Hindawi

Scientific Programming

Volume 2018, Article ID 6093054, 24 pages
https://doi.org/10.1155/2018/6093054

Research Article

Hindawi

A Strategy for Automatic Performance Tuning of Stencil

Computations on GPUs

Joseph D. Garvey® and Tarek S. Abdelrahman

Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada M5S 3G4
Correspondence should be addressed to Tarek S. Abdelrahman; tsa@eecg.toronto.edu

Received 20 September 2017; Revised 11 March 2018; Accepted 17 April 2018; Published 28 May 2018

Academic Editor: Basilio B. Fraguela

Copyright © 2018 Joseph D. Garvey and Tarek S. Abdelrahman. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

We propose and evaluate a novel strategy for tuning the performance of a class of stencil computations on Graphics Processing
Units. The strategy uses a machine learning model to predict the optimal way to load data from memory followed by a heuristic that
divides other optimizations into groups and exhaustively explores one group at a time. We use a set of 104 synthetic OpenCL stencil
benchmarks that are representative of many real stencil computations. We first demonstrate the need for auto-tuning by showing
that the optimization space is sufficiently complex that simple approaches to determining a high-performing configuration fail. We
then demonstrate the effectiveness of our approach on NVIDIA and AMD GPUgs. Relative to a random sampling of the space, we
find configurations that are 12%/32% faster on the NVIDIA/AMD platform in 71% and 4% less time, respectively. Relative to an
expert search, we achieve 5% and 9% better performance on the two platforms in 89% and 76% less time. We also evaluate our

strategy for different stencil computational intensities, varying array sizes and shapes, and in combination with expert search.

1. Introduction

Stencil computations appear in many domains including
image processing [1], partial differential equation solvers [2],
and cellular automata [3]. They are often part of applications
that demand high performance and they have abundant par-
allelism. Thus, they are excellent candidates for acceleration
on Graphics Processing Units (GPUs).

However, programmers must apply optimizations to their
stencil code in order to exploit the underlying GPU architec-
ture. They must ensure memory coalescing, use local, texture,
or read-only memories, reduce thread divergence, and select
kernel launch configurations that balance parallelism with
resource usage [4]. The impact of each optimization is
often difficult to assess, particularly when combined with
other optimizations. Programmers are left to explore a large
space of optimization configurations, i.e., combinations of
optimizations and their parameters, to find good performing
ones. This exploration entails running the code for each
configuration of interest—a process that can take months of
compute time [5].

Thus, there has been considerable interest in performance
auto-tuning, i.e., automatically exploring the space of config-
urations in efficient ways to determine a good combination of
optimizations to apply. A common approach is to use expert
knowledge of the stencil computation and the underlying
GPU architecture to limit the space, then to exhaustively
search through it; we refer to this strategy as expert search.
This approach requires new expert knowledge for every
stencil computation and for every new GPU architecture.
In addition, it can still require exploring a large number of
configurations.

In this work, we present an auto-tuning strategy for
searching through the space of possible optimization con-
figurations for good performing ones. Our approach tackles
the large space in two ways. First, it partitions the space
based on memory optimization and uses machine learning
to predict the partition containing the best configuration.
Second, it divides the remaining optimizations into groups
and tunes the groups independently. This approach explores
fewer configurations than expert search approaches while
obtaining as good or better performing configurations.

http://orcid.org/0000-0001-7834-8339
http://orcid.org/0000-0002-2985-4873
https://doi.org/10.1155/2018/6093054

We first define a set of optimizations that are commonly
applied to stencil computations. We train a random forest [6]
machine learning model to predict the optimal memory type
based on static program features. We then develop three alter-
native heuristics for grouping the remaining optimizations.
The first groups the optimizations along the dimensions of the
grid in which the GPU threads are organized. The second puts
each optimization, applied to all dimensions of the grid, in a
group by itself. The third is a hybrid approach that combines
features of the first two.

We evaluate our strategy on an NVIDIA GTX Titan and
an AMD Radeon R390 using 104 synthetically generated
OpenCL stencil kernels with wide ranges of stencil patterns
(dense, star, no-corner, diamond, and thumbtack) and radii
(0 to 5). In comparison to an expert search approach, our
strategy with the hybrid approach takes 89% and 76% less
tuning time on the NVIDIA and AMD platforms, respec-
tively, while finding a best configuration that is on average 5%
and 9% better, respectively. Compared to a random sampling
of the space, our strategy with the same heuristic takes 71%
and 4% less time on the NVIDIA and AMD platforms,
respectively, while finding a final configuration that is on
average 12% and 32% better, respectively.

The rest of this paper is structured as follows. Section 2
provides background material. Section 3 defines stencil com-
putations. Section 4 describes the optimizations we tune. Sec-
tion 5 demonstrates the interestingness of the configurations
space. Section 6 details our auto-tuning strategy. Section 7
presents the infrastructure we have developed to evaluate that
strategy. Section 8 reports our evaluation. Section 9 outlines
related work and Section 10 concludes.

2. Background

2.1. GPU Architecture. A GPU consists of clusters of simple
cores. These clusters are known as streaming multiprocessors
(SMXs) on the NVIDIA GeForce GTX Titan [7] and as
compute units (CUs) on the AMD Radeon R9 390 [8]. For
simplicity, we will use the term SMX to refer to them in
the rest of this document. SMXs do not possess sufficient
instruction issuing ability to keep all of their cores busy
executing different instructions and so, to keep the cores fully
utilized, threads are launched in groups, known as warps
on NVIDIA and wavefronts on AMD, that execute in lock-
step, performing the same operation on different data. To
achieve good performance on these platforms, it is essential
that applications expose sufficient parallelism to allow a high
utilization of the many cores.

GPUs have a multi-tiered memory hierarchy whose char-
acteristics have important performance implications. One of
the most important factors affecting performance is how data
is loaded from global memory, the slow, off-chip memory
of the GPU. If multiple consecutive threads all access a
contiguous, aligned chunk of memory of a particular size,
these accesses are coalesced into a single memory transaction
[4, 8]. Coalesced accesses significantly reduce memory access
time by reducing the number of accesses.

GPUs also possess a software-managed cache that is
shared at the SMX level, known as shared memory on

Scientific Programming

NVIDIA [7] or local data share (LDS) on AMD [8]. Use of this
memory can remove duplicated reads when threads running
on the same SMX access the same data.

Many GPUs also possess texture memory, a hardware
managed cache with multidimensional locality that is used
to store image data types [4]. In modern architectures, this
cache is being phased out in favour of more generic read-only
data caches that fulfill a similar purpose [7, 8].

2.2. OpenCL Programming Model. We use Open Computing
Language (OpenCL) [9], an industry standard language for
programming heterogeneous parallel systems. Its paradigm
consists of a host from which programs, known as kernels,
are launched and one or more devices on which those kernels
execute. Many instances of the kernel code are executed
concurrently, each by a work-item, i.e., a thread. Work-items
exist in a multidimensional grid and are identified by their
indices, known as global IDs, in each dimension of this grid.

Each work-item is part of a work-group, a multidimen-
sional collection of work-items that execute on the device at
the same time. The IDs of a work-item in each dimension
within its work-group are known as its local IDs. Work-
items in the same work-group are mapped to the same SMX,
making it possible to synchronize across them. Work-items
in the same work-group share a software-managed cache
known as local memory which is realized through shared
memory/LDS.

Various resource requirements of the kernel can impose
limitations on the maximum work-group size. For example,
each SMX has alimited number of registers as well as a limited
amount of shared memory. Thus the register usage or local
memory usage of the kernel could be the limiting factor that
determines the maximum work-group size.

The sizes of the two grids mentioned, global and local,
are provided by the host program at kernel launch time and
together constitute the launch configuration of the kernel.
OpenCL separates the compilation of a kernel from the
launching of that kernel and as a result the total number of
work-items that will be launched and the size of each work-
group are not normally known at kernel compile time.

OpenCL defines a number of image data types that can be
used to store array data. Often, these images can be cached in
the read-only caches.

Finally, OpenCL also supports vector types as well as
arithmetic on those vector types. In the context of GPUs,
these vector operations can be mapped to specialized vector
hardware or distributed amongst cores. While one expects
these vector operations to improve arithmetic performance,
it is less obvious that even reads and writes to global memory
can be accelerated by acting on vectorized data [10].

3. Stencil Computations

A stencil computation produces one or more output arrays as
a function of one or more input arrays in such a way that each
output element is a function of some input elements at fixed
offsets relative to the index of the output element. This fixed
set of offsets defines the stencil. Algorithm 1 shows sequential

Scientific Programming

void stencil_computation (
float (xarrayl) [Y_SIZE] [X_SIZE],
float (xarray2) [Y_SIZE] [X_SIZE])

float («xin) [Y_SIZE] [X_SIZE] = arrayl;

float (xout) [Y_SIZE] [X_SIZE] = array2;

for (int t = 0; t < T_MAX; ++t) {

for (int z = 0; z < Z_SIZE; ++z)
for (int y = 0; y < Y_SIZE; ++y)
for (int x = 0; x < X_SIZE; ++x) {

float temp0 = in [z+C,] [Y+C0y] [x+Cy, 5
float templ = in [z+C,,] [y+C1y] [x+C.,.J;

float tempN = in [z+C,] [y+CNy] [x+Cp.l;
out [z] [y] [x]= f(temp0, temp], ..., tempN);

}

}
}

// Swap in and out pointers

ALGORITHM I: Generic 3D stencil computation.

(b) No-corners

(c) Diamond

(d) Thumbtack

FIGURE 1: Stencil patterns.

C code for the general form of a stencil computation with
three-dimensional input and output arrays. The loops x, v,
and z are known as the spatial loops and they sweep through
the elements of the output array, out. They compute each of
its elements as a function, £, of the stencil defined by the set
of constants C;;, the ith offset in the jth dimension. X_SIZE
and Y_SIZE are constants whose definitions are omitted for
brevity. The t loop repeats this process and is known as the
time loop.

It is possible for the input and output arrays of a stencil
computation to be the same, e.g., in successive overrelaxation
[11]. This introduces loop-carried data dependencies that
render such stencils less suited for GPUs. Thus, we restrict
ourselves to stencil computations in which the input and
output arrays are different. For simplicity, we only consider
stencil programs with one input and one output array of the
same dimensionality.

Stencil computations can have a variety of different stencil
patterns, as shown in Figure 1. The stencil radius is the
maximum distance between any element of the stencil and
the centre of the stencil. The examples in Figure 1 all have a
stencil radius of two. The stencil size is the number of input
elements used to compute each output element. The stencil

density is equal to the size of the stencil divided by the size of
the smallest rectangular prism that bounds the entire stencil.

When implemented naively in OpenCL, the spatial loops
of a stencil become a kernel, as shown in Algorithm 2. The
computation of each output element is mapped to a single
work-item and the for loops are replaced with OpenCL API
calls to get_global_id(). Thus, in this example, a three-
dimensional global grid is used. We use the letters x, y, and
z to refer to the Oth, Ist, and 2nd dimensions of this grid,
respectively. The time loop is executed by the host, causing it
to repeatedly launch the kernel. We focus on optimizing this
kernel and auto-tune a single invocation of it. Thus, we do not
consider optimizing the time loop (e.g., by tiling as done by
Grosser and others [12, 13]).

4. Optimizations

4.1. Work-Group Size. 'The work-group size is the number of
work-items in a work-group in each dimension. This size can
have a significant impact on performance because it affects
available parallelism. It needs to be large enough to utilize
the hardware, but not so large as to reduce parallelism by
reducing the number of work-groups that can execute at once.

_ _kernel void stencil_computation (
global float (xin) [Y_SIZE] [X_SIZE],
global float (*out) [Y_SIZE] [X_SIZE])

int x = get_global_id (0);
int y = get_global_id (1);
int z = get_global_id (2);
float temp0 = in [z+C,,] [y+Cy,] [x+Cy,];
float templ = in [z+C,,] [y+C;, | [x+Cy, s

float tempN = in [z+C] [y+CNy] [x+Cpls
out [z] [y] [x]= f(tempO, templ,..., tempN);
}

ALGORITHM 2: Generic 3D OpenCL stencil kernel.

A large work-group size can also exhaust other resources
such as registers or local memory, reducing performance or
rendering a configuration unexecutable.

4.2. Block Merging. Block merging combines the work done
by adjacent work-items into a single work-item. Thus, it is a
form of tiling. The number of work-items merged together is
referred to as the block merge factor. A loop is introduced in
the kernel code to compute multiple output elements instead
of only one.

Block merging increases thread work granularity, thereby
mitigating some of the overhead of launching threads. It also
allows duplicate reads to be removed if the introduced loop is
unrolled. Specifically, it allows global memory accesses to be
replaced by register reads if the merged work-items require
the same input element in their computation. The removal
of these duplicate reads requires a compiler that is able to
unroll the loop created by merging identify duplicate reads
and remove them.

However, block merging increases the register use of each
work-item. This in turn can decrease the maximum work-
group size and the number of concurrent work-groups exe-
cuting on an SMX. Further, block merging in the innermost
dimension of the global grid can uncoalesce already coalesced
accesses. These factors negatively impact performance and
make it hard to predict the benefit of block merging.

4.3. Cyclic Merging. Cyclic merging combines nonadjacent
work-items such that work is assigned to work-items in a
work-group in a round-robin fashion. The number of work-
items merged in this manner is referred to as the cyclic merge
factor. Cyclic merging introduces a loop into the kernel code
for each dimension merged and also requires some changes
to the array index calculations.

Cyclic merging increases thread work granularity and has
the benefit that when applied to the innermost dimension
of the grid it does not disrupt existing memory coalescing.
However, it is unlikely to remove duplicate reads since
the elements accessed by the merged work-items are likely
far apart. Like block merging, it can limit parallelism by

Scientific Programming

increasing register usage and decreasing the maximum work-
group size and the maximum number of concurrent work-
groups. As a result, it does not always improve performance.

4.4. Local Memory Caching. This optimization refers to
caching the input data into local memory before reading it.
This caching is done cooperatively by the threads in a way
that ensures memory coalescing when possible. The amount
of data cached in local memory is the minimum needed by
the stencil computations, thus reducing the total amount of
local memory needed. Reads from global to local memory are
introduced at the beginning of the kernel, the existing reads
from global memory are replaced with reads to local memory;,
and barriers are added between the two types of reads for
synchronization.

Local memory can improve kernel performance when
there are repeated accesses to the same data within a work-
group. It can also improve memory coalescing when mem-
ory transactions are otherwise uncoalesced. However, large
local memory requirements can unnecessarily restrict the
maximum work-group size, limiting available parallelism.
Furthermore, use of local memory adds the overhead of extra
memory accesses and synchronization. Thus, it is not always
beneficial [14].

4.5. Vectorization. This optimization converts reads from the
input array, arithmetic operations on intermediate results,
and writes to the output array into vector operations that
exploit specialized vector hardware. It only applies to kernels
that are block merged in the x dimension and only to those
operations that were formerly done by multiple work-items
that, after merging, are accomplished by a single work-item.
The two optimizations in conjunction replace parallelism via
work-items with parallelism via vectorization.

Reads that align to vector boundaries only require chang-
ing the data types of relevant variables to vector types. Input
reads that do not align to a vector boundary require two
vector reads and the composition of an interim vector result.
Output writes are always aligned to vector boundaries.

4.6. Image Memory. This optimization stores the input array
as a read-only OpenCL image data type rather than a
standard OpenCL memory buffer. This allows the kernel to
exploit texture or read-only caches on the GPU. It requires
changing the data type of the input array and its allocation
on the host. Further, OpenCL API calls must be used to
access the elements rather than normal array subscripts.
The texture/read-only cache is hardware managed and thus
requires no additional changes to the kernel.

The use of texture/read-only caches is possible since
the input array remains constant for the duration of the
kernel. The swapping of the input and output arrays is
performed in the outer time loop (see Section 3) outside
the kernel between its successive invocations. To ensure
that this swapping incurs no additional overhead, the target
platform must support a specific extension, namely, the
cl khr_image2d from buffer extension. The host code
should allocate the input and output arrays first as buffers and

Scientific Programming

TABLE 1: Optimization abbreviations and allowable values. N denotes the input/output array size in each dimension. X, Y, and Z correspond

to the x, y, and z dimensions of the work-item grid, respectively.

Range of values

Optimization Abbreviation

Minimum Maximum
Work-group size WX, WY, WZ 1 NX, NY, NZ
Block merge factor BX, BY, BZ 1 NX, NY, NZ
Cyclic merge factor CX, CY, CZ 1 NX, NY, NZ
Vector width VX 1 16
Local memory N/A 0 (no) 1 (yes)
Image memory N/A 0 (no) 1 (yes)

should then create 2D images from those buffers. This does
not create a copy but instead allows the data to be accessed as
both a buffer and an image. Thus, in each stencil iteration, the
host passes the input argument as an image and the output as
a buffer.

This optimization can improve performance by replacing
expensive global memory accesses with accesses to the
texture/read-only cache. However, local memory can accom-
plish the same and using both simultaneously adds overhead
for no benefit. Determining which to use for a given kernel is
nontrivial.

4.7 Optimization Space. All of the optimizations are summa-
rized in Table 1 along with abbreviations used throughout the
paper to refer to them. Each optimization takes on a value
from the given range. Thus, an optimization configuration is
the full set of values, one for each optimization. For simplicity,
we restrict optimization values to powers of 2. Further, the
possible values for many of the optimizations depend on
the other optimization values. The product of W, B, and C
for a given dimension (e.g., WX or BY) must be less than
or equal to N in that dimension. In addition, VX must be
less than or equal to BX. These restrictions result in a total
optimization space of over 50 million configurations. Many of
these configurations are not actually executable because they
violate some limitation of the hardware; e.g., they use more
local memory than is available on the device. Nonetheless, the
space is prohibitively large to explore exhaustively.

In order to make this space more manageable, some obvi-
ously bad configurations are never considered: (1) ones in
which the block merging factor in the x dimension is greater
than the vectorization factor, since this reduces memory
coalescing and experience has shown that this always results
in poor performance, and (2) ones with block merging in
the y and z dimensions because current GPU compilers are
not able to remove the duplicate reads produced by block
merging (see Section 4.2). (Nonetheless, block merging can
have a significant impact on performance, should OpenCL
compilers support the removal of duplicate reads. For exam-
ple, in a radius 2 1D (oriented in the y dimension) kernel,
4 out of 10 loads are duplicates. Manually removing these
duplicates speeds up the execution of the kernel, measured
on the NVIDIA platform, by a commensurate 41%.) Further,
we opt to allow only one of four forms of data loading:

global memory without vectorization, global memory with
vectorization, local memory, or image memory. This is done
because vectorization, local memory, and image memory all
effectively target the same thing: the way in which data is
loaded from global memory. This choice will be referred to
as the data loading technique. While there could be some
benefit to considering vectorization in conjunction with the
other optimizations from a purely computational perspective,
we suspect that this benefit is small and thus not worth
the increase in the optimization space. These restrictions
reduce the optimization space to 475,875 possible configu-
rations. Although this is a huge reduction in the number of
configurations, it would still be impractical to examine this
reduced space exhaustively. Compiling and running these
configurations for all the kernels would take over a year.

5. Interestingness

We demonstrate the need for auto-tuning by showing that the
optimization space is “interesting”. That is, it is sufficiently
complex that simple approaches to determining a high-
performing configuration fail. To this end, we show the
following:

(1) The majority of configurations in the space perform
poorly.

(2) The optimal value for each optimization varies from
kernel to kernel.

(3) The optimizations interact, requiring that they be
explored together and not individually.

(4) The best optimization configuration for one kernel
does not necessarily perform well for other kernels.

5.1. Random Sampling. Ideally, the entire optimization space
would be examined to demonstrate the above four points.
However, this is not feasible in a reasonable amount of time
for a single kernel, let alone for a large number of them.
Consequently, the exploration of the optimization space
is performed by randomly sampling configurations. These
configurations are used as a proxy for the full optimization
space.

When choosing the sample size, it is important to ensure
that enough of the space is searched to find a good performing
configuration without taking an inordinate amount of time.

10
9
8 -
7 4
6 -
5
4 4
3
2 4
1 4

Best Configuration Time (ms)

Scientific Programming

O T T T

T T T T T T 1
200 400 600 800 1000 1200 1400 1600 1800 2000

Sample Size

FIGURE 2: Best runtime versus sample size.

12000 +

10000 ~

8000 -

6000 -

4000

2000 ~

Number of Optimization Configurations

0.1-0.2]
(0.2-0.3]
(0.3-0.4]

=
<
(=]
S

B AMD
NVIDIA

FIGURE 3: Distribution

In order to determine the appropriate sample size, we ran
samples of various sizes on the NVIDIA GTX Titan for five of
the 104 kernels (one from each of the stencil types mentioned
in Section 3). The five kernels chosen all had a dimensionality
of three and a radius of two as these parameters result in a
significant amount of variability across the five kernels while
running in a reasonable amount of time. For each of the
selected kernels, samples were taken ranging in size from 200
to 2000 optimization configurations in increments of 200 and
the best runtime of each sample was determined. To make
the results more statistically sound, each size was randomly
sampled 10 times and an average (mean) and variance of the
best runtime was determined. The results of this process for
the dense kernel are shown in Figure 2. The results for the
other kernels were similar.

As sample size increases, performance initially improves
and then flattens off. The point at which this occurs varies
across kernels, but a sample size of 1000 is sufficiently
conservative to reach the plateau for any of these kernels.
Consequently, a sample size of 1000 is used for our experi-
ments.

n e N w 9@ 9

S 2 2 <2 92 =

¢ [t} © 5N © N

(=} =} =] =] (=3

s e e e &£ &
Speedup Bins

of configuration speedups.

5.2. Methodology. The rest of the experiments in this section
are conducted on the full set of 104 kernels. For each sampled
configuration, i, in the upcoming results, speedup is calculated
according to (1), where runtime,, is the runtime of the best
performing configuration for that kernel from the random
sample and runtime; is the runtime of the configuration of
interest. Therefore, the speedup of a given configuration from
the random sample is always less than or equal to one, with
higher values being better.

speedup; = funtime, ey

runtime;

Sections 5.3 and 5.4 directly use the data obtained from
performing a sample of 1000 configurations on each of the 104
kernels. Sections 5.5 and 5.6 perform additional experiments
that require executing additional configurations.

5.3. High-Performing Configurations Are Few. Figure 3 shows
a histogram of speedup values across all of the configura-
tions; that is, each bar indicates how many optimization
configurations fell in the given speedup bin. The majority

Scientific Programming

of the configurations perform poorly, with only 1.3% and
1.0% of them achieving a speedup within 10% of the best
performing configuration on the NVIDIA and AMD plat-
forms, respectively. Conversely, a very large fraction of the
configurations, 34.2% and 44.1% on NVIDIA and AMD,
respectively, experienced more than a 10x slowdown relative
to the best configuration. This shows that the optimization
space is skewed towards poorly performing configurations.
The AMD bars are smaller in general because fewer of
the explored configurations were executable on the AMD
platform due to a more restrictive maximum work-group
size.

5.4. High-Performing Configurations Are Difficult to Find. We
show that the best value for each optimization varies across
different kernels. If a single value is always best for each
optimization, then one can always set each optimization to
its best value.

Figure 4 shows the number of times each possible value
for each optimization was used in the best performing con-
figuration. The graphs show that there is significant variation
in the optimization values that give the best performance,
particularly for WX, WY, WZ, and CZ where no individual
value is best for more than 35 out of the 104 kernels on
either platform. Data loading technique shows interesting
differences between the two platforms, with local and image
memory being favoured on the Titan, while all techniques
other than image memory are roughly equally favoured on
the R9 390. BX/VX shows less variation than the other
optimizations, in large part due to the fact that it has a fixed
value (of one) whenever vectorization is not used.

5.5. The Optimizations Interact. We show that the optimiza-
tions interact such that tuning the optimizations individually
is not sufficient to find a good optimization configuration.
For each kernel, we first determine the best value for each
optimization while keeping the others held to the values
used by the best configuration found by random sampling
for that kernel. Then we combine the independently chosen
optimizations to arrive at a final configuration.

A histogram of the speedup values of this approach
across all 104 kernels is shown in Figure 5. The leftmost bar
consists of configurations that are not even executable. On
average, this approach achieves only 97% and 81% of the
performance of the best sampled configuration on the Titan
and the R9 390, respectively. That is, on average, it performs
worse than its starting point. Thus, determining the best value
for each optimization individually does not result in good
performance; the optimizations must be examined together.

5.6. Good Configurations Are Not the Same across Kernels.
Finally, we show that the best performing configuration for
a kernel does not, on average, perform well across all kernels,
thus demanding the auto-tuning of each kernel.

We run the best performing configuration of each kernel
on the other kernels. Figure 6 shows a histogram of the
resulting speedups. If the optimal configuration of each
kernel worked best for all other kernels, all configurations

would achieve a speedup of 1. The leftmost bar, once again,
corresponds to configurations that are not even executable.
Further, although many of the configurations perform well,
and a few even exceed the performance of the best on a
particular kernel, there is a significant tail to the histogram,
indicating that performance can often be very poor. On
average, these configurations achieve 69% and 63% of the
performance of the best configuration on the Titan and the
R9 390, respectively. This indicates that the best performing
configuration cannot be learned for one kernel and used for
other kernels.

6. Auto-Tuning Strategy

6.1. Predicting Data Loading Technique. The use of local and
image (i.e., texture or read-only) memory and vectorization,
described in Section 4, all optimize how data is loaded from
the GPU’s memory hierarchy. We simplify the optimization
space by only allowing data to be loaded in one of four
ways: from global memory without vectorization, from global
memory with vectorization, from local memory, or from
image memory. As mentioned previously, we refer to this
choice as the data loading technique. We determine this tech-
nique first because it has the largest impact on performance.

Vectorization has benefits as both a memory loading
technique and a way of expressing additional computational
parallelism. It is not possible to combine vectorization with
the use of image memory. Nonetheless, it is possible to
combine vectorization with loading data from local memory.
However, we opt not to explore this combination. This is
because, from the perspective of memory loading, both the
use of local memory and vectorization allow us to load
data from global memory in a coalesced manner. Given that
using local memory alone achieves this same benefit, the
only additional benefit of vectorization would be vectorizing
our arithmetic operations. We forego this additional benefit
and instead opt to reduce the size of the search space by
limiting vectorization to loading data from global memory.
(We present experimental data insupport of this decision in
Section 8.3.2.)

The impact of the data loading technique depends to a
large extent on the memory access patterns of the stencil
computation. Thus, we hypothesize that the optimal data
loading technique can be predicted using static program
features, such as stencil size.

The mapping of static program features to optimal data
loading technique is likely complex and platform-specific.
We do not attempt to model it analytically. Instead, we use
supervised machine learning [15] to predict the optimal data
loading technique. We train a random forest [6] model to this
end. The inputs to this model are stencil size, dimensionality,
and density of a kernel as well as which dimension, if any,
differs from the rest if the kernel is asymmetric (we refer
to this dimension as the unique dimension). The output is
the predicted optimal data loading technique for the kernel.
We use Random Forests because of their ability to capture
the discontinuities that often occur in the GPU performance
space.

Frequency

Frequency

Frequency

Frequency

Scientific Programming

35 35 -
30 30 -
25 4 5 25
9
20 5 20 -
=
15 g 15
kel
10 =~ 10 4
5 5
0 0 -
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Optimization Value Optimization Value
B AMD B AMD
[NVIDIA [NVIDIA
(a) WX (b) WY

Frequency

T T 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Optimization Value Optimization Value
B AMD B AMD
@ NVIDIA @ NVIDIA
(c) WZ (d) Cx

Frequency

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Optimization Value Optimization Value
B AMD B AMD
@ NVIDIA @ NVIDIA
(e) CY (f) Cz

100 — -

Frequency

Global Local Texture Global 8 16
without with Optimization Value
vectorization vectorization
Optimization Value B AMD
B AMD [NVIDIA
[NVIDIA
(g) Data loading technique (h) BX/VX

FIGURE 4: Distribution of best values for each optimization.

Scientific Programming

60 -

= 50

L

=

N(I)

EEYT

R

8“5}30-

Nt

o

5 §

235 204

g

Zz 10

O |||||-|-|I

ST TR N
LI
S = N0 N9
SASASASASASAS)
H AMD
NVIDIA

FIGURE 5: Speedup distribution when each optimization is explored independently.

2000
1800
§ 1600
2 2 1400
- g
£ 1200
& 5 1000
o Bp
©E 800
=]
.éo 600 ,
=
2 400
200
0

FIGURE 6: Speedup distribution of the best configuration for each kernel on all other kernels.

6.2. Grouping and Search Heuristics. Our auto-tuning heuris-
tics further reduce the optimization space by breaking up
the remaining optimizations into groups that are explored
independently of each other. The values of the optimizations
in each group are exhaustively explored, that is, the kernel is
run for every possible value, while keeping the values of the
other optimizations fixed. We refer to this process as tuning of
the optimizations in question. Once the best values are found
for these optimizations, they are fixed and the optimizations
in the next group are tuned.

This approach has two key challenges. The first is how to
group the optimizations, given that they are not independent
of one another, as shown in Section 5.5. The groups are
chosen so as to prioritize certain interactions amongst the
optimizations over other interactions. Different groupings are
explored in order to determine which interactions are most
important. The second challenge is how to order the tuning
of the groups. We tune the groups in order of their expected
performance impact. We then mitigate the impact of group

order by repeating the entire sequence of groups # times.
The choice of # is important. If too small, then the heuristics
will not have enough iterations to reach a local minima. If n
is too large, the heuristics may evaluate extra configurations
needlessly and take longer to run. Section 8.3.1 explores this
parameter further.

We explore three grouping heuristics: two complemen-
tary ways of grouping the optimizations, by dimension and by
optimization, as well as a hybrid approach between the two.
In the first heuristic, all optimizations are explored for each
dimension independently. In the second, each optimization is
explored independently for all dimensions. Finally, the hybrid
approach uses most of the groups of the group by dimension
approach with the addition of a stage that tunes the work-
group geometry.

Although we do not explore values of BY and BZ
greater than one in our experiments (see Section 4.7), we
show below how our heuristics would handle those param-
eters.

10

6.2.1. Group by Dimension. This heuristic considers all of the
parameters that correspond to a particular dimension at once,
regardless of the optimization they perform. Specifically, it

(1) sets WY =1, WZ=1,BY=1,BZ=1,CY=1,and CZ
:1)

(2) tunes WX, BX, and CX,

(3) tunes WY, BY, and CY,

(4) tunes WZ, BZ, and CZ,

(5) repeats steps (2)-(4) n times.

We tune optimizations affecting the x dimension first,
giving it highest priority. This is done because the innermost
dimension is the one that impacts memory coalescing and
most significantly benefits from caching. Since larger values
are usually better for the work-group size in the dimension of
coalescing, the initial values of WY and WZ are set to one so
as to allow WX to be as large as possible. Similarly, BY, BZ, CY,
and CZ are set to one initially to allow BX and CX to explore
as large a range as possible before encountering significant
register pressure.

6.2.2. Group by Optimization. This heuristic considers all of
the parameters that correspond to a particular optimization at
once, regardless of which dimension they affect. Specifically,
it

(1) setsBX=1,BY =1,BZ=1,CX=1,CY=1,and CZ =
1)

(2) explores WX, WY, and WZ while keeping BX, BY, and
BZ fixed,

(3) tunes BX, BY, and BZ,
(4) tunes CX, CY, and CZ,

(5) repeats steps (2)-(4) » times; during each invocation
of step (2), keep the following products constant: WX
x CX, WY x CY, WZ x CZ.

By tuning the work-group size first over the thread
merging factors, we prioritize overall parallelism level over
register usage. Similarly, rather than holding CX, CY, and CZ
constant in step (2), in all iterations after the first, W; x C,
fori=X,Y, and Z is kept constant, thereby allowing the Cs
to vary in a controlled manner. This product corresponds to
the amount of work assigned to each work-group, while the
Cs correspond to the amount assigned to each work-item.
It is likely that the amount of work assigned to each work-
group has a bigger impact on the total amount of available
parallelism and thus this heuristic once again prioritizes this
overall parallelism level over register usage.

Finally, we tune the block merging factor before the cyclic
merge factor to ensure that there is as much register avail-
ability for block merging as possible because it is usually the
more efficient way of merging threads as it allows for removal
of duplicate reads through register sharing. (While in our
current implementation we do not tune the block merging
factors in they and z dimensions because of the OpenCL
compiler limitation pointed out earlier inSection 4.7, we
present our strategy assuming that they could be tuned.)

Scientific Programming

6.2.3. Hybrid Approach. This heuristic is the same as the
group by dimension approach with the addition of a step that
tunes the work-group geometry (step (5)). It

(1) sets WY =1, WZ=1,BY=1,BZ=1,CY =1, and CZ
:1’

(2) tunes WX, BX, and CX,
(3) tunes WY, BY, and CY,
(4) tunes WZ, BZ, and CZ,

(5) tunes WX, WY, and WZ while keeping the following
product constant: WX x WY x WZ,

(6) repeats steps (2)-(5) n times.

Step (5) here is similar to step (2) from the group by opti-
mization heuristic; however it considers significantly fewer
configurations. This is because it allows significantly less
freedom in the chosen values of the optimization parameters
being tuned. It consists of tuning the work-group geometry
while keeping the total work-group size the same. This step
is particularly important if the sizes of the work-group in
each of the three dimensions interact strongly, as such an
interaction can not be captured by the group by dimension
heuristic.

6.3. Overall Strategy. Our overall strategy when auto-tuning
a kernel is as follows: first use the machine learning model
to predict the optimal data loading technique for the kernel
and then apply our heuristic while fixing the data loading
technique to the value predicted by the model. We evaluate
three alternative heuristics and the optimal data loading
technique can vary between them. Thus, we train a separate
model for each heuristic.

7. Implementation

7.1. The Stencil Kernels. We desire a large, representative set
of stencil kernels to both test our heuristics and train our
machine learning models. Since there is no publicly available,
large benchmark suite of such kernels, we generate a set of
synthetic kernels to meet our needs. We use Genesis [16],
a language and accompanying preprocessor for generating
synthetic programs, to this end. Genesis allows us to generate
awide range of stencils that vary in a controlled manner using
a single template file.

The elements of the kernel code that vary across kernels
are implemented using Genesis constructs while the opti-
mizations are implemented using C preprocessor directives.
Thus, every generated program contains every optimization
and before compiling a kernel, it is possible to select what
optimizations to apply by setting various define statements.
This allows optimization-related parameters to be known at
compile time, allowing the compiler to perform as much
simplification as possible.

We generate five stencil subtypes: dense, star, diamond,
no-corners, and thumbtack, as depicted in Figure 1. For each
subtype, we consider 1D, 2D, and 3D stencils variants. All the
stencils act on 3D input and output arrays consisting of 256

Scientific Programming 1
TABLE 2: Breakdown of kernels by pattern, dimensionality, and radius.

Stencil pattern Dimensionality Radius

1D 2D 3D 0 1 2 3 4 5
Star 0 15 5 0 4 4 4 4 4
Thumbtack 0 0 15 0 3 3 3 3 3
Diamond 0 12 4 0 0 4 4 4 4
No-corners 0 12 5 0 1 4 4 4 4
Dense 16" 15 5 1 7 7 7 7 7

AT classify these 16 kernels as dense, but since all patterns are the same in one dimension, this choice is arbitrary.

Kernel File

Optimizations

\ Auto-Tuner
Description File 7

Program

Result Cache

Heuristic
Specification Files

Optimized
Kernel File

Performance J

GPU Data

FIGURE 7: The auto-tuner flow.

elements in each dimension. For the 1D and 2D stencils, we
also use 3D input and we consider each possible orientation
of the stencil. This is because each orientation has different
memory access characteristics. The stencil radii range from
0 to 5. We generate 104 different kernels in this way, as
summarized in Table 2.

The kernels perform a weighted sum of their input
elements using nonzero weights that are randomly chosen
during program generation. The weights are thus known
at kernel compile time. We assume that boundary data is
copied into place beforehand. All the kernels are run with
single-precision floating point input data that is randomly
generated.

Our synthetic stencil kernels subsume many real world
stencil applications. For example, the Gaussian blur filter [17],
a common image processing application, is a 2D dense stencil
with the same computational properties as those modeled
in this work. Our synthetic stencils enrich our evaluation by
ensuring that we have stencils with a diversity of properties.
One exception to this diversity is the computational intensity
of the stencils. We address this limitation in Section 8.3.8.

7.2. The Auto-Tuner. Figure 7 shows our auto-tuner’s flow.
It takes as input a kernel, an optimizations description file,
and a set of heuristic specification files. The optimizations
description file details the optimizations that are present
in the kernel, their ranges of allowable values, and a few
other important characteristics of each optimization. Each
heuristic specification file describes what optimizations to
vary and which to keep constant in each step of a heuristic.
The auto-tuner copies the input data from the host to
the GPU before the first configuration is tested. If a desired
configuration has already been compiled, its runtime is
retrieved from a cache of past results; otherwise the auto-
tuner sets various optimization-related parameters in the
code and compiles the kernel using the OpenCL API. If the
kernel can be launched on the device, the OpenCL binary is

run on the GPU four times and the average runtime of the
last three runs is recorded.

Our approach requires a recompile for every unique
optimization configuration, even if configurations differ only
in runtime parameters such as the work-group size. This
allows us to make these values compile time constants rather
than getting them at runtime using OpenCL API functions.
This maximizes the compiler’s ability to optimize by constant
folding, constant propagation, and dead code elimination.

For machine learning training, we run each heuristic with
each data loading technique. We then train and test a model
for each heuristic using leave-one-out cross-validation [15].
This method of validation ensures that a model is only tested
with kernels that were not used to construct it.

7.3. Heuristic Specification Files. The auto-tuner supports a
generic heuristic specification file syntax that can be used
to describe a wide range of heuristics. This syntax allows
optimizations to be assigned ranges of values and to be
assigned sampled values from ranges. It also allows for the
use of mathematical expressions to calculate optimization
values or ranges from the values of other optimizations, the
values of the best configuration currently discovered, and the
input data size. All of the experiments done in this work were
conducted using heuristic specification files.

Algorithm 3 shows the heuristic specification file for
the group-by-dimensions heuristic in the case where local
memory was chosen as the data loading technique. In this
case, n = 1 (i.e., one additional iteration over the groups is
performed). Each line of this file corresponds to one of the
steps from Section 6.2.1.

74. Tuning a New Stencil. The use of our auto-tuner frame-
work for a new stencil entails a number of steps:

(1) Determining the machine learning input features
(described in Section 6.1) for the new stencil. These

12

Scientific Programming

WY=L:NY:%2, CY=I:NY/WY:%2;
WZ=1:NY:%2, CZ=1:NZ/WZ:%2;
WX=LNX:*2, CX=1:NX/WX:*%2;
WY=LNY:#2, CY=LNY/WY:%2;
WZ=1:NZ:%2, CZ=1:NZ/WZ:x2;

BX=1,BY=1,BZ=1,WY=1,WZ=1,CY=1,CZ=1,USE_.LOCAL_.MEMORY_INPUT=1,VX=1,
STORE_ARRAYS_AS_IMAGES=0,WX=1:NX:#2,CX=1:NX/WX:*2;

ArcoriTHM 3: The heuristic specification file for the group-by-dimensions heuristic using local memory.

features can be determined readily through inspec-
tion of the code.

(2) Running the machine learning model for the heuristic
of choice to determine the best data loading tech-
nique.

(3) Parameterizing the kernel for the optimizations
described in Section 4. At present, and without
compiler support, this is where most of the work of
using our approach lies.

(4) Running the auto-tuner with the heuristic specifica-
tion file for the desired heuristic and the desired data
loading technique.

The majority of the effort required to apply our approach to
new stencils comes from implementing our optimizations in
a parameterized way. This effort could be eliminated entirely
through compiler support.

8. Evaluation

This section gives our evaluation of the auto-tuning strategy
discussed in Section 6.

8.1. Reference Approaches. We compare our heuristics to 3
reference approaches: random sampling, expert search, and
an oracle. We describe these approaches below.

(i) Random sampling (Rand): this approach corresponds
to running the first stage of the interestingness
experiment described in Section 5, i.e., running 1000
configurations, and selecting the best performing one.

(ii) Expert search (ExpS): this approach performs exhaus-
tive, empirical auto-tuning but only on a restricted
subset of the space chosen by an expert. We restrict
the space as follows. VX must be less than or equal to
4 since this length often results in good performance.
WX must be greater than or equal to 32 since this
maximizes coalescing when it is present. WY x CY
must be less than or equal to 4 and WZ x CZ must
be less than or equal to 4. Both these values allow
for a sufficient number of work-groups and avoid
loss of parallelism. This approach represents the one
used by most existing stencil auto-tuning work in the
literature (described in Section 9). In our experience,
it is also similar to how programmers hand-tune
kernels. Thus, we use it as a reference that represents
both existing approaches and hand-tuning.

(iii) Oracle: there is an oracle-based approach for each of
our heuristics. Each consists of running the heuristic
with every data loading technique and then taking
the best configuration found across all of them. These
bounds are “oracles” for the machine learning models.
That is, they effectively give upper bounds on the
speedups that could be achieved with perfect machine
learning models.

8.2. Evaluation Platforms and Metrics. Our results are gath-
ered on an NVIDIA GTX Titan GPU and an AMD Radeon
R9 390. The host is an Intel i7 960 with 6 GB of RAM running
Ubuntu 14.04, NVIDIA driver version 352.41, AMD driver
version 15.201, and the OpenCL 2.0 ICD loader library from
the Khronos group. Both GPUs we use have generic read-
only caches rather than multidimensional-locality-exploiting
texture caches, which we use for image storage. We auto-tune
asingle time iteration of the stencil (i.e., a single invocation of
the kernel) and thus do not perform the swap of the input and
output arrays described in Section 4.6. Our use of OpenCL
allows the use of the same kernels across both GPUs with no
change. The machine learning models are created using Weka
3.6 [18] with its default random forest parameters.

Each of the machine learning models is assessed using
two metrics. The first is its absolute accuracy, i.e., on what
fraction of the kernels it predicts the correct data load-
ing technique. The second is its penalty-weighted accuracy,
defined as the average speedup of the heuristic using the
model relative to its corresponding oracle, averaged over
all kernels. Thus, the penalty-weighted accuracy reflects the
penalty of a mispredicted loading technique on performance.

The performance of the heuristics is assessed with two
metrics. The first is the runtime of the best configuration
discovered by a heuristic. This time is normalized by calculat-
ing the speedup with respect to the best configuration found
by Rand. The geometric mean of speedups is used to report
average speedup across the kernels. We use the geometric
mean instead of the arithmetic mean because it is more
meaningful when aggregating ratios [19]. The second metric
is the time the heuristic takes to get to that configuration,
measured by the number of configurations compiled, the total
time spent compiling these configurations, and the runtime
of these configurations on the GPU. The runtime of each
configuration is that of a single run of a kernel, i.e., a single
iteration of the time loop, averaged over three consecutive
runs.

Scientific Programming 13
TABLE 3: Performance of heuristics and reference approaches.
Speedup Configs Compile time (s) Runtime (s) Best count

NV AMD NV AMD NV AMD NV AMD NV AMD
Baselines
ExpS 1.07 1.21 1311 1066 937.48 246.13 27.02 5.18 24 22
Rand 1.00 1.00 321 210 344.71 52.75 37.93 9.03 2 2
Oracles
Dimensions 1.09 1.17 720 711 712.84 167.39 96.15 24.39 22 1
Optimizations 115 1.32 1768 1526 1076.60 339.25 103.39 25.80 62 42
Hybrid 114 1.34 992 1018 1062.82 242.38 104.85 26.73 58 55
Heuristics
Dimensions 1.07 1.13 181 191 55.24 36.01 20.85 4.23 19 1
Optimizations 1.14 1.28 502 357 136.28 77.45 20.64 5.26 57 36
Hybrid 112 1.32 266 266 88.35 53.67 21.51 5.45 54 48

8.3. Experiments

8.3.1. Determining a Good Value for n. The parameter n
determines how many times the heuristics iterate over their
optimization groups. Increasing allows a heuristic to poten-
tially find a better performing optimization configuration at
the cost of more compiles and more runtime. This tradeoft
is only possible up until the point that the heuristic reaches
a local minima and no longer examines any further unique
configurations.

In order to determine a good value for n, the group-
by-dimensions heuristic was run on a subset of the kernels
for various values of #n. The seven kernels of dimensionality
three and radius two were chosen for this experiment as they
represent a reasonable cross-section of the overall kernel set
while running in a reasonable amount of time.

We found that there was a large benefit from adding a
second iteration to the heuristic, i.e., going from n = 0 to
n = 1. There was a very slight improvement from n = 1 to
n = 2. After that, there was no benefit to additional iterations.
In terms of the results on the individual kernels, it took only
one iteration to reach a local minima on four of the seven,
two iterations for two of them, and three iterations for only
one. As one of the test kernels did require it to achieve a local
minima, in order to be conservative in the rest of the results
presented, a value of n = 2 will be used.

8.3.2. Auto-Tuning Strategy Performance. The speedups,
number of unique configurations compiled, compile times,
and GPU runtimes (in seconds) for all heuristics and refer-
ence approaches on both NVIDIA (NV) and AMD platforms,
averaged over all kernels, are shown in Table 3. The table also
shows “best count”, the number of times each strategy found
the best performing configuration amongst those explored.
Note that the best counts for the oracles are necessarily greater
than or equal to those of our strategies because they look
at a superset of the configurations of our strategies. Further,
the best count column total for the baselines and the oracles
is more than 104 because for some kernels more than one
strategy finds the best configuration (i.e., they find the same
configuration).

A number of observations can be made from this table.
First ExpS outperforms Rand, particularly on the AMD
platform, both in speedup and in best count. It explores sig-
nificantly more configurations in order to do so but requires
less device-side runtime as these configurations are generally
better performing. This impact is more pronounced on the
AMD platform because fewer configurations are explored on
this platform due to the fact that a larger fraction of the 1000
configurations chosen at random were unexecutable on this
platform. This is because the Radeon R9 390 has a much
smaller maximum work-group size than the GTX Titan. As
such, the baseline performance on the AMD card is lower and
thus all strategies have better relative performance.

Secondly, the machine-learning-based heuristics, with
the exception of the group-by-dimensions approach on the
AMD platform, are able to achieve equal or higher speedups
than both of those reference approaches on both platforms.
These heuristics do this while considering significantly fewer
configurations than expert search and a comparable number
of configurations to random sampling. Furthermore, the
amount of compile time they take per configuration is
lower because they waste less time than Rand consider-
ing invalid configurations which are not determined to be
invalid until after compilation. They also require about the
same amount of device-side runtime as the expert search
strategy. In particular, the hybrid approach performs very
well, requiring 71% and 4% less total tuning time than
Rand on NVIDIA and AMD, respectively, while finding best
configurations that are 12% and 32% better on average. It
takes 89% and 76% less time than ExpS (on NVIDIA and
AMD, respectively) while finding best configurations that
are 5% and 9% better on average. The poor performance of
the group-by-dimensions heuristic on the AMD platform is
largely a result of the reduced maximum work-group size
on this platform. This restriction combined with the nature
of this heuristic prevents it from exploring a range of work-
group shapes with large values in the y and z dimensions.
Since the hybrid approach incorporates a stage that tunes
the work-group shape independently of size, it does not
have this problem even though the heuristics are the same
otherwise.

14

Scientific Programming

TABLE 4: Breakdown by data loading technique (NVIDIA).

Data loading technique Speedup Best count
Dims Opts Hybrid Dims Opts Hybrid
Global without vectorization 0.54 0.54 0.54 0 0 0
Global with vectorization 0.45 0.45 0.45 3 1 2
Image 1.00 1.05 1.04 13 40 36
Local 0.76 0.87 0.86 6 21 20
TABLE 5: Breakdown by data loading technique (AMD).
Data loading technique) Speedup)) Best count)
Dims Opts Hybrid Dims Opts Hybrid
Global without vectorization 0.95 1.02 1.01 4 12 1
Global with vectorization 0.87 0.85 0.92 6 4 17
Image 0.56 0.58 0.58 0 0 0
Local 0.93 1.18 1.20 1 26 27
TABLE 6: Machine learning model accuracies.
Absolute accuracy Penalty-weighted
accuracy

NVIDIA AMD NVIDIA AMD
Dimensions 0.87 0.81 0.98 0.96
Optimizations 0.91 0.80 0.99 0.97
Hybrid 0.88 0.88 0.99 0.98

Comparing the dimensions and optimizations heuristics,
we see that the optimizations approach is able to achieve a
substantially higher speedup especially on the AMD platform
but at the cost of two to three times the number of configura-
tions and significantly more runtime. The hybrid approach
seems to get the best of both worlds. It achieves the high
performance of the group-by-optimizations approach while
only costing a slight premium over the group-by-dimensions
heuristic. Thus, we believe that the hybrid heuristic provides
the best tradeoff between the various metrics. With that said,
the group-by-dimensions heuristic could be useful for users
that require a very short tuning time.

Tables 4 and 5 give insight into why our strategies
perform well. They summarize the speedups and best counts
achieved by our heuristics for each data loading technique
(i.e., without the use of the machine learning models). None
of the individual loading techniques is best all of the time, and
with the exception of local memory on the AMD platform,
none of them has a speedup much larger than Rand. However,
Rand rarely finds the best configuration of all of the strategies
as evidenced by its best count of 2 in Table 3 on both the
NVIDIA and AMD platforms. Conversely, the individual
data loading techniques, although worse on average, have
much higher best count values; when they do well, they do
very well. By combining the strengths of all of these data
loading techniques, the machine-learning-based strategies
are able to achieve much higher best counts. They reach
greater average speedups than Rand and ExpS with fewer

configurations by choosing the right data loading technique
for each kernel.

Tables 4 and 5 show that image data loading technique
does dominate over the other techniques for the NVIDIA
platform but not for AMD. However, this does not mean
that there is no value to the other data loading techniques
on NVIDIA. Our hybrid oracle shows a speedup of 1.14 and
our hybrid predicted achieved a speedup of 1.12 relative to
the hybrid image-only of 1.04. This indicates that there is a
benefit to not choosing image memory for every kernel. The
fact that one outcome is more likely than the others does not
necessarily mean that the model can be made simpler, merely
that the model should be predicting that outcome more often.

The accuracies of the machine learning models are
shown in Table 6. The absolute, count-based accuracies are
reasonable but not excellent; however, the penalty-weighted
accuracies are very high. This indicates that although the
models do not always predict correctly, they predict correctly
for those kernels where it makes a big difference. In other
words, when they are incorrect, their mistakes have little
impact on performance.

We also visualize the distribution of speedup across the
104 stencil kernels; Figure 8 shows a histogram of speedup for
the hybrid strategy on both the NVIDIA and AMD platforms.
On both platforms, the strategy rarely underperforms Rand,
with only 12 and 6 kernels having a speedup less than one
on the NVIDIA and AMD platforms, respectively. The worst
performing kernel on NVIDIA has a slowdown of 12% while

Scientific Programming 15
TABLE 7: Results for the restricted heuristics.
Speedup Configs Compile time (s) Runtime (s)
NVIDIA AMD NVIDIA AMD NVIDIA AMD NVIDIA AMD
Hybrid 112 1.32 266 266 88.35 53.67 21.51 5.45
Hybrid restricted 1.13 1.30 154 108 35.90 22.98 2.71 0.38
50 -
45 4
40 A
35 4
30 A

Number of Stencil Kernels

FIGURE 8: Speedup distribution of the hybrid strategy.

the worst on AMD has a slowdown of 24%. Both platforms
have a large number of kernels with a moderate speedup and
both platforms have a long tail towards positive performance.
The best speedup on NVIDIA was 72%, while the best on
AMD was 196%. Overall, these are desirable characteristics
for an auto-tuning strategy; the most common outcome is an
improvement over the baseline with large increases in per-
formance possible and decreases in performance uncommon
and, when present, small.

Finally, we examine the impact of our decision not to
explore vectorization concurrently with the rest of the data
loading techniques (Section 6). We examine kernels for which
local memory was the best data loading technique. The
hybrid heuristic using local memory achieved speedups of
1.25 and 1.44 (on NVIDIA and AMD, respectively). This is
in contrast to only 0.34 and 0.54 for the same kernels with
the same heuristic using vectorization. Conversely, on kernels
for which vectorization was the best data loading technique,
vectorization achieves speedups of 1.07 and 1.49 (on NVIDIA
and AMD). For these kernels, local memory achieves only
0.67 and 1.05. These results suggest that the types of kernels
on which one technique performs well are different from the
kernels on which the other techniques perform well. This is
despite the fact that local memory was the better technique
on average across all kernels for both platforms. Thus, this
suggests that it was reasonable not to explore vectorization
concurrently with other data loading techniques.

8.3.3. Computational Throughput. On the NVIDIA GTX
Titan, our kernels tuned by the hybrid heuristic achieve

throughputs ranging from 30 to 646 GFLOPS with an average
of 411 GFLOPS. On the AMD R9 390, the range was from 39
to 2180 GFLOPS with an average of 855 GFLOPS. The lowest
throughput on both platforms occurs on the radius 0 kernel
(i.e., multiply every element in an array by a constant). The
highest occurs on a dense 3D stencil of large radius. The lower
throughputs on the sparser kernels reflect that these kernels
are more memory-bound than compute-bound.

8.3.4. Restricting the Optimization Space. We can use expert
knowledge of the optimization space to further limit the
exploration performed by the heuristics and thus reduce the
number of configurations they consider. We force the work-
group size in the x dimension to be at least 16 in order
to exploit memory coalescing. We also prohibit the work-
group sizes in the y and z dimensions from exceeding 32,
as sizes beyond that are rarely beneficial. We can afford to
impose looser restrictions than ExpS because our strategy
has already significantly reduced the optimization space
size. The results of applying these restrictions to our best
performing heuristic, the hybrid heuristic, are shown in
Table 7. There is a significant reduction in the number
of configurations considered and an even more significant
reduction in runtime. This is because the excluded config-
urations are generally the worst performing ones. Speedup
remains relatively unchanged because the new heuristic is not
able to explore any configurations that the old one could not.

This shows that our strategy complements expert search
approaches as the two strategies can effectively be used
together.

16

8.3.5. Variable Work-Group Size. In order to allow the com-
piler to optimize as much as possible, the work-group size
is fixed at compile time. This dramatically increases the
number of compilations made. We justify this approach by
considering variants of the kernels in which the work-group
size is not fixed. The hybrid heuristic is then run on these
modified kernels. Once the heuristic has reached its final
configuration, that configuration is rerun using the variant
of the kernel with a fixed work-group size.

The results of this experiment on both platforms are
shown in the second row of Table 8. The first row of this
table is the performance on the original kernels, copied
from Table 3. Relative to the same heuristic applied to the
fixed work-group size kernels, this approach results in a
dramatically lower average speedup of only 0.94 and 1.04 on
NVIDIA and AMD, respectively. It does, however, require
dramatically less compile time as it does not require a
recompile for each configuration. There is an increase in
device-side runtime due to the fact that many of the explored
configurations perform worse.

8.3.6. Array Size. This experiment seeks to determine the
effect of array size on the interestingness of the space and
the performance of the strategies. The hybrid strategy was
run on arrays ranging in size from 32 to 512° using the
machine learning models trained previously on the original,
256° kernels. To save time, this experiment was only run only
on the seven kernels used in Section 8.3.1.

Table 9 shows the performance of the strategy, the
relevant oracle, and random sampling on these different
sizes. As long as data size remains above some minimum
threshold, the machine learning model continues to perform
well and the performance of the strategy matches that of the
oracle. As size decreases however, the oracle performance
itself decreases and thus the performance of the strategy does
as well. Eventually the machine learning model no longer
predicts correctly. Both of these issues are likely because
the space itself is less interesting for these small array sizes.
For example, global memory becomes more favoured as the
input size decreases because the L1 and L2 caches of the
GPU are able to better address the memory needs of the
kernel.

8.3.7. Array Shape. The hybrid strategy was run on kernels
with input sizes of 1024 x 1024 in x and y and ranging in
size from 8 to 128 in the z dimension using the machine
learning models previously trained on the 256 kernels. The
total number of array elements is always more than 128,
the point below which performance degraded in the previous
experiment. This removes the impact of input size.

The results are shown in Table 10 in the same format
as Table 9. What is most noticeable is the consistency in
the machine learning models’ performance. On NVIDIA, for
all but the smallest value of z, the machine learning model
predicts correctly, allowing the strategy to achieve close to the
oracle performance. On AMD the model’s accuracy is also
consistent, although not as good, but the performance of our
strategy decreases as the array becomes less symmetric. This

Scientific Programming

shows that our machine learning models are fairly insensitive
to array shape, but for some platforms it may be necessary to
incorporate array shape into the machine learning model.

8.3.8. Varying Computational Intensity. One limitation of our
synthetic kernels is that they all have a single add and a
single multiply per loaded input element. In this regard,
they underrepresent some real applications that have higher
computational intensities. In this section, we show that
our strategies remain effective with higher computational
intensities.

We regenerate our synthetic stencils such that the number
of additions and multiplications per read element is set to
either 1 or 2. To prevent the compilers from optimizing
away these multiplications or additions through constant
folding, we multiply/add each read input data element with
itself as necessary to increase the multiplication/addition
count. This results in a total of 416 kernels, which we use
to train a new machine learning model with the number
of multiplications and the number of additions as new
input features. The hybrid strategy is rerun for these kernels
and the results are reported only for the AMD GPU for
brevity.

Table 11 shows the performance of the 4 strategies: expert
search, random sampling, hybrid oracle, and hybrid heuristic.
Similar conclusions to those in Section 8.3.2 can be drawn
here regarding the relative performance of the strategies.
The accuracy of the machine learning model remains high
at 0.89 absolute and 0.98 penalty-weighted. Furthermore,
the throughput increases as we would expect, reaching an
average of 1072 GFLOPS with a peak of 2619 GFLOPS (on
a 2D dense stencil of radius 5). The performance of the
heuristic does not vary significantly with the number of
multiplications or additions. There is a slight increase in
performance as arithmetic intensity increases, but the expert
search strategy exhibits the same increase. This may indicate
that the optimization space becomes more interesting on the
stencils with higher arithmetic intensity, leading to a lower
relative performance for random sampling. This validates
the suitability of our strategies when the intensity of stencil
computations varies.

9. Related Work

There is a large body of work dealing with automatic perfor-
mance tuning of stencil codes, on both multicores and GPUs.
Some of this work exhaustively searches the optimization
space [20] while some of it uses expert knowledge to first
limit the optimization space and then perform exhaustive
search on that subset of the space [21-25]. In contrast, our
work does not require expert knowledge of the platform
or the application. It does not limit the values that are
searched for each optimization, rather which optimizations
are searched concurrently. Furthermore, we show that our
strategy complements approaches that utilize expert knowl-
edge. Specifically, we show in Section 8.3.4 that incorporating
expert knowledge into our strategy improves performance
even further.

Scientific Programming 17
TABLE 8: Results for variable work-group size kernels.
Speedup Configs Compile time (s) Runtime (s)
NVIDIA AMD NVIDIA AMD NVIDIA AMD NVIDIA AMD
Fixed size 1.12 1.32 266 266 88.35 53.67 21.51 5.45
Variable size 0.94 1.04 49 68 14.92 14.32 4215 6.09
TABLE 9: Heuristic performance on various input sizes.
Data size per dimension
NVIDIA AMD

32 64 128 256 512 32 64 128 256 512
Speedup
Hybrid oracle 1.03 1.04 1.15 1.18 1.19 0.98 0.93 1.12 1.07 1.36
Hybrid 0.97 1.04 1.15 1.18 1.19 0.85 0.91 1.1 1.06 1.39
Random sample 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correct predictions 2 7 7 7 7 3 3 6 6 6

TaBLE 10: Heuristic performance on various input shapes.
Z size
NVIDIA AMD

8 16 32 64 128 8 16 32 64 128
Speedup
Hybrid oracle 11 1.20 1.20 117 1.16 1.27 1.26 1.34 1.52 1.50
Hybrid 1.08 1.20 1.20 1.17 1.16 0.95 1.10 1.26 1.48 1.50
Random sample 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correct predictions 5 7 7 7 7 4 4 4 4 6

Some existing GPGPU auto-tuning works have used
intelligent, nonexhaustive strategies [12-14, 20, 26]. How-
ever, all of this work (with the exception of Tang’s which
develops an analytical model to approximate performance
[26]) focuses exclusively on a single optimization. In contrast,
we consider multiple optimizations concurrently and our
strategy takes into account the interactions amongst these
optimizations.

One common theme with all of the works mentioned
so far is the focus on a handful of applications. In contrast,
we use a large number of programs that were synthetically
generated to have a wide range of stencil patterns and sizes.
These synthetic stencils subsume many real world stencils and
thus enrich our evaluation by ensuring that we have stencils
with a diversity of properties. Some auto-tuning works have
made up for this deficiency though by considering different
inputs [27, 28], which essentially expands the program space
in an alternative manner.

There are several approaches that use statistical and
machine learning models to partition and prune the opti-
mization configuration space, e.g., recursive partitioning
regression trees [29] and kernel canonical correlation analysis
[5]. These approaches require running the program of interest
in order to train their models while our machine learning
models can be trained ahead of time because they are trained
on other programs.

There has also been work on auto-tuning frameworks
that employ a host of generic (i.e., non-stencil-specific and

non-GPU-specific) search techniques to manage large search
spaces. One example is MIT’s OpenTuner [30], which uses
strategies such as Nelder-Mead, differential evolution, and
gradient descent to search through the optimization space.
Another example is the PATUS framework [31], which
incorporates one domain specific language to specify stencils
and a second to specify the parallelization approach. It
uses exhaustive search or generic approaches to auto-tuning,
such as multi-run Powell search or evolutionary search.
In contrast to these frameworks, our contribution is not
a framework for search, but rather a strategy that exploits
both stencil and GPU specific knowledge to make the search
efficient.

A comparison of the performance of our strategy to those
used by the previous auto-tuning frameworks is certainly
desirable. For example, it is impractical to make a direct
comparison with OpenTuner because it has little support for
GPU/OpenCL. In particular, it lacks the ability to express
interoptimization constraints that often exist on GPUs (e.g.,
the restriction on the product of W, B, and C mentioned
in Section 4.7). Not observing such constraints can result
in grossly increased auto-tuning times because of the many
infeasible configurations that must be examined and com-
piled. While some attempts have been made to address
such constraints in OpenTuner [32, 33], it is necessary to
modify OpenTuner to express the constraints that exist in our
work. This makes it difficult to make a fair comparison to
OpenTuner.

18 Scientific Programming
TaBLE 11: Performance for varying computational intensity.

Strategy Speedup Configs Compile time (s) Runtime (s)

ExpS 1.23 1066 250.30 5.36

Rand 1.00 210 54.19 9.57

Hybrid oracle 1.32 1018 245.35 27.70

Hybrid heuristic 1.32 253 52.71 5.23

Nonetheless, we also make a meaningful comparison
to existing work throughout the results section, albeit
a nondirect one. We compare the performance of our
strategy to an expert search that uses domain specific
knowledge to sufficiently narrow the space for exhaustive
search, often resulting in high-performing configurations
that would be similar to those obtained by aforementioned
works. Our strategy results in as good or better config-
urations. Further, our strategy is able to achieve compu-
tational throughput that is similar to or better than that
achieved by other strategies [31, 34], as was described in
Section 8.3.3.

The work presented here extends the authors’ earlier work
[35] in that it describes a new hybrid approach heuristic,
expands the machine learning model input features, validates
the work on a second GPU platform, and provides new
experiments to demonstrate the computational throughput
of the approach as well as the impact of variable workgroup
size, variable array sizes, variable array shapes, and variable
computational intensity.

Finally, there has been extensive work on auto-tuning
of kernels other than stencils [36-39]. These works are too
numerous to list exhaustively. In general, the size of this field
demonstrates the importance of auto-tuning in extracting
performance from GPU platforms.

10. Conclusions

We presented a strategy for automatic performance tun-
ing of stencil computations on GPUs when applying com-
mon optimizations. Our strategy uses machine learning
to determine the best approach to memory loading and
then explores the remaining optimizations in groups. We
presented three possible ways of grouping the optimizations
so as to reduce intergroup dependencies. We synthetically
generated 104 OpenCL kernels and evaluated our strategy
both in terms of the time needed for auto-tuning and in
terms of the quality of the best configuration obtained.
We showed that our best heuristic achieves a reduction
in total exploration time relative to expert search (by
89% and 76% on an NVIDIA GeForce GTX Titan and
an AMD Radeon R9 390, respectively) while finding bet-
ter performing configurations (by 5% on the Titan and
9% on the R9 390). Compared to random sampling, we
can achieve much higher performance (12% and 32% on
NVIDIA and AMD, respectively) in less or comparable time
(71% and 4% less on the Titan and the R9 390, respec-
tively).

Our study has shown a successful strategy for the auto-
tuning of stencils on GPUs that combines a machine learning
model with heuristic search. The effectiveness of our strategy
was demonstrated by comparing it to an “expert search”
strategy that is representative of other approaches for auto-
tuning stencils as well as to random sampling. While our
study has considered only synthetic kernels, we believe
that these kernels subsume many real applications and are
thus representative of several classes of stencils used in
practice. Further, we demonstrated the effectiveness of our
strategies across stencil shapes, input size and shape, and
varying computational intensity. Nonetheless, our study is
limited to stencils with single input/single output arrays
and without loop-carried dependence. Further it also does
not consider optimizations to the time loop of a stencil.
Extending the study to these other types of stencils and
to include optimizations to the time loop are potential
directions for future work. Other directions include exploring
other machine learning models and other target GPU plat-
forms.

Appendix

A. Best Configurations Found
on NVIDIA Platform

This appendix gives the best configurations found by the
hybrid strategy on the NVIDIA platform. Dims stands for the
dimensionality of the stencil; Unique Dim refers to the unique
dimension of the stencil, as defined in Section 6.1, “vec”
stands for global memory with vectorization, and “global”
stands for global memory without vectorization. The results
in Table12 further validate our interestingness study and
show that no single configuration is always best across the
stencils.

B. Best Configurations Found
on AMD Platform

This appendix gives the best configurations found by the
hybrid strategy on the AMD platform. Again, Dims stands
for the dimensionality of the stencil; Unique Dim refers to
the unique dimension of the stencil, as defined in Section 6.1,
“vec” stands for global memory with vectorization, and
“global” stands for global memory without vectorization. The
results also show that no single configuration is always best
across the stencils (see Table 13).

Scientific Programming 19
TABLE 12

Radius Type Dims UniqueDim BX/VX WX WY WZ CX CY CZ Dataloading technique
1 thumbtack 3 X 1 128 4 1 1 32 1 image
1 thumbtack 3 y 1 128 2 1 1 1 16 image
1 thumbtack 3 z 1 128 2 1 1 8 1 image
2 thumbtack 3 X 1 128 2 4 1 1 64 image
2 thumbtack 3 y 1 64 1 4 1 1 1 image
2 thumbtack 3 z 1 128 2 2 1 1 64 image
3 thumbtack 3 X 1 8 2 8 1 1 1 image
3 thumbtack 3 y 1 64 1 2 1 1 1 image
3 thumbtack 3 z 1 64 1 2 1 1 1 image
4 thumbtack 3 X 1 64 4 2 1 1 32 image
4 thumbtack 3 y 1 64 2 2 1 1 4 image
4 thumbtack 3 z 1 128 1 1 1 1 1 image
5 thumbtack 3 X 1 128 4 1 1 1 16 image
5 thumbtack 3 y 1 128 1 2 1 1 4 image
5 thumbtack 3 z 1 128 2 1 1 16 1 image
0 dense 1 none 4 8 64 2 1 1 1 vec

1 dense 1 X 4 64 4 1 1 1 1 vec

1 dense 1 y 1 128 1 2 1 4 4 image
1 dense 1 z 1 128 4 1 1 8 1 image
1 dense 2 X 1 128 4 1 1 16 1 image
1 dense 2 y 1 128 2 1 1 1 32 image
1 dense 2 z 1 128 2 1 1 16 1 image
1 dense 3 none 1 32 2 2 2 1 16 local
2 dense 1 X 1 128 1 2 1 8 2 image
2 dense 1 y 1 128 2 1 1 32 1 image
2 dense 1 z 1 128 2 2 2 64 1 image
2 dense 2 X 1 16 4 2 1 2 32 local
2 dense 2 y 1 64 1 2 2 1 32 local
2 dense 2 z 1 32 4 1 2 2 1 local
2 dense 3 none 1 32 8 1 1 1 64 local
3 dense 1 X 1 32 1 8 1 16 1 image
3 dense 1 y 1 64 8 1 1 32 1 image
3 dense 1 z 1 16 2 32 1 8 4 image
3 dense 2 X 1 16 8 2 1 1 64 local
3 dense 2 y 1 64 1 2 2 1 16 local
3 dense 2 z 1 32 4 1 1 4 1 local
3 dense 3 none 1 32 8 2 1 1 32 local
4 dense 1 X 1 64 1 2 1 1 1 image
4 dense 1 y 1 64 4 1 1 32 1 image
4 dense 1 z 1 8 1 16 1 1 8 image
4 dense 2 X 1 8 16 2 1 1 64 local
4 dense 2 y 1 64 1 2 1 1 32 local
4 dense 2 z 1 32 8 1 2 2 1 local
4 dense 3 none 1 64 8 2 1 1 64 local
5 dense 1 X 1 64 1 2 1 1 1 image
5 dense 1 y 1 32 8 1 1 32 1 image
5 dense 1 z 1 16 4 8 1 1 16 image
5 dense 2 X 1 8 8 4 1 2 32 local
5 dense 2 y 1 64 1 2 1 1 16 local
5 dense 2 z 1 32 8 1 2 2 1 local
5 dense 3 none 1 4 4 32 1 1 1 image
1 star 2 X 1 128 4 1 1 8 1 image
1 star 2 y 1 128 4 1 1 8 1 image

20 Scientific Programming
TaBLE 12: Continued.
Radius Type Dims Unique Dim BX/VX WX Wy Wz CX CY CZ Data loading technique
1 star 2 z 1 128 2 1 1 16 1 image
1 star 3 none 1 128 4 1 1 8 1 image
2 star 2 X 1 8 2 8 1 1 4 image
2 star 2 y 1 128 2 2 1 128 1 image
2 star 2 z 1 128 2 1 1 32 1 image
2 star 3 none 1 16 2 8 1 1 1 image
3 star 2 X 1 8 2 8 1 1 1 image
3 star 2 y 1 128 2 2 2 32 1 image
3 star 2 z 1 16 2 4 1 1 1 image
3 star 3 none 1 16 4 2 1 16 2 image
4 star 2 X 1 64 4 4 1 64 1 image
4 star 2 y 1 16 1 16 1 8 4 image
4 star 2 z 1 128 2 1 1 1 1 image
4 star 3 none 1 256 4 1 1 1 128 image
5 star 2 X 1 16 4 4 1 1 2 image
5 star 2 y 1 16 2 8 1 1 1 image
5 star 2 z 1 128 2 1 1 1 1 image
5 star 3 none 1 16 2 4 1 1 2 image
2 diamond 2 X 1 128 2 2 1 1 16 image
2 diamond 2 y 1 128 2 1 1 64 1 image
2 diamond 2 z 1 128 2 1 1 1 1 image
2 diamond 3 none 1 128 1 2 1 1 1 image
3 diamond 2 X 1 128 4 2 1 64 1 image
3 diamond 2 y 1 64 1 2 2 1 32 local
3 diamond 2 z 1 32 8 1 4 1 1 local
3 diamond 3 none 1 32 2 2 1 1 1 image
4 diamond 2 X 1 8 16 2 1 1 64 local
4 diamond 2 y 1 32 1 8 2 1 32 local
4 diamond 2 zZ 1 32 8 1 1 4 1 local
4 diamond 3 none 1 64 4 2 1 1 4 image
5 diamond 2 X 1 4 32 2 1 1 64 local
5 diamond 2 y 1 32 1 4 2 1 16 local
5 diamond 2 Z 1 32 8 1 2 2 1 local
5 diamond 3 none 1 128 2 1 1 1 8 image
1 no corners 3 none 1 128 2 1 1 1 1 image
2 no corners 2 X 1 64 2 4 1 1 1 image
2 no corners 2 y 1 32 1 8 1 1 1 image
2 no corners 2 z 1 32 4 1 2 2 1 local
2 no corners 3 none 1 32 8 1 1 1 64 local
3 no corners 2 X 1 16 8 2 1 1 64 local
3 no corners 2 y 1 64 1 2 2 1 32 local
3 no corners 2 z 1 32 4 1 1 4 1 local
3 no corners 3 none 1 32 8 2 1 1 32 local
4 no corners 2 X 1 8 16 2 1 1 64 local
4 no corners 2 y 1 64 1 2 1 1 32 local
4 no corners 2 Z 1 32 8 1 2 2 1 local
4 no corners 3 none 1 64 8 2 1 1 64 local
5 no corners 2 X 1 8 8 4 1 2 32 local
5 no corners 2 y 1 64 1 2 1 1 16 local
5 no corners 2 z 1 32 8 1 1 4 1 local
5 no corners 3 none 1 64 4 1 1 1 256 local

Scientific Programming 21

TaABLE 13
Radius Type Dims Unique Dim BX/VX WX WY WZ CX CY CZ Dataloadingtechnique
1 thumbtack 3 X 4 16 16 1 1 1 1 vec
1 thumbtack 3 y 1 256 1 1 1 1 2 global
1 thumbtack 3 z 1 64 1 2 2 1 1 global
2 thumbtack 3 X 4 16 4 1 1 1 1 vec
2 thumbtack 3 y 1 32 4 2 1 2 16 local
2 thumbtack 3 z 1 32 4 2 1 2 32 local
3 thumbtack 3 b'e 4 16 4 2 1 1 1 vec
3 thumbtack 3 y 1 16 8 2 1 2 32 local
3 thumbtack 3 z 1 16 8 2 1 2 32 local
4 thumbtack 3 X 4 16 4 4 1 1 1 vec
4 thumbtack 3 y 1 8 8 4 2 1 32 local
4 thumbtack 3 z 1 8 8 4 2 1 32 local
5 thumbtack 3 X 1 16 8 2 1 2 64 local
5 thumbtack 3 y 1 8 16 2 2 1 64 local
5 thumbtack 3 z 1 64 2 1 1 2 1 global
0 dense 1 none 1 128 1 1 2 1 4 global
1 dense 1 X 1 128 2 1 1 1 2 global
1 dense 1 y 2 32 8 1 1 1 1 vec
1 dense 1 z 1 64 1 4 1 1 8 global
1 dense 2 X 4 16 8 1 1 1 1 vec
1 dense 2 y 1 64 1 1 2 1 1 global
1 dense 2 z 1 64 2 1 2 1 1 global
1 dense 3 none 1 32 4 2 1 4 16 local
2 dense 1 X 1 128 2 1 2 1 2 global
2 dense 1 y 2 32 2 4 1 1 vec
2 dense 1 z 2 32 1 8 1 2 1 vec
2 dense 2 X 4 8 8 2 1 1 32 vec
2 dense 2 y 1 64 1 4 4 1 8 local
2 dense 2 z 1 32 8 1 2 4 1 local
2 dense 3 none 1 32 4 2 1 2 8 local
3 dense 1 X 1 64 1 1 4 1 1 global
3 dense 1 y 4 16 4 1 1 1 2 vec
3 dense 1 z 4 32 1 8 1 2 1 vec
3 dense 2 X 4 16 4 4 1 1 1 vec
3 dense 2 y 1 128 1 2 2 1 32 local
3 dense 2 z 1 32 8 1 4 2 1 local
3 dense 3 none 1 32 4 2 1 1 16 local
4 dense 1 X 1 64 2 1 2 1 1 global
4 dense 1 y 4 32 2 1 1 1 1 vec
4 dense 1 z 4 16 2 8 1 1 2 vec
4 dense 2 X 4 16 4 4 2 1 4 vec
4 dense 2 y 1 32 1 8 4 1 1 local
4 dense 2 z 1 32 8 1 2 4 1 local
4 dense 3 none 1 2 16 8 1 1 16 local
5 dense 1 X 1 128 2 1 2 1 1 global
5 dense 1 y 4 16 16 1 1 1 vec
5 dense 1 z 4 32 1 8 1 1 2 vec
5 dense 2 X 4 16 16 1 1 16 vec
5 dense 2 y 1 128 1 2 2 1 16 local
5 dense 2 z 1 32 8 1 2 4 1 local
5 dense 3 none 1 32 2 4 1 1 64 local
1 star 2 X 2 64 1 4 1 1 1 vec
1 star 2 y 1 128 1 1 2 1 1 global

22

TaABLE 13: Continued.

Scientific Programming

Radius Type Dims UniqueDim BX/VX WX WY WZ CX CY CZ Dataloadingtechnique
1 star 2 z 1 64 1 2 4 1 1 global
1 star 3 none 1 64 1 1 4 1 1 global
2 star 2 X 4 16 4 4 1 1 2 vec
2 star 2 y 1 128 1 2 1 1 4 global
2 star 2 Z 1 64 4 1 2 1 1 global
2 star 3 none 1 64 1 2 4 1 1 global
3 star 2 X 4 8 4 8 2 1 2 vec
3 star 2 y 1 64 1 4 1 1 16 global
3 star 2 4 1 32 8 1 4 2 2 local
3 star 3 none 1 64 1 4 1 2 1 global
4 star 2 X 4 8 4 8 2 1 1 vec
4 star 2 y 1 64 1 4 2 1 1 global
4 star 2 z 1 32 8 1 2 4 1 local
4 star 3 none 1 64 1 4 1 1 8 global
5 star 2 X 4 16 4 4 1 1 2 vec
5 star 2 y 1 128 1 2 2 1 32 local
5 star 2 z 1 32 8 1 1 8 1 local
5 star 3 none 1 64 1 2 1 1 8 global
2 diamond 2 X 4 16 4 4 1 1 4 vec
2 diamond 2 y 1 64 1 4 1 1 4 global
2 diamond 2 z 1 64 2 2 2 1 1 global
2 diamond 3 none 1 32 4 2 1 2 32 local
3 diamond 2 X 4 16 8 2 1 32 1 vec
3 diamond 2 y 1 128 1 2 2 1 32 local
3 diamond 2 z 1 16 16 1 4 2 1 local
3 diamond 3 none 1 64 4 1 1 32 1 global
4 diamond 2 X 4 16 4 4 1 1 1 vec
4 diamond 2 y 1 32 1 8 4 1 16 local
4 diamond 2 Z 1 32 8 1 2 4 1 local
4 diamond 3 none 1 8 8 4 2 1 32 local
5 diamond 2 X 4 16 8 2 1 16 1 vec
5 diamond 2 y 1 128 1 2 2 1 32 local
5 diamond 2 z 1 32 8 1 1 8 1 local
5 diamond 3 none 1 16 4 4 1 1 32 local
1 no_corners 3 none 1 64 1 1 2 1 1 global
2 no_corners 2 X 4 16 4 4 1 1 16 vec
2 no_corners 2 y 1 64 1 4 4 1 16 local
2 no_corners 2 z 1 32 8 1 2 4 1 local
2 no_corners 3 none 1 32 4 2 1 2 8 local
3 no_corners 2 X 4 16 4 4 2 1 1 vec
3 no_corners 2 y 1 128 1 2 2 1 32 local
3 no_corners 2 z 1 32 8 1 4 2 1 local
3 no_corners 3 none 1 32 4 2 1 1 16 local
4 no_corners 2 X 4 16 8 2 1 1 1 vec
4 no_corners 2 y 1 32 1 8 4 1 1 local
4 no_corners 2 z 1 32 8 1 2 4 1 local
4 no_corners 3 none 1 2 16 8 1 1 16 local
5 no_corners 2 X 4 16 16 1 1 16 1 vec
5 no_corners 2 y 1 128 1 2 2 1 16 local
5 no_corners 2 Z 1 32 8 1 2 4 1 local
5 no_corners 3 none 1 32 2 4 1 1 64 local

Scientific Programming

Conflicts of Interest

There are no conflicts of interest related to this paper.

Acknowledgments

This work was supported by grants from The Natural Sciences
and Engineering Research Council of Canada (NSERC) and
from Qualcomm Canada.

References

[1] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, E. Durand, and S.
Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing
pipelines;” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
2013, pp. 519-530, usa, June 2013.

[2] D. Lowell, J. Godwin, J. Holewinski et al., “Stencil-aware GPU
optimization of iterative solvers,” SIAM Journal on Scientific
Computing, vol. 35, no. 5, pp. S209-5228, 2013.

[3] M. J. Gibson, E. C. Keedwell, and D. A. Savi¢, “An investiga-
tion of the efficient implementation of cellular automata on
multi-core CPU and GPU hardware,” Journal of Parallel and
Distributed Computing, vol. 77, pp. 11-25, 2015.

[4] NVIDIA Corporation, “OpenCL programming guide for the
CUDA architecture,” 2010.

[5] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case
for machine learning to optimize multicore performance,” in
Proceedings of the Ist USENIX Conference on Hot Topics in
Parallelism (HotPar '09), Berkeley, Calif, USA, 2009.

[6] L. Breiman, “Random forest,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

[7] NVIDIA Corporation, NVIDIAs next generation CUDA com-
pute architecture: Kepler GK110, 2012.

[8] AMD, “Amd graphics core next GCN architecture,” 2012.

[9] The Khronos Group, “Open Computing Language (OpenCL),
http://www.khronos.org/opencl/.

[10] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler
for memory optimization and parallelism management,” in
Proceedings of the the 2010 ACM SIGPLAN conference, p. 86,
Toronto, Ontario, Canada, June 2010.

[11] D. Young, “Iterative methods for solving partial difference
equations of elliptic type,” Transactions of the American Mathe-
matical Society, vol. 76, pp. 92-111, 1954.

[12] T. Grosser, A. Cohen, P. H. Kelly, . Ramanujam, P. Sadayappan,
and S. Verdoolaege, “Split tiling for GPUSs,” in Proceedings of the
the 6th Workshop, pp. 24-31, Houston, Texas, March 2013.

[13] J. Meng and K. Skadron, “Performance modeling and automatic
ghost zone optimization for iterative stencil loops on GPUs,” in
Proceedings of the 23rd International Conference on Supercom-
puting, ICS09, pp. 256-265, usa, June 2009.

[14] T. Han and T. Abdelrahman, “Automatic tuning of local mem-
ory use on GPGPUSs,” in Proceedings of the ADAPT, 2015.

[15] S. Russell and P. Norvig, “Artificial Intelligence: A Modern
Approach,” in lem plus 0.5em minus 0.4em Pearson Education,
Artificial Intelligence, A Modern Approach, 2nd edition, 2003.

[16] A.Chiu, J. Garvey, and T. S. Abdelrahman, “Genesis: a language
for generating synthetic training programs for machine learn-
ing,” in Proceedings of the 12th ACM International Conference on
Computing Frontiers (CF ’15), Ischia, Italy, May 2015.

23

[17] OpenCV, “The OpenCV library;,” http://docs.opencv.org.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18,
2009.

[19] P.J. Fleming and J. J. Wallace, “How not to lie with statistics: The
correct way to summarize benchmark results,” Communications
of the ACM, vol. 29, no. 3, pp. 218-221, 1986.

[20] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-
performance code generation for stencil computations on GPU
architectures,” in Proceedings of the 26th ACM International
Conference on Supercomputing, ICS’12, pp. 311-320, Italy, June
2012.

[21] K. Datta, M. Murphy, V. Volkov et al., “Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC08), pp. 1-12, IEEE, Austin, Tex, USA, November 2008.

[22] S.Kamil, C. Chan, S. Williams et al., “A Generalized Framework
for Auto-tuning Stencil Computations,” in Proceedings of the
Cray User Group Conference, 2009.

[23] S. Kamil, C. Chan, L. Oliker, J. Shall, and S. Williams, “An auto-
tuning framework for parallel multicore stencil computations,”
in Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS ’10), pp. 1-12, IEEE,
Atlanta, Ga, USA, April 2010.

[24] A.Mametjanov, D. Lowell, C.-C. Ma, and B. Norris, “Autotuning
stencil-based computations on GPUs,” in Proceedings of the 2012
IEEE International Conference on Cluster Computing, CLUSTER
2012, pp. 266-274, China, September 2012.

[25] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of
3D stencil codes on GPU clusters,” in Proceedings of the 10th
International Symposium on Code Generation and Optimization,
CGO 2012, pp. 155-164, USA, April 2012.

[26] W. T. Tang, W. J. Tan, R. Krishnamoorthy et al., “Optimizing
and auto-tuning iterative stencil loops for gpus with the in-
plane method,” in Proceedings of the 2013 IEEE International
Symposium on Parallel ¢ Distributed Processing (IPDPS), pp.
452-462, Cambridge, Mass, USA, May 2013.

[27]]. Bergstra, N. Pinto, and D. Cox, “Machine learning for predic-
tive auto-tuning with boosted regression trees,” in Proceedings
of the 2012 Innovative Parallel Computing (InPar ’12), May 2012.

[28] A.Magni, D. Grewe, and N. Johnson, “Input-aware auto-tuning
for directive-based GPU programming,” in Proceedings of the
6th Workshop on General Purpose Processor Using Graphics
Processing Units, GPGPU 2013, pp. 66-75, March 2013.

[29] W.]Jia, K. A. Shaw, and M. Martonosi, “Starchart: Hardware and
software optimization using recursive partitioning regression
trees,” in Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, PACT 2013,
pp- 257-267, September 2013.

[30] J. Ansel, S. Kamil, K. Veeramachaneni et al., “OpenTuner,” in
Proceedings of the the 23rd international conference, pp. 303-316,
August 2014.

[31] M. Christen, O. Schenk, and H. Burkhart, “PATUS: a code gen-
eration and autotuning framework for parallel iterative stencil
computations on modern microarchitectures,” in Proceedings
of the IEEE International Parallel & Distributed Processing
Symposium (IPDPS ’11), pp. 676-687, IEEE, Anchorage, Alaska,
USA, May 2011.

[32] OpenTuner, “OpenTuner Project Git, https://github.com/
jansel/opentuner/issues/87.

http://www.khronos.org/opencl/
http://docs.opencv.org
https://github.com/jansel/opentuner/issues/87
https://github.com/jansel/opentuner/issues/87

24

(33]

(34]

(36]

(37]

(38]

[39]

W. Feng and T. S. Abdelrahman, “A sampling based strategy
to automatic performance tuning of GPU programs,” in Pro-
ceedings of the 2017 IEEE International Parallel and Distributed
Processing Symposium: Workshops (IPDPSW), pp. 1342-1349,
Lake Buena Vista, Fla, USA, May 2017.

P. S. Rawat, C. Hong, M. Ravishankar et al., “Resource Con-
scious Reuse-Driven Tiling for GPUs,” in Proceedings of the
the 2016 International Conference, pp. 99-111, Haifa, Israel,

September 2016.

J. D. Garvey and T. S. Abdelrahman, “Automatic Performance
Tuning of Stencil Computations on GPUs,” in Proceedings of the
2015 44th International Conference on Parallel Processing (ICPP),
pp- 300-309, Beijing, China, September 2015.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J.
Cavazos, “Auto-tuning a high-level language targeted to GPU
codes,” in Proceedings of the 2012 Innovative Parallel Computing
(InPar’12), May 2012.

J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotun-
ing of sparse matrix-vector multiply on GPUs,” in Proceedings
of the I5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’10), pp. 115-126, ACM,

Bangalore, India, January 2010.

Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning
GEMM for GPUs,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics): Preface, vol. 5544, no. 1, pp. 884-892, 2009.
A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library
for CUDA GPUs,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC
’09, November 2009.

Scientific Programming

D. | Advances in !

s . WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

