.

3. Due to space considerations, we only discuss the major
predicates of the choreography engine implementation.
Appendix D in the Supplementary Materials contains
the list of all predicates and their functionalities. More-
over, complete choreography engine source code is
available in [27].

Supplementary Materials

Appendix A: visual editor for Flora-2 based SWS specifica-
tions (VSCHOR). Appendix B: E-BNF grammar for Flora-
2 goal and web service specifications. Appendix C: more
choreography examples. Appendix D: choreography engine
predicate list. Appendix E: converting JSON to flora-2.
(Supplementary Materials)

References

[1] A. Haller and J. Scicluna, “D13.9v0.1 WSMX Choreogra-
phy,” WSMX Working, June 2005, http://www.wsmo.org/TR/
d13/d13.9/v0.1/.

[2] J. Domingue, S. Galizia, and L. Cabral, “Choreography in IRS-
III - Coping with heterogeneous interaction patterns in web
services,” inThe Semantic Web – ISWC 2005, vol. 3729, pp. 171–
185, 2005.

[3] S. Galizia, M. Stollberg, E. Kilgarriff, and L. Henocque, “WP3:
Service Ontologies and Service Description D3.5 An Ontology
for Web Service Choreography, Data, Information and Process
Integration with Semantic Web Services,” 2006.

[4] C. Peltz, “Web ServiceOrchestration andChoreography: A look
atWSCI andBPEL4WS,”Web Search Journal 2ndEdition, 2003.

[5] A. Arkin, S. Askary, S. Fordin et al., “Web Service Choreogra-
phy Interface (WSCI) 1.0,” August 2002, https://www.w3.org/
TR/wsci/.

[6] N. Kavantzas, D. Burdett, and G. Ritzinger, “Web Ser-
vices Choreography Description Language Version 1.0,” W3C,
November 2005, http://www.w3.org/TR/ws-cdl-10/.

[7] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and M.
Weske, “Modeling service choreographies using BPMN and
BPEL4Chor,” inAdvanced Information Systems Engineering, vol.
5074, pp. 79–93, Springer, Berlin, Germany, 2008.

[8] G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor:
extendingBPEL formodeling choreographies,” inProceedings of
the IEEE International Conference on Web Services (ICWS ’07),
pp. 296–303, IEEE, Salt Lake City, Utah, USA, July 2007.

[9] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede, “Let’s
Dance: A Language for Service Behavior Modeling,” in On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA,

GADA, and ODBASE, vol. 4275 of Lecture Notes in Computer
Science, pp. 145–162, Springer, Berlin, Germany, 2006.

[10] A. Barker, C. D. Walton, and D. Robertson, “Choreographing
web services,” IEEE Transactions on Services Computing, vol. 2,
no. 2, pp. 152–166, 2009.

[11] L. Engler, BPELgold: Choreography on the Service Bus, Institute
of Architecture of Application Systems, University of Stuttgart,
2009.

[12] S. Arroyo and A. Duke, “SOPHIE - A Conceptual Model for
a Semantic Choreography Framework,” in Proceedings of the in
In proceedings of the Workshop on Semantic and Dynamic Web
Processes (SDWP), 2005.

[13] M. Stollberg, “Reasoning tasks and mediation on choreography
and orchestration in WSMO,” in Proceedings of the WIW 2005
Workshop on WSMO Implementations, WIW 2005, June 2005.

[14] J. D. Bruijn, C. Bussler, J. Domingue, and D. Fensel, “Web
Service Modeling Ontology (WSMO),” June 2005, http://www
.w3.org/Submission/WSMO/.

[15] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide,” in Spec-
ification and Validation Methods, pp. 9–36, Oxford University
Press, 1993.

[16] Y. Gurevich, “Sequential abstract-state machines capture
sequential algorithms,” ACM Transactions on Computational
Logic, vol. 1, no. 1, pp. 77–111, 2000.

[17] M. Herold,WSMXDocumentation, Digital Enterprise Research
Institute, Galway, Ireland, 2008.

[18] S. M. Ataee and Z. Bayram, “A novel concise specification and
efficient F-Logic based matching of semantic web services in
Flora-2,”LectureNotes in Electrical Engineering, vol. 355, pp. 191–
198, 2015.

[19] M. Kifer and G. Lausen, “F-logic: a higher-order language for
reasoning about objects, inheritance, and scheme,” in Proceed-
ings of the ACM SIGMOD international conference, pp. 134–146,
Portland, Ore, USA, 1989.

[20] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The Web
Service Modeling Language WSML: An Overview,” in The
Semantic Web: Research and Applications, vol. 4011 of Lecture
Notes in Computer Science, pp. 590–604, Springer, Berlin,
Germany, 2006.

[21] E. Motta, “An Overview of the OCMLModelling Language,” in
Proceedings of the In proceedings of the 8th Workshop on Know-
ledge Engineering Methods and Languages (KEML ’98), 1998.

[22] M. Kifer, “Flora-2,” January 2017, https://sourceforge.net/
projects/flora/files/FLORA-2/.

[23] Y. Guizhen, M. Kifer, and C. Zhao, “Flora-2: A Rule-Based
Knowledge Representation and Inference Infrastructure for the
Semantic Web,” in Proceedings of the in Second International
Conference on Ontologies, Databases and Applications of Seman-
tics (ODBASE, Catania, Italy, 2003.

[24] Y. Gurevich, “Abstract state machines: an overview of the
project,” in Foundations of Information and Knowledge Systems,
vol. 2942 of Lecture Notes in Computer Science, pp. 6–13,
Springer, Berlin, Germany, 2004.

[25] G. Flouris, D. Plexousakis, andG.Antoniou, “Evolving ontology
evolution,” in SOFSEM 2006: Theory and Practice of Computer
Science, vol. 3831, pp. 14–29, 2006.

[26] L.M. Garshol, “BNF and EBNF:What are they and how do they
work,” acedida pela última vez em, vol. 16, 2003.

[27] S. Mehdipour and Z. Bayram, Choreography Engine Imple-
mentation in Flora-2, Eastern Mediterranean University, 2017,
https://sourceforge.net/projects/vschore-semantic-choreogra-
phy/.

http://downloads.hindawi.com/journals/sp/2018/4094951.f1.pdf
http://www.wsmo.org/TR/d13/d13.9/v0.1/
http://www.wsmo.org/TR/d13/d13.9/v0.1/
https://www.w3.org/TR/wsci/
https://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
https://sourceforge.net/projects/flora/files/FLORA-2/
https://sourceforge.net/projects/flora/files/FLORA-2/
https://sourceforge.net/projects/vschore-semantic-choreography/
https://sourceforge.net/projects/vschore-semantic-choreography/

Scientific Programming 19

[28] J. Belzer, A. G. Holzman, and A. Kent, Encyclopedia of computer
science and technology. Vol. XXV, CRC Press, 1975.

[29] E. Börger andR. Stärk,Abstract StateMachines, Springer, Berlin,
Germany, 2003.

[30] R. Zaharia, L. Vasiliu, and C. Bădică, “Semi-automatic Compo-
sition of Geospatial Web Services Using JBoss Rules,” in Rule
Representation, Interchange and Reasoning on the Web, vol. 5321
of Lecture Notes in Computer Science, pp. 166–173, Springer,
Berlin, Germany, 2008.

[31] C. Wallace and J. K. Huggin, An Abstract State Machine Primer,
Computer Science Department, Michigan Technological Uni-
versity, 2002.

[32] J. Huggins, Abstract State Machines, Department of Electrical
Engineering and Computer Science, University of Michigan,
2013, http://wwweb.eecs.umich.edu/gasm/.

[33] T. E. O. E. Britannica, “predicate calculus,” July 1998, https://
global.britannica.com/topic/predicate-calculus.

[34] M. Kifer, “Rules and Ontologies in F-Logic,” in Reasoning Web,
vol. 3564 of Lecture Notes in Computer Science, pp. 22–34,
Springer, Berlin, Germany, 2005.

[35] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-
oriented and frame-based languages,” Journal of the ACM, vol.
42, no. 4, pp. 741–843, 1995.

[36] o. GmbH, How to write F – Logic - Programs, OntoBroker,
Karlsruhe, Germany, 2007.

[37] M. Kifer and G. Lausen, “F-Logic: A Higher-Order Language
for Reasoning about Objects, Inheritance, and Scheme,” in
Proceedings of the SIGMOD ’89 Proceedings of the 1989 ACM
SIGMOD international conference on Management of data,
Portland, Ore, USA.

[38] W. Chen, M. Kifer, and D. S. Warren, “HiLog: a foundation
for higher-order logic programming,” Journal of Logic Program-
ming, vol. 15, no. 3, pp. 187–230, 1993.

[39] W. Chen, M. Kifer, and D. S. Warren, “HiLog: a foundation for
higher-order logic programming,” in Proceedings of the North
American Conference on Logic Programming, 1989.

[40] A. J. Bonner and M. Kifer, “An overview of transaction logic,”
Theoretical Computer Science, vol. 133, no. 2, pp. 205–265, 1994.

[41] “XSB,” Computer Science Department of Stony Brook Uni-
versity; Universidade Nova de Lisboa; XSB Inc.; Coherent
Knowlege Systems, Inc., April 2015, http://xsb.sourceforge.net/.

[42] M. Kifer, “Flora-2 (a.k.a. Ergo Lite),” 2017, http://flora.source-
forge.net/.

[43] “Ergo Suite Platform,” Coherent Knowledge Systems, August
2015, http://coherentknowledge.com/product-overview-ergo-
suite-platform/.

[44] “A Guide to FLORA-2 Packages Version 1.0 (Cherimoya),” 2014.
[45] M. Kifer, G. Yang, H. Wan, and C. Zhao, Flora-2: User’s Manual

(Version 1.0), Department of Computer Science, Stony Brook
University, New York, NY, USA, 2014.

[46] U. Nilsson and J. Maluszynski, Logic, Programming and Prolog,
John Wiley & Sons, 2nd edition, 2000.

[47] D. Roman, J. Scicluna, and C. Feier, “D14v0.1. Ontology-based
Choreography and Orchestration of WSMO Services,” WSMO
Working Draft, March 2005, http://www.wsmo.org/TR/d14/
v0.1/.

[48] D. Fensel, H. Lausen, and J. D. Bruijn, “Introduction toWSMO,”
in Enabling Semantic Web Services, pp. 57–61, Springer, Berlin,
Germany, 2007.

[49] D. Roman, J. Scicluna, and J. Nitzsche, “D14v0.4. Ontology-
based Choreography,” Working Draft, Feburary 2007, http://
www.wsmo.org/TR/d14/v0.4/.

[50] R. F. Stärk, J. Schmid, and E. Börger, “Abstract state machines,”
in Java and the Java Virtual Machine Definition, Verification,
Validation, pp. 15–26, Springer, Berlin, Germany, 2001.

[51] J. H. Gallier, Logic for Computer Science: Foundations of Auto-
matic Theorem Proving, Harper & Row, New York, NY, USA,
2nd edition, 2015.

[52] http://www.wsmo.org/2004/d3/d3.3/v0.1/.
[53] D. Fensel, M. Kerrigan, and M. Zaremba, “Semantic Web Ser-

vices,” in Implementing SemanticWeb Services:The SESAFrame-
work, pp. 27–41, Springer Science & Business Media, Berlin,
Germany, 2008.

[54] D. Martin, M. Burstein, and J. Hobbs, “OWL-S: Seman-
tic Markup for Web Services,” W3C, 22 November 2004,
http://www.w3.org/Submission/OWL-S/.

[55] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler,
“WSMX -A semantic service-oriented architecture,” inProceed-
ings of the 2005 IEEE International Conference on Web Services,
ICWS 2005, pp. 321–328, July 2005.

[56] “WSMO Studio,” December 2008, http://www.wsmostudio
.org/.

[57] DERI, “WSMO4J,” Innsbruck, The Semantic Technology
Institute (STI), September 2008, http://www.sti-innsbruck.at/
results/tools/downloads/wsmo4j.

[58] L. Cabral, J. Domingue, S. Galizia et al., “IRS-III: a broker for
semantic web services based applications,” inThe SemanticWeb
- ISWC 2006, vol. 4273 of Lecture Notes in Computer Science, pp.
201–214, Springer, Berlin, Germany, 2006.

[59] “OWL for Services (OWL-S) - Tools,” 2017, http://www.ai.sri
.com/daml/services/owl-s/tools.html.

[60] R. Lara, A. Polleres, H. Lausen, D. Roman, J. D. Bruijn, and D.
Fensel, “A Conceptual Comparison betweenWSMO andOWL-
S,” WSMOWorking Draft, 2005.

[61] J. d. Bruijn, C. Feier, U. Keller, and R. Lara, “D16.2 v0.2 WSML
Reasoning Implementation,” WSMLWorking Draft, 2005.

[62] B. Bishop, F. Fischer, U. Keller, N. Steinmetz, C. Fuchs, and M.
Pressnig, “WSML2Reasoner,” 2008, http://tools.sti-innsbruck
.at/wsml2reasoner/.

[63] “KAON2,” 2017, http://kaon2.semanticweb.org/.
[64] “Web Services Execution Environment,” 2009, https://

sourceforge.net/projects/wsmx/.
[65] DERI and STI2, “WSMO Publications,” Web Service Modelling

eXecution environment, 2017, http://www.wsmx.org/publica-
tions.html.

[66] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta,
“Demo of IRS-III: A Platform and Infrastructure for Creat-
ing WSMO-based Semantic Web Services,” in Proceedings of
the 3rd International Semantic Web Conference (ISWC2004),
Hiroshima, japan, 2004.

[67] T. C. L. Foundation, “Common Lisp,” March 2015, https://
common-lisp.net/.

[68] D. Roman, M. Kifer, and D. Fensel, “WSMO Choreography:
From Abstract State Machines to Concurrent Transaction
Logic,” in Proceedings of the The Semantic Web: Research and
Applications: 5th European Semantic Web Conference, ESWC
2008, Tenerife, Spain, 2008.

[69] D. Roman and M. Kifer, “Reasoning about the behavior of
Semantic Web services with concurrent transaction logic,”

http://wwweb.eecs.umich.edu/gasm/
https://global.britannica.com/topic/predicate-calculus
https://global.britannica.com/topic/predicate-calculus
http://xsb.sourceforge.net/
http://flora.sourceforge.net/
http://flora.sourceforge.net/
http://coherentknowledge.com/product-overview-ergo-suite-platform/
http://coherentknowledge.com/product-overview-ergo-suite-platform/
http://www.wsmo.org/TR/d14/v0.1/
http://www.wsmo.org/TR/d14/v0.1/
http://www.wsmo.org/TR/d14/v0.4/
http://www.wsmo.org/TR/d14/v0.4/
http://www.w3.org/Submission/OWL-S/
http://www.wsmostudio.org/
http://www.wsmostudio.org/
http://www.sti-innsbruck.at/results/tools/downloads/wsmo4j
http://www.sti-innsbruck.at/results/tools/downloads/wsmo4j
http://www.ai.sri.com/daml/services/owl-s/tools.html
http://www.ai.sri.com/daml/services/owl-s/tools.html
http://tools.sti-innsbruck.at/wsml2reasoner/
http://tools.sti-innsbruck.at/wsml2reasoner/
http://kaon2.semanticweb.org/
https://sourceforge.net/projects/wsmx/
https://sourceforge.net/projects/wsmx/
http://www.wsmx.org/publications.html
http://www.wsmx.org/publications.html
https://common-lisp.net/
https://common-lisp.net/

20 Scientific Programming

in Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB 2007, pp. 627–638, Vienna, Austria,
September 2007.

[70] A. J. Bonner and M. Kifer, “Concurrency and Communication
in Transaction Logic,” in Proceedings of the Joint International
Conference and Symposium on Logic Programming (JICSLP ’96),
1996.

[71] A. Bonner and M. Kifer, Concurrent Transaction Logic Proto-
type, University of Toronto, 2017, http://www.cs.toronto.edu/.

[72] S. Ponnekanti and A. Fox, “SWORD: A developer toolkit for
web service composition,” in Proceedings of the 11th Interna-
tional WWW Conference (WWW), Honolulu, Hawaii, USA,
2002.

http://www.cs.toronto.edu/

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

