
Research Article
A LTS Approach to Control in Event-B

Han Peng ,1 Chenglie Du,1 Lei Rao,1 and Fu Chen2

1Northwestern Polytechnical University, Xi’an, China
2Xi’an Aeronautics Computing Technique Research Institute, Xi’an, China

Correspondence should be addressed to Han Peng; hansbeng2016@gmail.com

Received 1 November 2017; Revised 19 March 2018; Accepted 3 April 2018; Published 22 May 2018

Academic Editor: Emiliano Tramontana

Copyright © 2018 Han Peng et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Event-B, people need to use control variables to constrain the order of events, which is a time-consuming and error-prone
process. This paper presents a method of combining labeled transition system and iUML-B to complete the behavior modeling
of system, which is more convenient and practical for engineers who are accustomed to using the automaton to build a system
behavior model. First, we use labeled transition system to establish the behavior model of the system. Then we simulate and verify
the event traces of the labeled transition system behavior model. Finally, we convert labeled transition system model into iUML-B
state machine and use it to generate the corresponding control flow model. We use Abrial’s bounded retransmission protocol to
demonstrate the practicality of our approach.The simulation results show that the system behaviormodel generated by the iUML-B
state machine has the same event trace as the corresponding labeled transition system model.

1. Introduction

Event-B [1] is a formal method that evolved from B method
[2] and action system [3]. It uses simple symbols and struc-
tures to model the system, and it is well suited for different
areas including distributed systems [4]. The Event-B method
itself is very good at event refinement and data-oriented
refinement, but it lacks formal semantics of behavior, and
the control flow of Event-B machine is hidden in the state
variables, which can enable the event and can be modified by
actions. As a result, Event-B machine is not as intuitive as the
automaton-based approach.

From the designer’s point of view, to constrain the order
of events using control variables is a time-consuming and
error-prone process. People have to carefully consider the
impact of each variable on the event. Control variables and
other variables in Event-Bmachine entangled together, which
makes the design process more complex. From the analyst’s
point of view, it needs a lot of effort to understand the control
flow of system [5]. It is very inconvenient for people whowant
to understand the overall behavior and verify properties of
the system and find the right solution.

To summarize, the problem in Event-B control flow is
as follows: first, the control flow part and computation part
of Event-B machine are entangled, which makes design and

analysis more difficult; second, the control flow part is not
visible, which makes it impossible to model and verify the
control flow separately.

In order to solve these two problems, this paper presents
a method of modeling, analyzing the control flow of Event-
B machines using labeled transition system (LTS). The basic
idea is to divide themodel into control part and the computa-
tion part and further divide the control part into component
control flow and interaction control flow. The procedure of
our approach is as follows: first, we use LTS tomodel the com-
ponent behavior and interaction behavior of the system so
that we can visualize the control flow of each component and
the entire system (we omit the computation part of the Event-
B machine and do not consider it in the control flow model);
second, we simulate system behavior using this formal model
and get the event trace we need; third, we convert the
component behavior LTS and the interaction behavior LTS
into the iUML-B component state machine and the control
flow state machine, respectively. Finally, we use these iUML-
B state machines to generate Event-B machines. We proved
in Section 2.3 that the Event-B machine generated using the
above stepswill only preserve those event traces that we need.

The remainder of this paper is organized as follows.
Section 2 summarizes the issues related to Event-B control
flow modeling, as well as the general approach we propose.

Hindawi
Scientific Programming
Volume 2018, Article ID 8765186, 11 pages
https://doi.org/10.1155/2018/8765186

http://orcid.org/0000-0001-8400-4663
https://doi.org/10.1155/2018/8765186

2 Scientific Programming

SND_snd_data Š
STATUS
ordinary
WHEN

THEN

END

RCV_current_data Š
STATUS
ordinary
REFINES
RCV_current_data
WHEN

THEN

END

RCV_success Š
STATUS
ordinary
REFINES
RCV_success
WHEN

THEN

END

SND_success Š
STATUS
ordinary
REFINES
SND_success
WHEN
grd1 : s_st = working

grd1 : r_st = working
grd1 : s_st = working

grd1 : r_st = working grd1 : s_st = working

grd2 : w = FALSE

grd4 : w = FALSE

grd2 : w = TRUE

grd3 : s+ 1 = n
grd3 : r = s
grd2 : r+ 1 = n

grd2 : r+ 1 < n
grd3 : s+ 1 < n

grd4 : r = s+ 1

grd3 : r = s
grd4 : r = s+ 1

THEN
act1 : s_st fl success

act1 : r_st fl success

act2 : w fl FALSE

END

SND_time_out_current Š
STATUS
ordinary
WHEN
grd1 : s_st = working
grd2 : w = FALSE grd4 : w = FALSE

grd2 : w = FALSE

THEN
act1 : w fl TRUE act1 : w fl TRUEact1 : r fl r+ 1

act2 : r fl r+ 1

act2 : s fl s+ 1END

SND_rcv_current_ack Š
STATUS
ordinary
WHEN

THEN

END

Figure 1: The control variables of Event-B machine.

Section 3 uses Abrial’s bounded retransmission protocol
to demonstrate the practicality of our approach. Section 4
discusses our approach. Section 5 presents related work and
compares the results of this work with existing work. Finally,
Section 6 concludes the paper and gives some future research
directions.

2. Methodological Approach

2.1. Problem Description. We use Abrial’s bounded retrans-
mission protocol (BRP) model [1] to explain the control
flow problems in Event-B machine. In the fourth refine-
ment model of BRP machine (the example can be found
at http://www.math.pku.edu.cn/teachers/jrabrial/course/
BRP.zip), there are multiple control variables that affect the
event order, as Figure 1 shows.

To simplify the problem, we omit the variables that do
not affect the event order of Event-B machine. In Figure 1,
we mark the position of these variables in italics. Now, if we
want to analyze the effect of Boolean variable𝑊 on the event
order, we will find that the event SND snd data changes the
value of 𝑊 from TRUE to FALSE, which will affect all the
other events in the graph (we only list events affected by𝑊),
as indicated by the dashed arrows. But this does not mean
that when 𝑊 is FALSE, the other events will be enabled. In
fact, the occurrence of other events depends on the value of
more control variables, such as s st and r st etc. Therefore, in
order to analyze the effect of𝑊 on the event order, we have to
put these events together in a graph so that we can understand
the intention of the modeler.

2.2. Control the Event-B Machine Using iUML-B State Ma-
chine. iUML-B [6, 7] is a graphical plug-in of Event-B, which
use “UML like” class diagrams and state machines to describe
the state and behavior of system. The iUML-B’s graphical
model can generate Event-B code directly on the Rodin
platform [8] and automatically embed the generated code
into the context part (set, constant, and axiom) and machine
parts (variables, events, and invariants).

The transform edges in the iUML-B state machine can be
“linked” to the events in the Event-B machine to control the
event order in Event-B machine. The principle is shown in
Figure 2.

For example, if we want to restrict the event order in the
Event-B machine as

<INITIALISATION, SND snd data,
RCV current data, SND rcv current ack, brp>,

we can first draw the iUML-B state machine shown in
Figure 2; then “link” each transition edge to an event to make
the events in the Event-Bmachine occur in the order specified
in the iUML-B state machine.

Although the iUML-B state machine can model the con-
trol flow of the Event-B machine, it lacks formal behavioral
semantics. Therefore, we need to use LTS to model and
analyze its behavior.

2.3. Behavior Modeling Strategy and Equivalence Proving. We
present the following Event-B machine behavior modeling
strategy based on the above analysis results:

http://www.math.pku.edu.cn/teachers/jrabrial/course/BRP.zip
http://www.math.pku.edu.cn/teachers/jrabrial/course/BRP.zip

Scientific Programming 3

RCV_current_data Š
WHEN
… … .
THEN
act1 : r fl r+ 1
END

SND_snd_data Š
WHEN
… … .
THEN
act1 : d fl f(s+ 1)
END

SND_rcv_current_ack Š
WHEN
…
THEN
act2 : s fl s+ 1
END

INITIALISATION Š

BEGIN
….
END

brp Š
WHEN
… … .
THEN
… …
END

Link Link Link Link Link

Figure 2: iUML-B state machine control flow modeling principle.

Requirement

Component
Requirements

Flow
Requirements

Component
LTS

Control Flow
LTS

System
LTS

Simulation&
Verification Component

iUMl-B state
machine

Control Flow
iUMl-B state

machine

System
Machine
(Event-B)

Map

Map

Figure 3: Event-B machine behavior modeling strategy.

(1) The system requirements are decomposed into com-
ponent requirements and control flow requirements,
where component requirements represent the con-
straints of the event order of a component itself
and the flow requirements represent the event order
between components.

(2) The behavior LTS of each component, which contains
only the events that occurred in the component
itself and the local variables of the component itself,
is established according to the component require-
ments.

(3) The system control flow LTS, which describes event
order between multiple components, is established
according to the control flow requirements.

(4) The component LTS and control flow LTS are com-
posed to establish the system LTS. Then we can
simulate and analyze the event traces of the system
LTS in the LTSA [9] environment and modify it until
it satisfies our requirements.

(5) A component LTS is mapped onto an iUML-B state
machine (we call it the component state machine). A
system control flow LTS is mapped onto an iUML-B
state machine (we call it the flow state machine), too.

(6) The Event-B machine which meets our requirements
is generated using the component state machine and
flow state machine.

The proposed modeling process is shown in Figure 3.

In order to prove the correctness of ourmethod, we give a
complete proof of bisimulation equivalence between the LTS
system and Event-Bmodel.We first give the definition of LTS
and its composition.

Definition 1 (LTS). Let States represent a universal set of
states, Acts represents a universal action set, and then a LTS
𝑃 is defined as a quaternion 𝑃 = ⟨𝑄, Σ, Δ, 𝑞⟩, where

(i) 𝑄 ⊆ 𝑆𝑡𝑎𝑡𝑒𝑠, representing the state set of 𝑃;
(ii) Σ = 𝛼𝑃 (𝛼𝑃 ⊆ 𝐴𝑐𝑡𝑠), representing the action set of 𝑃;
(iii) Δ ⊆ 𝑄×Σ×𝑄, representing the transition relationship

in𝑃; these transitions are labeled with the elements in
Σ;

(iv) 𝑞 ∈ 𝑄, representing the initial state of 𝑃.

We need to use the parallel composition of LTSs to express
the interaction between multiple LTSs. The following gives
the definition of LTS parallel composition.

Definition 2 (parallel composition of LTSs). The parallel
composition of two 𝐿𝑇𝑆 𝑀 = ⟨𝑄1, Σ1, Δ 1, 𝑞1⟩ and𝑁 = ⟨𝑄2,
Σ2, Δ 2, 𝑞2⟩ is expressed as𝐿𝑇𝑆(𝑀 ‖ 𝑁) = ⟨𝑄1×𝑄2, Σ1∪Σ2, Δ,
(𝑞1, 𝑞2)⟩, where Δ is the minimum relation that satisfies the
following constraint:

𝑀
𝑎
󳨀→ 𝑀󸀠

𝑀 ‖ 𝑁
𝑎
󳨀→ 𝑀󸀠 ‖ 𝑁

𝑎 ∉ 𝛼𝑁 (1)

4 Scientific Programming

𝑁
𝑎
󳨀→ 𝑁󸀠

𝑀 ‖ 𝑁
𝑎
󳨀→ 𝑀 ‖ 𝑁󸀠

𝑎 ∉ 𝛼𝑀 (2)

𝑀
𝑎
󳨀→ 𝑀󸀠, 𝑁

𝑎
󳨀→ 𝑁󸀠

𝑀 ‖ 𝑁
𝑎
󳨀→ 𝑀󸀠 ‖ 𝑁󸀠

𝑎 ̸= 𝜏, (3)

where 𝑎 ∈ Σ1 ∪ Σ2, 𝜏 represents an internal action that is not
visible to the outside.

We use the bisimulation definition in the literature [10].

Definition 3 (bisimulation equivalent). Let LTS𝑖 = (𝑄𝑖, Σ𝑖,
Δ𝑖, 𝑞𝑖), 𝑖 = 1, 2, be labeled transition systems over the set Σ of
actions. An bisimulation for (LTS1, LTS2) is a binary relation
𝑅 ⊆ 𝑄1 × 𝑄2 such that

(A) for the initial state 𝑞1 and 𝑞2, (𝑞1, 𝑞2) ∈ 𝑅
(B) for any (𝑠1, 𝑠2) ∈ 𝑅 it holds that

(1) if 𝑠1
𝑎
󳨀→1𝑠
󸀠
1, then 𝑠2

𝑎
󳨀→2𝑠
󸀠
2 with (𝑠

󸀠
1, 𝑠
󸀠
2,) ∈ 𝑅 for some 𝑠󸀠2 ∈

𝑄2

(2) if 𝑠2
𝑎
󳨀→2𝑠
󸀠
2, then 𝑠1

𝑎
󳨀→1𝑠
󸀠
1 with (𝑠

󸀠
1, 𝑠
󸀠
2,) ∈ 𝑅 for some 𝑠󸀠1 ∈

𝑄1

LTS1 and LTS2 are bisimulation equivalent (or bisimilar),
denoted as LTS1 ∼ LTS2, if there exists an bisimulation 𝑅
for (LTS1, LTS2).The bisimulation equivalence relationship is
transmitted, i.e., LTS1 ∼ LTS2 ∧ LTS2 ∼ LTS3 󳨐⇒ LTS1 ∼
LTS3.

We collectively refer to component LTS and control flow
LTS as “atomic LTS.” The state of each “atomic LTS” is the
state of a single variable, not the composition of other LTSs.
Therefore, a system’s LTS is a composition of multiple atomic
LTSs:

LTS (system) = ‖𝑛𝑖=1AtomicLTS𝑖, (4)

where “‖” is the LTS composition operator, 𝑖 is the sequence
number of the atomic LTS, and 𝑛 is the total number of atomic
LTSs.

The proof process is as follows.
(1) We first establish an “atomic iUML-B state machine”

based on the atomic LTS 𝐴𝑡𝑜𝑚𝑖𝑐𝐿𝑇𝑆 = ⟨𝑄, Σ, Δ, 𝑞⟩. The
construction process of atomic iUML-B state machine is as
follows.

(a) An “atomic iUML-B state machine” is defined as
𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑡𝑚 = ⟨𝑁𝑜𝑑𝑒, 𝐸, 𝐸𝑑𝑔𝑒, 𝐼𝑛𝑖𝑡𝑁𝑜𝑑𝑒⟩, where 𝑁𝑜𝑑𝑒 rep-
resents a set of nodes in the iUML-B state machine; 𝐸 repre-
sents the set of events that linked on the iUML-B state
machine’s edge.𝐸𝑑𝑔𝑒 ⊆ 𝑁𝑜𝑑𝑒×𝐸×𝑁𝑜𝑑𝑒 represents the set of
edges in the iUML-B state machine; InitNode represents the
initial node of the iUML-B state machine, which is the target
node of the edge that is linked to the Initialization event.

(b) In the process of establishing the atomic iUML-B state
machine, let𝑁𝑜𝑑𝑒 = 𝑄, 𝐸 = Σ, 𝐸𝑑𝑔𝑒 = Δ, 𝐼𝑛𝑖𝑡𝑁𝑜𝑑𝑒 = 𝑞. For
example, if there is a state 𝑠1 (transition 𝑡) in AtomicLTS, a
node 𝑠1 (edge 𝑒) is also drawn in the corresponding “atomic
iUML-B state machine.”This mapping process is very easy to
operate and we will not explain it further.

(c) Generate the Event-B code for this atomic iUML-B
state machine using the automatic code generation tool of the
Rodin platform.

(2) In the following we prove that the Event-Bmodel gen-
erated byAtomicStm is bisimulation equivalent toAtomicLTS.

We define an Event-B model as 𝑀 = ⟨𝑉, 𝐸V𝑒𝑛𝑡, 𝐺𝑢𝑎𝑟𝑑,
𝐴𝑐𝑡𝑖𝑜𝑛, 𝑉𝑖𝑛𝑖𝑡⟩, where 𝑉 represents variables set of 𝑀, 𝐸V𝑒𝑛𝑡
represents event set of𝑀, 𝐺𝑢𝑎𝑟𝑑 represents guard set of𝑀,
𝐴𝑐𝑡𝑖𝑜𝑛 represents action set of 𝑀, and 𝑉𝑖𝑛𝑖𝑡 represents the
initial value set for each element in the 𝑉. We define the LTS
corresponding to the𝑀 as LTS(𝑀) = (𝑄𝑀, Σ𝑀, Δ𝑀, 𝑞𝑀).

We named an Event-B model generated by AtomicStm
as𝑀𝐴 = ⟨𝑉𝐴, 𝐸V𝑒𝑛𝑡𝐴, 𝐺𝑢𝑎𝑟𝑑𝐴, 𝐴𝑐𝑡𝑖𝑜𝑛𝐴, 𝑉𝑖𝑛𝑖𝑡𝐴⟩. It should be
emphasized that at this time there is only one element V in
𝑉𝐴, and 𝑉𝑖𝑛𝑖𝑡𝐴 is the initial value of V (because an AtomicStm
only describes the change of one variable). 𝐸V𝑒𝑛𝑡𝐴 represents
events that modify the value of V, and 𝐺𝑢𝑎𝑟𝑑𝐴 represents
those guards that contain V in the when clause of an event.
Similarly,𝐴𝑐𝑡𝑖𝑜𝑛𝐴 represents actions that modify the value of
V. We assume that the type of V is 𝐷, that is, V ∈ 𝐷; then the
state space of V is𝐷.

Since 𝑀𝐴’s code is generated by AtomicStm, we have
LTS(𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑡𝑚) ∼ LTS(𝑀𝐴) = (𝑄𝑀𝐴, Σ𝑀𝐴, Δ𝑀𝐴, 𝑞𝑀𝐴). If
an Event-B model𝑀 is composed of multiple atomic iUML-
B states machine generated together, then we have

LTS (𝑀) = ‖𝑛𝑖=1LTS (𝑀𝐴𝑖) , (5)

where 𝑖 is the sequence number of the atomic iUML-B state
machine, and 𝑛 is the total number of atomic iUML-B state
machines.

We explain the equivalence between AtomicLTS and𝑀𝐴
according to Rodin’s rules for generating Event-B code from
the iUML-B state machine.

(a) First, Rodin will generate a variable based on one
AtomicStm and automatically generate a SET which contains
all possible values of this variable. For example, anAtomicStm
named “node” which contains 𝑛 nodes (e.g., 𝑠1, 𝑠2, . . . , 𝑠𝑛) will
generate

partition (Node, {𝑠1} , {𝑠2} , . . . , {𝑠𝑛}) (6)

which means 𝑛𝑜𝑑𝑒 ∈ 𝑁𝑜𝑑𝑒. As we mentioned in (1) (b),
Node = 𝑄. Therefore, the state space 𝐷 of variable “node”
of Event-B model𝑀𝐴 is equal to 𝑄, and then 𝑄𝑀𝐴 = 𝑄.

(b) Secondly, Rodin generates the following code based
on the edge that links the Initialization event:

INITIALISATIONŠBEGIN node = 𝑠1 END (7)

Since 𝑠1 = 𝑞 (in the construction process (1) (b)), we have
𝑉𝑖𝑛𝑖𝑡 = 𝑞, and then 𝑞𝑀𝐴 = 𝑞.

(c) Rodin will generate an event named “event 𝑖” in the
Event-B model 𝑀𝐴 according to the event “event 𝑖” which
has been linked on the edge of iUML-B state machine, and
will generate the following code according to each edge from
the node 𝑠𝑖 to 𝑠𝑗 (where 𝑠𝑖 and 𝑠𝑗 are the node name):

event 𝑖Šwhen node = 𝑠𝑖 then node fl 𝑠𝑗 (8)

Scientific Programming 5

Therefore, for a transition 𝑠𝑖
𝑎
󳨀→ 𝑠𝑗 in AtomicLTS, there will be

a corresponding transition 𝑠𝑖
event 𝑖
󳨀󳨀󳨀󳨀󳨀→ 𝑠𝑗 in LTS(𝑀𝐴). At the

same time, for each action 𝑎 in AtomicLTS, there will be an
event event 𝑖 corresponding to it in the Event-B model𝑀𝐴.
So we have Δ𝑀𝐴 = Δ.

(d) The reverse mapping process from𝑀𝐴 to AtomicLTS
is similar, and we will not repeat them here.

(e) We can define a mapping relationship 𝑅 so that
AtomicLTS and LTS (𝑀𝐴) comply with the requirement of
bisimulation equivalence. In fact, this 𝑅 can be a renamed
function, such as 𝑅 (Sender) = sender; now we get

𝐿𝑇𝑆 (𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑡𝑚) ∼ 𝐿𝑇𝑆 (𝑀𝐴) ∼ 𝐴𝑡𝑜𝑚𝑖𝑐𝐿𝑇𝑆 (9)

(3) Finally, we use the theorem in the literature [10].

Lemma 4 (congruence w.r.t LTS composition). For labeled
transition systems LTS1 and LTS󸀠1 over Σ1, LTS2 and LTS

󸀠
2 over

Σ2, and𝐻 ⊆ Σ1 ∩ Σ2, it holds that

LTS1 ∼ LTS󸀠1,

LTS2 ∼ LTS󸀠2

implies LTS1‖𝐻LTS
󸀠
1 ∼ LTS2‖𝐻LTS

󸀠
2

(10)

According to expression (4) and expression (5) and
Lemma 4, we have

‖𝑛𝑖=1LTS (𝑀𝐴𝑖) ∼ ‖
𝑛
𝑖=1AtomicLTS𝑖 (11)

That is, the LTSmodel LTS (System) of the system and the
LTS model 𝐿𝑇𝑆(𝑀) of Event-B model obtained according to
the mapping rule of (1) are bisimulation equivalent:

LTS (𝑀) ∼ LTS (system) . (12)

3. BRP Case Study

In this section, we take Abrial’s BRP protocol model in
Chapter 6 of [1] as an example. We use our proposed method
to establish the system component model and control flow
model step by step and finally get a BRP protocol control flow
model in Event-B.

3.1. System Overview. The purpose of BRP is to transfer
sequential files from the sender to the receiver. After the
transfer is complete, the recipient’s file should be equal
to the sender’s original file. The sender should split the
files that need to be sent into a series of data blocks and
send the data blocks to the receiver in order. Once the
receiver receives the data item, it stores it in its own file
and sends an acknowledgement message to the sender on
an acknowledgement channel. The sender will send the next
data item after receiving this acknowledgement message.The
principle of the BRP protocol is shown in Figure 4.

At the beginning of modeling process, there are only two
components in the system, Sender and Receiver. During the
refinement process, we add the new event and component
LTS to model; then we add control flow LTS according to the
flow requirement.Wepresent the events and requirements for
each level of refinement, as shown in Table 1.

Data channelSND_snd RCV_rcv

Acknowledgment
channelSND_rcv RCV_snd

Figure 4: The principle of bounded retransmission protocol.

3.2. Modeling Process. In the modeling process, we represent
component LTS with SN, RN (𝑁 is the refinement level)
and represent the flow requirement with FlowM (𝑀 is
the requirement number). The iUML-B component state
machine is represented with SNDMachineN, RCVMachineN
(𝑁 is the refinement level), and the iUML-B control flow
state machine is represented with FlowM (𝑀 is the flow
requirement number). We use finite state process (FSP) [9]
to represent the LTS and use LTSA tool to simulate and verify
the LTS.

FSP (finite state processes) is a process algebra that can
describe LTS. The FSP operators used in this paper are as
follows.

(1) Order: “->”, indicating the order of the action, such as
𝑥 -> 𝑃means that the action𝑥 is executed first, and the action
sequence described by the process 𝑃 is executed.

(2) Select: “|”, that is, the choice of different execution
actions, such as 𝑥 -> 𝑃 | 𝑦 -> 𝑄 said: the first action 𝑥, and
then follow the description of𝑃; or the first action𝑦, and then
follow the description of 𝑄.

(3) Recursion: the behavior of a process may be defined
in terms of itself, in order to express repetition.

(4) End state: “END”: describes a process that has termi-
nated successfully and cannot perform any more actions.

(5) Condition control: “when”, that in given conditions
to perform a certain action, such as when 𝐵 𝑥-> 𝑃 | 𝑦-> 𝑄
said: if the condition 𝐵 is established, in addition to 𝑦 -> 𝑄
can choose to perform action 𝑥 and then execute the action
sequence of process 𝑃; if 𝐵 is not established, only the action
𝑦 can be executed, and then the action sequence of process𝑄
is executed. Here, 𝐵 is a state predicate.

(6) Parallel composition: “‖”, representing a composition
of multiple simple processes, such as 𝑃 ‖ 𝑄 means that
the sequence of actions in processes 𝑃 and 𝑄 is executed
concurrently where 𝑃 and 𝑄 are also called subprocesses.

System Abstraction Model. The system abstract model in-
cludes only three events, which represent the sender’s action
(SND progress), the receiver’s action (RCV progress), and the
communication completion event (brp), respectively. We
build the sender and the receiver’s component LTS according
to Com0.1 and Com0.2, as shown in Figures 5(a) and 5(b).
The corresponding FSP is expressed as (in FSP, action names
cannot start with uppercase letters, so we can only express
actions with lowercase letters. The mapping rule is: snd XXX
action in FSP corresponds to event SND XXX in Event-B):

S0 = (snd progress-> BRP), BRP = (brp-> END).

R0 = (rcv progress-> BRP), BRP = (brp-> END).

6 Scientific Programming

Ta
bl
e
1:
Sy
ste

m
re
qu

ire
m
en
ts.

In
tro

du
ce
d
Ev

en
ts

Sy
ste

m
Re

qu
ire

m
en
ts.

Le
ve
l0

SN
D

pr
og
re
ss
,

RC
V

pr
og
re
ss
,

br
p

Co
m
po
ne
nt

Re
qu
ire

m
en
ts

C
om

0.
1:
Th

ee
ve
nt

br
p
ca
nn

ot
oc
cu
ru

nl
es
st
he

se
nd

er
ha
sc

om
pl
et
ed

th
ee

ve
nt

SN
D

pr
og
re
ss
.

C
om

0.
2:
Th

ee
ve
nt

br
p
ca
nn

ot
oc
cu
ru

nl
es
st
he

ev
en
tR

CV
pr
og
re
ss

ha
sb

ee
n
co
m
pl
et
ed
.

Fl
ow

Re
qu
ire

m
en
ts

Fl
ow

0.
1:
SN

D
pr
og
re
ss
,a
nd

RC
V

pr
og
re
ss
ca
n
oc
cu
ri
nt
er
le
av
in
g
in

ar
bi
tr
ar
y.

Fl
ow

0.
2:
Th

ee
ve
nt

br
p
ca
nn

ot
oc
cu
ru

nl
es
se

ve
nt
sS

N
D

pr
og
re
ss
an
d

RC
V

pr
og
re
ss
ha
ve

bo
th

co
m
pl
et
ed
.

Le
ve
l1

SN
D

su
cc
es
s,

SN
D

fa
ilu

re
,

RC
V

su
cc
es
s,

RC
V

fa
ilu

re
.

Co
m
po
ne
nt

Re
qu
ire

m
en
ts

C
om

1.1
:A

fte
rt
he

se
nd

er
is
in
iti
al
iz
ed
,i
tm

ay
se
nd

su
cc
es
sfu

lly
or

m
ay

fa
il
to

se
nd

,a
nd

th
en

th
eb

rp
ev
en
to

cc
ur
s.

C
om

1.2
:A

fte
rt
he

re
ce
iv
er

is
in
iti
al
iz
ed
,i
tm

ay
be

su
cc
es
sfu

lt
o
re
ce
iv
e

or
fa
il
to

re
ce
iv
e,
an
d
th
en

th
eb

rp
ev
en
to

cc
ur
s.

Fl
ow

Re
qu
ire

m
en
ts

Fl
ow

1.1
:W

he
n
th
es

ys
te
m

is
in
iti
al
iz
ed
,o
nl
y
ev
en
tS
N
D

fa
ilu

re
or

RC
V

su
cc
es
sc

an
oc
cu
r.

Fl
ow

1.2
:S
en
de
rf
ai
le
d
ev
en
tw

ill
ca
us
et
he

re
ce
iv
er

to
fa
il.

Fl
ow

1.3
:R

ec
ei
ve
rs
uc
ce
ed

ev
en
tw

ill
ca
us
et
he

se
nd

er
to

su
cc
ee
d.

Le
ve
l2

RC
V

rc
v
cu
rr
en
td

at
a

Co
m
po
ne
nt

Re
qu
ire

m
en
ts

C
om

2.
1:
If
th
er

ec
ei
ve
d
da
ta
is
no

tt
he

la
st
da
ta
,t
he

ev
en
t

RC
V

cu
rr
en
td

at
ao

cc
ur
s.
If
th
er

ec
ei
ve
d
da
ta
is
th
el
as
td

at
a,
th
e

ev
en
tR

CV
su
cc
es
so

cc
ur
s.

Le
ve
l3

SN
D

sn
d
da
ta
,

SN
D

tim
eo
ut
,

SN
D

rc
v
cu
rr

ac
k

Co
m
po
ne
nt

Re
qu
ire

m
en
ts

C
om

3.
1:
Th

ee
ve
nt

SN
D

sn
d
da
ta
oc
cu
rs
if
th
em

es
sa
ge

to
be

se
nt

is
no

tt
he

la
st
m
es
sa
ge
.

C
om

3.2
:I
ft
he

m
es
sa
ge

to
be

se
nt

is
th
el
as
tm

es
sa
ge
,t
he

ev
en
t

SN
D

su
cc
es
so

cc
ur
s.

C
om

3.
3:
Th

es
en
de
rm

ay
re
ce
iv
ea

n
ac
kn

ow
le
dg
em

en
tm

es
sa
ge

on
ly

aft
er

th
ed

at
ah

as
be
en

se
nt
.

C
om

3.
4:
A
fte
rs
en
di
ng

th
ed

at
a,
th
es

en
de
rm

ay
oc
cu
ra

tim
eo

ut
ev
en
tb

ec
au
se

th
ea

ck
no

w
le
dg

m
en
tm

es
sa
ge

ha
sn

ot
be
en

re
ce
iv
ed
.

C
om

3.
5:
Th

es
en
de
rw

ill
se
nd

th
en

ex
td

at
aa

fte
rr
ec
ei
vi
ng

th
e

ac
kn

ow
le
dg
m
en
tm

es
sa
ge
.

C
om

3.
6:
Th

es
en
de
rw

ill
se
nd

th
ec

ur
re
nt

da
ta
ag
ai
n
aft

er
at
im

eo
ut

ev
en
to

cc
ur
s.

Fl
ow

Re
qu
ire

m
en
ts

Fl
ow

3.
1:
Th

er
ec
ei
ve
rm

ay
ac
ce
pt

th
ec

ur
re
nt

da
ta
on

ly
aft

er
th
e

se
nd

er
ha
ss
en
tt
he

da
ta
.

Fl
ow

3.
2:
A
fte
rt
he

se
nd

er
se
nd

st
he

da
ta
,t
he

ev
en
tR

CV
su
cc
es
sm

ay
oc
cu
r(
th
at
is,

ac
ce
pt

th
el
as
td

at
a)
.

Scientific Programming 7

s=s_working

snd_progress
brp

s=s_result s=s_NULL

(a) LTS S0

r=r_working

rcv_progress
brp

r=r_result r=r_NULL

(b) LTS R0

snd_progress

rcv_progress

rcv_progress

snd_progress

brp

(s_working,
r_working)

(s_result,
r_working)

(s_working,
r_result)

(s_result,
r_result)

(s_NULL,
r_NULL)

Tuples:(s, r)

(c) LTS Sys0

Figure 5: The LTS of the abstract model and the composition of the component LTS.

(a) SNDMachine0 (b) RCVMachine0

Figure 6: System abstract model in iUML-B.

s=s_working

s=Sfail s=s_NULL

s=Ssucc

snd_failure
snd_success

brp

brp

(a) LTS S1

r=r_working

r=Rfail r=r_NULL

r=Rsucc

rcv_failure
rcv_success

brp

brp

(b) LTS R1

rcv_success snd_success

flow1=f1_s1

flow1=f1_s2

(c) LTS Flow1

snd_fail rcv_fail

flow2=f2_s1

flow2=f2_s2

(d) LTS Flow2

Figure 7: The component LTSs and flow LTSs of the first refinement model.

We found that the composition of the sender component LTS
and the receiver component LTS was able to meet the flow
requirements of Flow 0.1 and Flow 0.2, so we did not need to
add any control flow LTS. We get the system LTS of abstract
model using LTS composition; as Figure 5(c) shown, the FSP
expression is

‖ Sys0 = (S0 ‖ R0).

We map the Level0 LTS model onto the iUML-B state
machine and get the two state machines as shown in Figure 6.

First Refinement. For the introduced events of the first
refinement, we first add them to the two component LTS
according to Com1.1 and Com1.2, as shown in Figures 7(a)
and 7(b). The FSP code is

R1 = (rcv success->Rsucc | rcv failure->Rfail), Rsucc =
(brp-> END), Rfail = (brp-> END).
S1 = (snd success->Ssucc | snd failure->Sfail), Ssucc =
(brp-> END), Sfail = (brp-> END).

Flow1.2 and Flow1.3 constrain the enable relationship
between the sender and the receiver in the first refinement,
while Flow1.1 constrains which event occurs first when
the system is initialized. Combined with these three flow
requirements, we get the control flow LTS as Figures 7(c) and
7(d) show. The FSP code is

Flow1 = (rcv success->snd success->Flow1).
Flow2 = (snd failure->rcv failure->Flow2).

It should be noted that LTS Flow1 not only restricts that a
sender’s failure will cause a receiver’s failure, but also restricts
that when the system is initialized, only the event snd failure
may occur. If we put rcv failure before the event snd failure in
LTS Flow1, this LTS will violate the flow requirement. We get
the system-level LTS of Level1 as shown in Figure 8, and its
FSP expression is

‖ Sys1 = (S1 ‖ R1 ‖ Flow1 ‖ Flow2).
We map the LTS models of Level1 to the iUML-B state
machine and get the four statemachines as shown in Figure 9,

8 Scientific Programming

Tuples:(s,r,flow1,flow2)snd_failure

rcv_success
snd_success

brp

brp

brp

rcv_success

snd_failure
(s_working,
r_working,

f1_s1,
f2_s1)

(s_working,
Rsucc,
f1_s2,
f2_s1)

LTS Sys1

(Sfail,
Rsucc,
f1_s2,
f2_s2)

bbb

(s_NULL,
r_NULL,

f1_s1,
f2_s1)

(Ssucc,
Rsucc,
f1_s1,
f2_s1)

(Sfail,
r_working,

f1_s1,
f2_s2)

(Sfail,
Rfail,
f1_s1,
f2_s1)

rcv_failure

Figure 8: The system LTS of first refinement.

(a) SNDMachine1 (b) RCVMachine1

(c) Flow1 state machine (d) Flow2 state machine

Figure 9: iUML-B state machines of first refinement.

(a) RCVMachine2

r=r_working

r=Rfail r=r_NULL

r=Rsucc

rcv_failure
rcv_success

brp

brp

rcv_current_data

(b) LTS R2

Figure 10: The iUML-B state machine RCVMachine2 and LTS R2.

where SNDMachine1 and RCVMachine1 are the component
state machines of the sender and receiver, respectively, and
Flow1 and Flow2 correspond to LTS Flow1 and LTS Flow2,
respectively.

Second Refinement. The second level refinement only intro-
duces one event rcv current data, which does not involve the
flow requirement associated with the sender, so we do not
need to modify the sender component but only need to add
event rcv current data to the receiver’s component LTS, as
Figure 10(b) shows. The FSP code is

const N = 2
range T = 0⋅ ⋅ ⋅N
𝑅2 = 𝑅2 [0],
R2 [r: T] = (when (r + 1 <N) rcv current data [r] -> R2
[r + 1]

| when (r + 1 == N) rcv success->Rsucc

| rcv failure->Rfail),

Rsucc = (brp-> END),

Rfail = (brp-> END).

In the above codes, we introduce the message counter
𝑟 of the receiver which represents the number of messages
currently received. The constant 𝑁 represents the total
number of messages.

Wemap Level2’s LTSmodel to the iUML-B state machine
and get the new receiver state machine as shown in Fig-
ure 10(a).

In addition, we find that 𝑟 is a newly introduced variable,
so we must model its changes using a new atomic LTS. We
introduce a new atomic LTS RCV QUEUE to express the
change of 𝑟:

Scientific Programming 9

(a) Rcv queue state machine

rcv_queue<n rcv_queue=n
rcv_success

rcv_current_data

rcv_queue=0

rcv_current_data

(b) LTS Rcv queue

Figure 11: The LTS and the corresponding iUML-B state machine of RCV QUEUE.

Tuples : (s,r,flow1,flow2,rcv_queue)

(s_working,
r_working,

f1_s1,
f2_s1,

0)

(Sfail,
r_working,

f1_s1,
f2_s2,

0)

(Sfail,
Rfail,
f1_s1,
f2_s1,

0)

(s_NULL,
r_NULL,

f1_s1,
f2_s1,

0)

(Sfail,
r_working,

f1_s1,
f2_s2,

1)

(Sfail,
Rfail,
f1_s1,
f2_s1,

1)

(Sfail,
Rsucc,
f1_s2,
f2_s2,

2)

(s_working,
r_working,

f1_s1,
f2_s1,

1)

(s_working,
Ssucc,
f1_s2,
f2_s1,

2)

(Ssucc,
Rsucc,
f1_s1,
f2_s1,

2)

snd_failure rcv_failure brp

rcv_current_data

rcv_failure
rcv_success rcv_success snd_success

rcv_current_data

brp
brp

brp

snd_failure
snd_failureLTS Sys2

Figure 12: The system LTS of second refinement.

RCV QUEUE = RCV QUEUE [0][0],
RCV QUEUE [s:T][r:T] = (when (r+1<N)
rcv current data ->RCV QUEUE [s][r+1]
|when (r+1==N)rcv success->RCV QUEUE [s][r+1]).

The LTS and the corresponding iUML-B state machine of
RCV QUEUE are shown in Figure 11.

This system-level LTS of level2 is shown in Figure 12; the
FSP expression is

‖ Sys2 = (S2 ‖ R2 ‖ Flow1 ‖ Flow2 ‖ RCV QUEUE),

where S2 = S1.
At this level of refinement, there are no changes in the

sender’s LTS and control flow LTS, so we do not need to
modify the corresponding iUML-B state machine.

Due to space limitations, we omitted the description of
LTS model and iUML-B state machine model of the third
layer refinement.

3.3. Property Verification of the Event-B Model. We use the
iUML-B state machine to generate the BRP protocol control
flowmodel in Event-B.These automatically generated control
flow models have covered all the control variables of the
fourth layer of Abiral’s BRP model. Thanks for iUML-B, we
can refine the original component state machine and the flow
state machine by adding new substates in the original state
in the refinement of each layer and preserve the consistency
of the Event-B model by refinement checks to ensure that
concrete machine is the effective refinement of abstract
machine.

As we proved in Section 2.3, the Event-B model we
constructed is bisimulation equivalent to the original LTS

model. Therefore, we can verify the properties of the Event-B
model by verifying the properties of the original LTS model.
We formalized the requirements of the BRP system of Table 1
using linear temporal logic (LTL) formulate; some of them
are shown in Table 2. In Table 2, the symbol “◻”, “U”, and
“�” represent “always”, “until”, and “eventually” in linear
temporal logic, respectively, while the symbols “→”, “¬” and
“∧” represent “implication”, “negative”, and “conjunction” in
proposition logic, respectively.

We verified these properties with the help of the LTSA
tool and the results show that the behavior of ourmodelmeets
the requirements in Table 1.

4. Discussion

There are four types of variables in Event-B model: Boolean
variables (such as 𝑠 ∈ {TRUE, FALSE}), variables with a finite
number of states (such as 𝑠 ∈ {𝑠1, 𝑠2, . . . , 𝑠𝑛}), data variables
such as 𝑎 ∈ 𝑁 or 𝑎 ∈ 𝑍), and collection-type variables (e.g.,
𝑔 ⊆ 𝐷). As we can see, it is very easy to model the first two
kinds of control variables using LTS. For data variables whose
state space is an infinite set, we can use the followingmethods
to model its changes: first, we bound the range of variable a
using its lower bound and upper bound.That is, let 𝑎 ∈ [lower
bound, upper bound]; second, we divide the state space of a
into three subsets according to the equivalence class: {𝑎 =
lower bound}, {lower bound < 𝑎 < upper bound}, and
{𝑎 = upper bound}. In this way, we can convert the infinite
state space of data variable into a finite number of states and
further establish the LTS model of this data variable. In fact,
we have used this approach when we modeled Rcv queue
changes in the second level of refinement. However, the above

10 Scientific Programming

Table 2: The LTL formulate of basic requirements.

Requirement number LTL formulate
Com0.1, Com0.2, Flow0.2 ◻(¬brp U (snd progress∧rcv progress))
Flow1.2 ◻(snd failure→ �rcv failure)
Flow1.3 ◻(rcv success→ �snd success)

Table 3: Comparison of major control flow modeling methods.

Method Ability
Formal behavior semantics Way of expression Convertible to LTS

ERS No Tree structure No
Flow Method No Events and relationships No
CSP‖B Yes Process algebra Yes
LTS+iUML-B Yes States and transitions Yes

method only works when we already know the range of data
variable (such as the BRPmodel in this paper). For those data
variables that we cannot determine their boundary, we need
further research to model them. In addition, we still have not
found an effective way to model changes of collection-type
variables.

5. Related Work

There has been some research on explicitly simulating the
control flow of the Event-B model. Fathabadi et al. [11]
proposed a method named “Event Refinement Structure”
(ERS) method which uses a tree structure based on the
Jackson structure diagram (JSD) to express the control flow
of Event-B model. However, one cannot establish the equiv-
alence relationship between the tree structure of ERS and
LTS. Therefore, it is also impossible to verify the behavioral
properties of the ERS method. In contrast, our work uses the
LTS and iUML-B statemachine to visually express the control
flow of the Event-B model and can verify its behavioral
properties easily. Iliasov [12] proposed a method named flow
languagewhich uses ena, dis, andfis to express the order of the
events. However, the modeling elements of the flow method
are the events and the relationships between events, rather
than states and transitions of the state transition system.
This makes flow language difficult to map onto LTS semantic
model. Compared with the flow method, the iUML-B state
machine uses the state-based style to express the control
flow. This makes the control flow easier for engineers to
understand.

The combination of CSP and Classic B is also studied in
[13, 14]. For the explicit control flowmodeling of the Event-B,
CSP‖B method [15] proposed an integrated formal method
that combines Event-B as a state-based formal system and
CSP as a control-based formal system to model the control
flow in Event-B. Our approach is inspired by the CSP ‖ B
method, but we use FSP tomodel the control flow of Event-B.
Compared to theCSP ‖ Bmethod,we systematically consider
all the control variables that may affect the control flow of
the Event-B machine. This makes our results of behavioral
properties verification more reliable than CSP ‖ B. We

compare our method (named “LTS+iUML-B”) with other
methods in this field, as shown in Table 3.

6. Conclusion

The Event-B model has some flaw in expressing the model’s
control flow. In this paper, we use LTS to express Event-B
control flow, which makes the control flow of Event-B model
become visible and makes the verification of Event-B model’s
behavior properties easier. We model each variable in the
Event-B model that affects the model execution process as a
single “atomic LTS” and use the LTS composition operation
to obtain the control flowmodel of the entire system. By using
our method, the modeler can easily observe and analyze the
behavior of the system with the help of the LTSA tool. At the
same time, we map the LTS model onto the Event-B model
and prove the bisimulation equivalence between the original
LTSmodel and the correspondingEvent-Bmodel. In thisway,
the modeler can verify the behavior of the Event-B model by
verifying the properties of the original LTS model.

At present, our modeling method is only suitable for
Event-B’s Boolean variables, bounded state variables, and
certain data variables. In the future, we will study how to use
LTS to model the change of the collection-type variables in
the Event-B model.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] E. Boiten, Modeling in Event-B: System and Software Engineer-
ing, Cambridge University Press, 2010.

[2] J. R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge University Press, Cambridge, UK, 2005.

[3] R. J. R. Back and R. Kurki-Suonio, “Distributed Cooperation
with Action Systems,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 10, no. 4, pp. 513–554,
1988.

Scientific Programming 11

[4] J. Chen, C. Du, and P. Han, “Scheduling independent partitions
in integrated modular avionics systems,” PLoS ONE, vol. 11, no.
12, Article ID e0168064, 2016.

[5] J. Chen, C. Du, F. Xie, and Z. Yang, “Schedulability analysis of
non-preemptive strictly periodic tasks in multi-core real-time
systems,” Real-Time Systems, vol. 52, no. 3, pp. 239–271, 2016.

[6] M. Y. Said, M. Butler, and C. Snook, “A method of refinement
in UML-B,” Software and Systems Modeling, vol. 14, no. 4, pp.
1557–1580, 2015.

[7] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, “Vali-
dating the requirements and design of a hemodialysis machine
using iUML-B, BMotion studio, and co-simulation,” Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics):
Preface, vol. 9675, pp. 360–375, 2016.

[8] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin, “Rodin: An open toolset for modelling and
reasoning in Event-B,” International Journal on Software Tools
for Technology Transfer, vol. 12, no. 6, pp. 447–466, 2010.

[9] J. Magee and J. Kramer, Concurrency: state models & Java
programs, John Wiley & Sons, Inc, 2000.

[10] C. Baier and J.-P. Katoen, Principles of model checking, MIT
Press, Cambridge, MA, 2008.

[11] A. S. Fathabadi, M. Butler, and A. Rezazadeh, “Language and
tool support for event refinement structures in Event-B,” Formal
Aspects of Computing, vol. 27, no. 3, pp. 499–523, 2015.

[12] A. Iliasov, “Use Case Scenarios as Verification Conditions:
Event-B/Flow Approach,” in Software Engineering for Resilient
Systems, vol. 6968 of Lecture Notes in Computer Science, pp. 9–
23, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] M. Butler, “csp2B: A practical approach to combining CSP and
B,” Formal Aspects of Computing, vol. 12, no. 3, pp. 182–198, 2000.

[14] S. Schneider and H. Treharne, “Verifying controlled compo-
nents,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics): Preface, vol. 2999, pp. 87–107, 2004.

[15] S. Schneider, H. Treharne, and H. Wehrheim, “A CSP Account
of Event-B Refinement,” Electronic Proceedings in Theoretical
Computer Science, vol. 55, pp. 139–154, 2011.

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

