Hindawi

Scientific Programming

Volume 2018, Article ID 8765186, 11 pages
https://doi.org/10.1155/2018/8765186

Research Article

Hindawi

A LTS Approach to Control in Event-B

Han Peng®,' Chenglie Du,' Lei Rao," and Fu Chen®

! Northwestern Polytechnical University, Xian, China

*Xian Aeronautics Computing Technique Research Institute, Xian, China

Correspondence should be addressed to Han Peng; hansbeng2016@gmail.com

Received 1 November 2017; Revised 19 March 2018; Accepted 3 April 2018; Published 22 May 2018

Academic Editor: Emiliano Tramontana

Copyright © 2018 Han Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Event-B, people need to use control variables to constrain the order of events, which is a time-consuming and error-prone
process. This paper presents a method of combining labeled transition system and iUML-B to complete the behavior modeling
of system, which is more convenient and practical for engineers who are accustomed to using the automaton to build a system
behavior model. First, we use labeled transition system to establish the behavior model of the system. Then we simulate and verify
the event traces of the labeled transition system behavior model. Finally, we convert labeled transition system model into iUML-B
state machine and use it to generate the corresponding control flow model. We use Abrial’s bounded retransmission protocol to
demonstrate the practicality of our approach. The simulation results show that the system behavior model generated by the iUML-B

state machine has the same event trace as the corresponding labeled transition system model.

1. Introduction

Event-B [1] is a formal method that evolved from B method
[2] and action system [3]. It uses simple symbols and struc-
tures to model the system, and it is well suited for different
areas including distributed systems [4]. The Event-B method
itself is very good at event refinement and data-oriented
refinement, but it lacks formal semantics of behavior, and
the control flow of Event-B machine is hidden in the state
variables, which can enable the event and can be modified by
actions. As a result, Event-B machine is not as intuitive as the
automaton-based approach.

From the designer’s point of view, to constrain the order
of events using control variables is a time-consuming and
error-prone process. People have to carefully consider the
impact of each variable on the event. Control variables and
other variables in Event-B machine entangled together, which
makes the design process more complex. From the analyst’s
point of view, it needs a lot of effort to understand the control
flow of system [5]. It is very inconvenient for people who want
to understand the overall behavior and verify properties of
the system and find the right solution.

To summarize, the problem in Event-B control flow is
as follows: first, the control flow part and computation part
of Event-B machine are entangled, which makes design and

analysis more difficult; second, the control flow part is not
visible, which makes it impossible to model and verify the
control flow separately.

In order to solve these two problems, this paper presents
a method of modeling, analyzing the control flow of Event-
B machines using labeled transition system (LTS). The basic
idea is to divide the model into control part and the computa-
tion part and further divide the control part into component
control flow and interaction control flow. The procedure of
our approach is as follows: first, we use LTS to model the com-
ponent behavior and interaction behavior of the system so
that we can visualize the control flow of each component and
the entire system (we omit the computation part of the Event-
B machine and do not consider it in the control flow model);
second, we simulate system behavior using this formal model
and get the event trace we need; third, we convert the
component behavior LTS and the interaction behavior LTS
into the iUML-B component state machine and the control
flow state machine, respectively. Finally, we use these iUML-
B state machines to generate Event-B machines. We proved
in Section 2.3 that the Event-B machine generated using the
above steps will only preserve those event traces that we need.

The remainder of this paper is organized as follows.
Section 2 summarizes the issues related to Event-B control
flow modeling, as well as the general approach we propose.

http://orcid.org/0000-0001-8400-4663
https://doi.org/10.1155/2018/8765186

Scientific Programming

SND N RCV_success =
success =
ST. AT_US SND_snd_data 2 STATUS
ordinar STATUS ordinary
REFINEY s ordinary REFINES
SND_success WHEN RCV_success
WHEN grdl : s_st = working WHEN
dl:s st=worki grd2: w=TRUE grdl : r_st = working
grdl:s st=working | LTHEN ard2:re1=n
grd2:w=FALSE <& S d3:re
d3:s+1=n act2rw = FALSE, __------ r-8rds>:r=s

grodesy 2= END,/ \ . grdéﬁ‘w = FALSE
actl:s st success 7 \\\ N actl : r_st == success

T /1 - < act2:r=r+1
END / \ o .| | END

/ RCVﬁcurrentj\data B \
,/ STATUS \ \
/ ordinary \ \SND_rcv_current_ack E
7 \
/ REFINES | STATUS
SND_time_out_currer}t E RCV_ current_de‘;ta or&\nary
/
STATUS Y WHEN .‘ WHEN
. | : = i
ordinary / grdl : r_st = working grdl : g st = working
WHEN / grd2:r+I<n : grd2: w = FALSE
grdl : s_st = worlfing grd3:r=s ; grd3:s+I<n
grd2: w=FALSE grdd : w = FALSE grdd:r=s+1
THEN THEN THEN
actl : w:= TRUE actl:ri=r+ 1 actl : w:= TRUE
END END act2:s=s+1
END

F1GURE 1: The control variables of Event-B machine.

Section 3 uses Abrial's bounded retransmission protocol
to demonstrate the practicality of our approach. Section 4
discusses our approach. Section 5 presents related work and
compares the results of this work with existing work. Finally,
Section 6 concludes the paper and gives some future research
directions.

2. Methodological Approach

2.1. Problem Description. We use Abrial’s bounded retrans-
mission protocol (BRP) model [1] to explain the control
flow problems in Event-B machine. In the fourth refine-
ment model of BRP machine (the example can be found
at http://www.math.pku.edu.cn/teachers/jrabrial/course/
BRPzip), there are multiple control variables that affect the
event order, as Figure 1 shows.

To simplify the problem, we omit the variables that do
not affect the event order of Event-B machine. In Figure 1,
we mark the position of these variables in italics. Now, if we
want to analyze the effect of Boolean variable W on the event
order, we will find that the event SND_snd_data changes the
value of W from TRUE to FALSE, which will affect all the
other events in the graph (we only list events affected by W),
as indicated by the dashed arrows. But this does not mean
that when W is FALSE, the other events will be enabled. In
fact, the occurrence of other events depends on the value of
more control variables, such as s_st and r_st etc. Therefore, in
order to analyze the effect of W on the event order, we have to
put these events together in a graph so that we can understand
the intention of the modeler.

2.2. Control the Event-B Machine Using iUML-B State Ma-
chine. iUML-B [6, 7] is a graphical plug-in of Event-B, which
use “UML like” class diagrams and state machines to describe
the state and behavior of system. The iUML-B’s graphical
model can generate Event-B code directly on the Rodin
platform [8] and automatically embed the generated code
into the context part (set, constant, and axiom) and machine
parts (variables, events, and invariants).

The transform edges in the iUML-B state machine can be
“linked” to the events in the Event-B machine to control the
event order in Event-B machine. The principle is shown in
Figure 2.

For example, if we want to restrict the event order in the
Event-B machine as

<INITIALISATION, SND_snd_data,
RCV_current_data, SND_rcv_current_ack, brp>,

we can first draw the iUML-B state machine shown in
Figure 2; then “link” each transition edge to an event to make
the events in the Event-B machine occur in the order specified
in the iUML-B state machine.

Although the iUML-B state machine can model the con-
trol flow of the Event-B machine, it lacks formal behavioral
semantics. Therefore, we need to use LTS to model and
analyze its behavior.

2.3. Behavior Modeling Strategy and Equivalence Proving. We
present the following Event-B machine behavior modeling
strategy based on the above analysis results:

http://www.math.pku.edu.cn/teachers/jrabrial/course/BRP.zip
http://www.math.pku.edu.cn/teachers/jrabrial/course/BRP.zip

Scientific Programming

o

52

53

. ST
SND_rev_current ack——|

brp
A \
INITIALISATION| [SND_snd_data | RCV_current data |] ! o
i 4 A i |
1 I | | |
] I | | |
/ : : ¥ \
Link Lifk Link Link Link!
/ { | | \
L 1 1 1 1
~ SND_snd_data £ RCV_current_data £ SND_rcv_current_ack £ brp £
INITIALISATION = WHEN WHEN WHEN WHEN
BEGIN THEN THEN THEN THEN
END actl :d = f(s+ 1) actl:r=r+1 act2:s=s+1 | |.. ..
END END END END
FIGURE 2: iUML-B state machine control flow modeling principle.
"""""" Map-—~"""""""" 7
Simulation& Y
Component Component Verification ‘Component
/ Requirements LTS \ 1UM1—113l state \
machine System
Requirement S}:;;m Machine
\ Control Flow / (Event-B)
Flow Control Flow iUMI-B state
Requirements LTS e e
i [}
|

FIGURE 3: Event-B machine behavior modeling strategy.

(1) The system requirements are decomposed into com-
ponent requirements and control flow requirements,
where component requirements represent the con-
straints of the event order of a component itself
and the flow requirements represent the event order
between components.

(2) The behavior LTS of each component, which contains
only the events that occurred in the component
itself and the local variables of the component itself,
is established according to the component require-
ments.

(3) The system control flow LTS, which describes event
order between multiple components, is established
according to the control flow requirements.

(4) The component LTS and control flow LTS are com-
posed to establish the system LTS. Then we can
simulate and analyze the event traces of the system
LTS in the LTSA [9] environment and modify it until
it satisfies our requirements.

(5) A component LTS is mapped onto an iUML-B state
machine (we call it the component state machine). A
system control flow LTS is mapped onto an iUML-B
state machine (we call it the flow state machine), too.

(6) The Event-B machine which meets our requirements
is generated using the component state machine and
flow state machine.

The proposed modeling process is shown in Figure 3.

In order to prove the correctness of our method, we give a
complete proof of bisimulation equivalence between the LTS
system and Event-B model. We first give the definition of LTS
and its composition.

Definition 1 (LTS). Let States represent a universal set of
states, Acts represents a universal action set, and then a LTS
P is defined as a quaternion P = (Q, %, A, q), where

(i) Q ¢ States, representing the state set of P;

(ii) X = aP (P C Acts), representing the action set of P;

(iii) A € QxZxQ, representing the transition relationship
in P; these transitions are labeled with the elements in
%

(iv) g € Q, representing the initial state of P.

We need to use the parallel composition of LTSs to express
the interaction between multiple LTSs. The following gives
the definition of LTS parallel composition.

Definition 2 (parallel composition of LTSs). The parallel
composition of two LTS M = (Q,,Z,,A;,¢q,) and N = (Q,,
5, A5, q,) isexpressedas LTS(M || N) = (Q;xQ,, Z,UX,, A,
(41>9,))> where A is the minimum relation that satisfies the
following constraint:

MM
M|N3M | N

a¢aN 1)

4
a i
N —> N
7 a¢aM (2)
M| N—-M|N'
MSM NSN
a+r, (3)

M|NSM | N

wherea € £, UZX,, 7 represents an internal action that is not
visible to the outside.

We use the bisimulation definition in the literature [10].

Definition 3 (bisimulation equivalent). Let LTSi = (Qi, %,
Ai, gi), i = 1,2, be labeled transition systems over the set X of
actions. An bisimulation for (LTS, LTS,) is a binary relation
R € Q1 x Q2 such that

(A) for the initial state g1 and g2, (q;,4,) € R
(B) for any (s;,s,) € R it holds that

. a1 a1 1 !
(1) ifs,—,s), then s,—,s; with (s}, s;,) € Rforsomes, €

Q2
a a
(2) ifsz—>zs;, then sl—>ls'1 with (s{, s;,) € Rfor some si €

Q1

LTS, and LTS, are bisimulation equivalent (or bisimilar),
denoted as LTS, ~ LTS,, if there exists an bisimulation R
for (LTS, LTS,). The bisimulation equivalence relationship is
transmitted, i.e., LTS, ~ LTS, A LTS, ~ LTS; = LTS, ~
LTS;.

We collectively refer to component LTS and control flow
LTS as “atomic LTS The state of each “atomic LTS” is the
state of a single variable, not the composition of other LTSs.
Therefore, a system’s LTS is a composition of multiple atomic
LTSs:

LTS (system) = ||’ AtomicLTS;, (4)
where “||” is the LTS composition operator, i is the sequence
number of the atomic LTS, and is the total number of atomic
LTSs.

The proof process is as follows.

(1) We first establish an “atomic iUML-B state machine”
based on the atomic LTS AtomicLTS = (Q,%,A,q). The
construction process of atomic iUML-B state machine is as
follows.

(a) An “atomic iUML-B state machine” is defined as
AtomicStm = (Node, E, Edge, InitNode), where Node rep-
resents a set of nodes in the iUML-B state machine; E repre-
sents the set of events that linked on the iUML-B state
machine’s edge. Edge € Nodex Ex Node represents the set of
edges in the iUML-B state machine; InitNode represents the
initial node of the iUML-B state machine, which is the target
node of the edge that is linked to the Initialization event.

(b) In the process of establishing the atomic iUML-B state
machine, let Node = Q, E = X, Edge = A, InitNode = q. For
example, if there is a state s; (transition t) in AtomicLTS, a
node s, (edge e) is also drawn in the corresponding “atomic
iUML-B state machine” This mapping process is very easy to
operate and we will not explain it further.

Scientific Programming

(c) Generate the Event-B code for this atomic iUML-B
state machine using the automatic code generation tool of the
Rodin platform.

(2) In the following we prove that the Event-B model gen-
erated by AtomicStm is bisimulation equivalent to AtomicLT'S.

We define an Event-B model as M = (V, Event, Guard,
Action, V,,;,), where V represents variables set of M, Event
represents event set of M, Guard represents guard set of M,
Action represents action set of M, and V,,;, represents the
initial value set for each element in the V. We define the LTS
corresponding to the M as LTS(M) = (Qup Zan A ar Gar)-

We named an Event-B model generated by AtomicStm
as M, = (Vy, Event o, Guard 4, Action, V;,;,4)- It should be
emphasized that at this time there is only one element v in
V4, and V,,;, 4 is the initial value of v (because an AtomicStm
only describes the change of one variable). Event , represents
events that modify the value of v, and Guard, represents
those guards that contain v in the when clause of an event.
Similarly, Action, represents actions that modify the value of
v. We assume that the type of v is D, that is, v € D; then the
state space of vis D.

Since M’s code is generated by AtomicStm, we have
LTS(AtomicStm) ~ LTS(M4) = (Qpar Zara> A pas Gua)- I
an Event-B model M is composed of multiple atomic iUML-
B states machine generated together, then we have

LTS (M) = |, LTS (M,;), (5)

where i is the sequence number of the atomic iUML-B state
machine, and # is the total number of atomic iUML-B state
machines.

We explain the equivalence between AtomicLTS and M ,
according to Rodin’s rules for generating Event-B code from
the iUML-B state machine.

(a) First, Rodin will generate a variable based on one
AtomicStm and automatically generate a SET which contains
all possible values of this variable. For example, an AfomicStm
named “node” which contains n nodes (e.g., s;, 55, . . ., s,,) will
generate

partition (Node, {s,}, {s,},....{s,}) (6)

which means node € Node. As we mentioned in (1) (b),
Node = Q. Therefore, the state space D of variable “node”
of Event-B model M , is equal to Q, and then Q,;4 = Q.

(b) Secondly, Rodin generates the following code based
on the edge that links the Initialization event:

INITIALISATION £ BEGIN node = s; END (7)

Since s; = g (in the construction process (1) (b)), we have
Vinir = @ and then gy, = q.

(c) Rodin will generate an event named “event_i” in the
Event-B model M, according to the event “event_i” which
has been linked on the edge of iUML-B state machine, and
will generate the following code according to each edge from
the node s; to s; (where s; and s; are the node name):

event_i 2 when node = s; then node = s, (8)

Scientific Programming

Therefore, for a transition s; S j in AtomicLTS, there will be

a corresponding transition s; S s in LTS(M,). At the
same time, for each action a in AtomicLTS, there will be an
event event_i corresponding to it in the Event-B model M ,.
So we have A ;4 = A.

(d) The reverse mapping process from M, to AtomicLTS
is similar, and we will not repeat them here.

(e) We can define a mapping relationship R so that
AtomicLTS and LTS (M ,) comply with the requirement of
bisimulation equivalence. In fact, this R can be a renamed
function, such as R (Sender) = sender; now we get

LTS (AtomicStm) ~ LTS (M) ~ AtomicLTS ~ (9)

(3) Finally, we use the theorem in the literature [10].

Lemma 4 (congruence w.r.t LTS composition). For labeled
transition systems LTS, and LTS, over ¥, LTS, and LTS, over
%,, and H € £, N %,, it holds that

LTS, ~ LTS,
LTS, ~ LTS, (10)

implies LTS, | LTS, ~ LTS,|| LTS,

According to expression (4) and expression (5) and
Lemma 4, we have

I LTS (M,;) ~ I, AtomicLTS; a1

That is, the LTS model LTS (System) of the system and the
LTS model LTS(M) of Event-B model obtained according to
the mapping rule of (1) are bisimulation equivalent:

LTS (M) ~ LTS (system). (12)

3. BRP Case Study

In this section, we take Abrial's BRP protocol model in
Chapter 6 of [1] as an example. We use our proposed method
to establish the system component model and control flow
model step by step and finally get a BRP protocol control flow
model in Event-B.

3.1. System Overview. The purpose of BRP is to transfer
sequential files from the sender to the receiver. After the
transfer is complete, the recipient’s file should be equal
to the sender’s original file. The sender should split the
files that need to be sent into a series of data blocks and
send the data blocks to the receiver in order. Once the
receiver receives the data item, it stores it in its own file
and sends an acknowledgement message to the sender on
an acknowledgement channel. The sender will send the next
data item after receiving this acknowledgement message. The
principle of the BRP protocol is shown in Figure 4.

At the beginning of modeling process, there are only two
components in the system, Sender and Receiver. During the
refinement process, we add the new event and component
LTS to model; then we add control flow LTS according to the
flow requirement. We present the events and requirements for
each level of refinement, as shown in Table 1.

i

«¢—————— RCV_snd

Acknowledgment

-«
SND_rcv channel

FIGURE 4: The principle of bounded retransmission protocol.

3.2. Modeling Process. In the modeling process, we represent
component LTS with SN, RN (N is the refinement level)
and represent the flow requirement with FlowM (M is
the requirement number). The iUML-B component state
machine is represented with SNDMachineN, RCVMachineN
(N is the refinement level), and the iUML-B control flow
state machine is represented with FlowM (M is the flow
requirement number). We use finite state process (FSP) [9]
to represent the LTS and use LTSA tool to simulate and verify
the LTS.

FSP (finite state processes) is a process algebra that can
describe LTS. The FSP operators used in this paper are as
follows.

(1) Order: “->”, indicating the order of the action, such as
x -> P means that the action x is executed first, and the action
sequence described by the process P is executed.

(2) Select: “|”, that is, the choice of different execution
actions, such as x -> P | y -> Q said: the first action x, and
then follow the description of P; or the first action y, and then
follow the description of Q.

(3) Recursion: the behavior of a process may be defined
in terms of itself, in order to express repetition.

(4) End state: “END”: describes a process that has termi-
nated successfully and cannot perform any more actions.

(5) Condition control: “when”, that in given conditions
to perform a certain action, such as when B x-> P | y-> Q
said: if the condition B is established, in addition to y -> Q
can choose to perform action x and then execute the action
sequence of process P; if B is not established, only the action
y can be executed, and then the action sequence of process Q
is executed. Here, B is a state predicate.

(6) Parallel composition: “||”, representing a composition
of multiple simple processes, such as P | Q means that
the sequence of actions in processes P and Q is executed
concurrently where P and Q are also called subprocesses.

System Abstraction Model. The system abstract model in-
cludes only three events, which represent the sender’s action
(SND_progress), the receiver’s action (RCV_progress), and the
communication completion event (brp), respectively. We
build the sender and the receiver’s component LTS according
to Com0.1 and Com0.2, as shown in Figures 5(a) and 5(b).
The corresponding FSP is expressed as (in FSP, action names
cannot start with uppercase letters, so we can only express
actions with lowercase letters. The mapping rule is: snd_XXX
action in FSP corresponds to event SND_XXX in Event-B):

S0 = (snd_progress-> BRP), BRP = (brp-> END).
RO = (rcv_progress-> BRP), BRP = (brp-> END).

Scientific Programming

*(eyep ise] 3y 3dadoe st jey)) Nd2d0

Keur $s900NS~ A DY JUIAD) “BIeP) SPUIS JOPUS) JOYY 17" ¢MO[]
"BJBP AU} JUIS SBY| JOPUIS

1) 19)Je AJuO eIep JULLIND oY) 1dodde LB 10ATODAI AYT, (" ¢MO]
Sjuaua.nbay mopf

'SINDD0 JUIAD

N0 dW) © I9)Je UreSe elep JUSLIND) PUIS [[IM IOPUIS 3], :9°CUI0D)
‘oFessowr JuawIpapmoude

a1 UIA1031 19)Je IR 1XAU I} PULS [[IM IPUS dYT, :G'CWOD)
“POATEIAT U29q JOU ST 9FBSSIUT JUSTUSPI[MOIDYIE 3T} ISNLII JUIAD
JNO W) © 1IN0 AeW JOPUIS) “@Jep) JUIpuas 10y 'cuIo)
"JUIs U3 Sey BIep 9Y) I9)Je

A[uo aFessouwr JUSWISPI[MOUNDL U JAISIT ABW IOPUIS YT, :¢ CWOD)
*SINDJ0 $5920NS" NS

JUIAS 3T} 9FeSSOUT SB[91 ST JUDS 2q 0) IFLSSIW) J] :7"CTWOD)
"a3essat 1se[A1) J0U

STJUDS 9q 0} 9FBSSIUT AT} JT SINDO0 BIBP~PUS™(INS JUIAd T, :['CUIOD)
spuamanbay juauoduior)

Mo 1IMd A (NS
gnoawn” (NS
‘BIep pUS"ANS

C[eAT

*SINDJ0 $SA00NS~ ADY JUAD

Y} “e3ep Jse[Y} ST BJep PIAIIII 3} J] 'SINOO0 BJRP IUSLINI” ADY
JUSAD 9]} “BJEP ISB] 9} JOU ST BJEP PAATIAI) J] :'TWIO))
spuamanbay juauoduior)

BJEPTJULIND~AII" ADY

TPAdT

“P99201S 0) JIIPUDS I} ISNED [[IM JUIAD PIIDINS JIAIINY ¢ [MO[]

‘[TeJ 03 TOAISDDI JT[} ISTIED [[IM JUAD PI[Te] IOPUIS 7 TMOT]

“INJ0 UED $S900NS~ ADY

10 dInJrej” (NS JU2AS A[UO “PIZITETIIUL ST WISAS oY) USYM [TMO[]
sjuawainbay mopg

*$IN250 JuaAd dIq 9y} Uy} PUE DAIIAI 0] [Ie] 10

QAT 0} [NJSSA0ONS 9q AW JT “PAZI[ENIUT ST JOATIIAI A} JOYY 17 TWOD)
'SIN20 JuaAd dIq 3y} U} pue puas 0] [Tej

Aewr 10 A]NJ$$200NS pUIS AW J1 ‘PIZI[ENIUL ST IOPUIS Y} JOYY [TWOD)
sjuauainbay juauoduion)

Lanfiey” A0
§5900MS~ ADY
@myrey” ANS
‘s5920NS~ (NS

T[2A9T

“pa3erdwod yjoq aaey ssaxdord- Ay

pue ssax3o1d- NS s1U242 sso[un IMd20 jouued diq JUaAd oY, 17’ 0MO[]
‘Areniqre

ur uraes[Ia3ur INd20 ued ssaxdord- ADY pue ‘ssardord- NS :1°0MO[]
EIEYIIEN QAR

"pajo[durod u2aq sey

ssax3o1d- A Ju2Ad 9} SSaTUN IN200 Jouued diq JUIAD YT, i7" QW0))
'ssaxdoxd- (NS Ju2A2 9}

Pa3o[dwod sey Jopuas aY) SSA[UN INd00 Jouued diq JUIA oY, :'OWOD)
spuawa.inbay Juauoduio))

diq
‘ssaxdoxd-ADY
‘ssa18o1d-(INS

0[PAT

‘syuawaInbay waysAg

SJUSA] PAONpONU]

"syuawraImbar waysAg i a19V],

Scientific Programming

brp brp
_snd_progress rov progress
stfworking) (s:s_ G:riworking) (r=r_result)
()

(a) LTS SO

rcv_progress
(s_working,
r_working)

snd_progreiss

(s_working,
r_result)

snd_progress

LTS RO

Tuples:(s, r)

(s_result,
r_working)

(s_result,
r_result)

(s_NULL,
r_NULL)

Yo ()

rcv_progress

(c) LTS Sys0

FIGURE 5: The LTS of the abstract model and

the composition of the component LTS.

]

brp

INITIAlL]SATION brp INITIAILSATION
i amon |
s_working |SNA-PTOgress (g resylt r_working

rcv_progress |r_result

(a) SNDMachine0

(b) RCVMachine0

FIGURE 6: System abstract model in iUML-B.

s=s_working

s=Ssucc) <r=r_working
snd_success

TCv_success
brp rcv_failur|

s:s_NULL) C r=Rfail

snd_failurle

(a) LTS S1

(b) LTS R1

r=Rsucc

flowl=f1_ sl flow2=12_s1

(c) LTS Flowl (d) LTS Flow2

FIGURE 7: The component LTSs and flow LTSs of the first refinement model.

We found that the composition of the sender component LTS
and the receiver component LTS was able to meet the flow
requirements of Flow 0.1 and Flow 0.2, so we did not need to
add any control flow LTS. We get the system LTS of abstract
model using LTS composition; as Figure 5(c) shown, the FSP
expression is

| Sys0 = (S0 || RO).

We map the Level0 LTS model onto the iUML-B state
machine and get the two state machines as shown in Figure 6.

First Refinement. For the introduced events of the first
refinement, we first add them to the two component LTS
according to Coml.1 and Coml.2, as shown in Figures 7(a)
and 7(b). The FSP code is

RI = (rev_success->Rsucc | rev_failure->Rfail), Rsucc =
(brp-> END), Rfail = (brp-> END).

S1 = (snd_success->Ssucc | snd_failure->Sfail), Ssucc =
(brp-> END), Sfail = (brp-> END).

Flowl.2 and Flowl.3 constrain the enable relationship
between the sender and the receiver in the first refinement,
while Flowl.l constrains which event occurs first when
the system is initialized. Combined with these three flow
requirements, we get the control flow LTS as Figures 7(c) and
7(d) show. The ESP code is

Flowl = (rcv_success->snd_success->Flowl).
Flow2 = (snd_failure->rcv_failure->Flow2).

It should be noted that LTS Flowl not only restricts that a
sender’s failure will cause a receiver’s failure, but also restricts
that when the system is initialized, only the event snd_failure
may occur. If we put rcv_failure before the event snd_failure in
LTS Flowl, this LTS will violate the flow requirement. We get
the system-level LTS of Levell as shown in Figure 8, and its
FSP expression is

| Sys1= (SI|| RL|| Flowl || Flow2).

We map the LTS models of Levell to the iUML-B state
machine and get the four state machines as shown in Figure 9,

snd_failure

snd_success

Scientific Programming

Tuples:(s,r,flowl,flow2)

rp v
(s_working, (Sfail, (s_NULL, (Ssucc, (Sfail,
r_working, Rsucc, r_NULL, Rsucc, r_working,
fl_s1, fl_s2, fl_s1, fl_s1, fl_s1,
f2_s1) f2_s2) f2_s1) f2_s1) f2_s2)
p
LTS Sysl _success br;

F1GURE 8: The system LTS of first refinement.

. s_result

. r_result
|

INITIALISATION

‘ rev_success | Rsucc
r_working ‘ :— b
brp o I}i’ -* é_;p.

INITIAUSATION |4 cuccess | SSUCE
s_working i
A
fail
snd_failure Sitos ‘
(a) SNDMachinel
ey feVsuccess
.lNlT[AUSATION L= »{f1.s2

snd_success

(c) Flowl state machine

| Rfail

| S
rev_failure |

(b) RCVMachinel

—— snd_failure
f2s1|— — -[f2s2
e

1
| —

.INITIALISATION

11

rev_failure

(d) Flow2 state machine

FIGURE 9: iUML-B state machines of first refinement.

. r_result
\

INIT]ALI‘SATION rev_success | Rsucc
S
r_working
— 1 ®

| tev_failure ’@‘

al f

rev_current_data

(a) RCVMachine2

brp .

rcv_current_data

rcv_success

rcv_failute

(b) LTSR2

F1GURE 10: The iUML-B state machine RCVMachine2 and LTS R2.

where SNDMachinel and RCVMachinel are the component
state machines of the sender and receiver, respectively, and
Flowl and Flow2 correspond to LTS Flowl and LTS Flow2,
respectively.

Second Refinement. The second level refinement only intro-
duces one event rcv_current_data, which does not involve the
flow requirement associated with the sender, so we do not
need to modify the sender component but only need to add
event rcv_current_data to the receiver’s component LTS, as
Figure 10(b) shows. The FSP code is

const N =2

range T =0---N

R2 =R2 [0],

R2 [r: T] = (when (r + 1 <N) rcv_current _data [r] -> R2
[r+1]

| when (r + 1 == N) rcv_success->Rsucc
| rev_failure->Rfail),

Rsucc = (brp-> END),

Rfail = (brp-> END).

In the above codes, we introduce the message counter
r of the receiver which represents the number of messages
currently received. The constant N represents the total
number of messages.

We map Level2’s LTS model to the iUML-B state machine
and get the new receiver state machine as shown in Fig-
ure 10(a).

In addition, we find that r is a newly introduced variable,
so we must model its changes using a new atomic LTS. We
introduce a new atomic LTS RCV_QUEUE to express the
change of r:

Scientific Programming

rq_s1 |RCV_success

.INITIALISATION |

(rcv_queue=0)

rcv_currgnt_data

(I
RCV_rcv_current_data

(a) Rev_queue state machine

rcv_success
rcv_queue<n rcv_queue=n
~—_

rcv_current_data

(b) LTS Rev_queue

FIGURE 11: The LTS and the corresponding iUML-B state machine of RCV_QUEUE.

rcv_current_

rcv_current_data

p
(s_working, (Sfail, (s_NULL, (Sfail,
r_working, r_working, r_NULL, r_working,
fl_sl1, fl_sl, fl_s1, fl_s1,
2 sl, 2 s2, 2 s1, 2 s2,
0) 1)

Tuples : (s,r,flowl,flow2,rcv_queue)

rcv_success snd_success

(Sfail, (s_working,\ ((s_working, (Ssucc,
Rsucc, r_working, Ssucc, Rsucc,
fl_s2, f1_sl, fl_s2, f1_sl,
f2_s2, f2_s1, f2_s1, f2_s1,
2) 2)

LTS Sys2

snd_failur

brp

FIGURE 12: The system LTS of second refinement.

RCV_QUEUE = RCV_QUEUE [0][0],

RCV_QUEUE [s:T][r:T] = (when (r+1<N)
rev_current_data ->RCV_QUEUE [s][r+1]

| when (r+1==N)rcv_success-> RCV_QUEUE [s][r+1]).

The LTS and the corresponding iUML-B state machine of
RCV_QUEUE are shown in Figure 11.

This system-level LTS of level2 is shown in Figure 12; the
FSP expression is

| Sys2 = (S2 || R2 || Flow! || Flow2 || RCV_QUEUE),

where S2 = SI.

At this level of refinement, there are no changes in the
sender’s LTS and control flow LTS, so we do not need to
modify the corresponding iUML-B state machine.

Due to space limitations, we omitted the description of
LTS model and iUML-B state machine model of the third
layer refinement.

3.3. Property Verification of the Event-B Model. We use the
iUML-B state machine to generate the BRP protocol control
flow model in Event-B. These automatically generated control
flow models have covered all the control variables of the
fourth layer of Abiral's BRP model. Thanks for iUML-B, we
can refine the original component state machine and the flow
state machine by adding new substates in the original state
in the refinement of each layer and preserve the consistency
of the Event-B model by refinement checks to ensure that
concrete machine is the effective refinement of abstract
machine.

As we proved in Section 2.3, the Event-B model we
constructed is bisimulation equivalent to the original LTS

model. Therefore, we can verify the properties of the Event-B
model by verifying the properties of the original LTS model.
We formalized the requirements of the BRP system of Table 1
using linear temporal logic (LTL) formulate; some of them
are shown in Table 2. In Table 2, the symbol “0”, “U”, and
“O” represent “always”, “until”, and “eventually” in linear
temporal logic, respectively, while the symbols “—”, “=” and
“A” represent “implication”, “negative”, and “conjunction” in
proposition logic, respectively.

We verified these properties with the help of the LTSA
tool and the results show that the behavior of our model meets
the requirements in Table 1.

4. Discussion

There are four types of variables in Event-B model: Boolean
variables (such as s € {TRUE, FALSE}), variables with a finite
number of states (such as s € {s,s,,...,s,}), data variables
suchasa € N ora € Z), and collection-type variables (e.g.,
g € D). As we can see, it is very easy to model the first two
kinds of control variables using LTS. For data variables whose
state space is an infinite set, we can use the following methods
to model its changes: first, we bound the range of variable a
using its lower bound and upper bound. That is, let a € [lower
bound, upper bound]; second, we divide the state space of a
into three subsets according to the equivalence class: {a =
lower bound}, {lower bound < a < upper bound}, and
{a = upper bound}. In this way, we can convert the infinite
state space of data variable into a finite number of states and
further establish the LTS model of this data variable. In fact,
we have used this approach when we modeled Rcv_queue
changes in the second level of refinement. However, the above

10

Scientific Programming

TaBLE 2: The LTL formulate of basic requirements.

Requirement number

LTL formulate

Com0.1, Com0.2, Flow0.2

O(=brp U (snd_progressArcv_progress))

Flowl1.2 O(snd_failure— <rev_failure)
Flowl.3 O(rcv_success— <snd_success)
TaBLE 3: Comparison of major control flow modeling methods.

Method Ability

Formal behavior semantics Way of expression Convertible to LTS
ERS No Tree structure No
Flow Method No Events and relationships No
CSP|B Yes Process algebra Yes
LTS+iUML-B Yes States and transitions Yes

method only works when we already know the range of data
variable (such as the BRP model in this paper). For those data
variables that we cannot determine their boundary, we need
further research to model them. In addition, we still have not
found an effective way to model changes of collection-type
variables.

5. Related Work

There has been some research on explicitly simulating the
control flow of the Event-B model. Fathabadi et al. [11]
proposed a method named “Event Refinement Structure”
(ERS) method which uses a tree structure based on the
Jackson structure diagram (JSD) to express the control flow
of Event-B model. However, one cannot establish the equiv-
alence relationship between the tree structure of ERS and
LTS. Therefore, it is also impossible to verify the behavioral
properties of the ERS method. In contrast, our work uses the
LTS and iUML-B state machine to visually express the control
flow of the Event-B model and can verify its behavioral
properties easily. Iliasov [12] proposed a method named flow
language which uses ena, dis, and fis to express the order of the
events. However, the modeling elements of the flow method
are the events and the relationships between events, rather
than states and transitions of the state transition system.
This makes flow language difficult to map onto LTS semantic
model. Compared with the flow method, the iUML-B state
machine uses the state-based style to express the control
flow. This makes the control flow easier for engineers to
understand.

The combination of CSP and Classic B is also studied in
[13, 14]. For the explicit control flow modeling of the Event-B,
CSP|IB method [15] proposed an integrated formal method
that combines Event-B as a state-based formal system and
CSP as a control-based formal system to model the control
flow in Event-B. Our approach is inspired by the CSP || B
method, but we use FSP to model the control flow of Event-B.
Compared to the CSP || B method, we systematically consider
all the control variables that may affect the control flow of
the Event-B machine. This makes our results of behavioral
properties verification more reliable than CSP || B. We

compare our method (named “LTS+iUML-B”) with other
methods in this field, as shown in Table 3.

6. Conclusion

The Event-B model has some flaw in expressing the model’s
control flow. In this paper, we use LTS to express Event-B
control flow, which makes the control flow of Event-B model
become visible and makes the verification of Event-B models
behavior properties easier. We model each variable in the
Event-B model that affects the model execution process as a
single “atomic LTS” and use the LTS composition operation
to obtain the control flow model of the entire system. By using
our method, the modeler can easily observe and analyze the
behavior of the system with the help of the LTSA tool. At the
same time, we map the LTS model onto the Event-B model
and prove the bisimulation equivalence between the original
LTS model and the corresponding Event-B model. In this way,
the modeler can verify the behavior of the Event-B model by
verifying the properties of the original LTS model.

At present, our modeling method is only suitable for
Event-B’s Boolean variables, bounded state variables, and
certain data variables. In the future, we will study how to use
LTS to model the change of the collection-type variables in
the Event-B model.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] E. Boiten, Modeling in Event-B: System and Software Engineer-
ing, Cambridge University Press, 2010.

[2] J. R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge University Press, Cambridge, UK, 2005.

[3] R.J. R. Back and R. Kurki-Suonio, “Distributed Cooperation
with Action Systems,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 10, no. 4, pp. 513-554,
1988.

Scientific Programming

[4] J. Chen, C. Du, and P. Han, “Scheduling independent partitions
in integrated modular avionics systems,” PLoS ONE, vol. 11, no.
12, Article ID 0168064, 2016.

[5] J. Chen, C. Du, E Xie, and Z. Yang, “Schedulability analysis of
non-preemptive strictly periodic tasks in multi-core real-time
systems,” Real-Time Systems, vol. 52, no. 3, pp. 239-271, 2016.

[6] M. Y. Said, M. Butler, and C. Snook, “A method of refinement
in UML-B,” Software and Systems Modeling, vol. 14, no. 4, pp.
1557-1580, 2015.

[7] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, “Vali-
dating the requirements and design of a hemodialysis machine
using iUML-B, BMotion studio, and co-simulation,” Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics):
Preface, vol. 9675, pp. 360-375, 2016.

[8] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin, “Rodin: An open toolset for modelling and
reasoning in Event-B,” International Journal on Software Tools
for Technology Transfer, vol. 12, no. 6, pp. 447-466, 2010.

[9] J. Magee and J. Kramer, Concurrency: state models & Java
programs, John Wiley & Sons, Inc, 2000.

[10] C. Baier and J.-P. Katoen, Principles of model checking, MIT
Press, Cambridge, MA, 2008.

[11] A. S. Fathabadi, M. Butler, and A. Rezazadeh, “Language and
tool support for event refinement structures in Event-B,” Formal
Aspects of Computing, vol. 27, no. 3, pp. 499-523, 2015.

[12] A. Tliasov, “Use Case Scenarios as Verification Conditions:
Event-B/Flow Approach,” in Software Engineering for Resilient
Systems, vol. 6968 of Lecture Notes in Computer Science, pp. 9-
23, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] M. Butler, “csp2B: A practical approach to combining CSP and
B, Formal Aspects of Computing, vol. 12, no. 3, pp. 182-198, 2000.

[14] S. Schneider and H. Treharne, “Verifying controlled compo-

nents,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics): Preface, vol. 2999, pp. 87-107, 2004.

S. Schneider, H. Treharne, and H. Wehrheim, “A CSP Account

of Event-B Refinement;” Electronic Proceedings in Theoretical

Computer Science, vol. 55, pp. 139-154, 2011.

[15

1

D. | Advances in !

s . WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

