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)e dimensionality reduction and visualization problems associated with multivariate centroids obtained by clustering al-
gorithms are addressed in this paper. Two approaches are used in the literature for the solution of such problems, specifically,
the self-organizing map (SOM) approach and mapping selected two features manually (MS2Fs). In addition, principle
component analysis (PCA) was evaluated as a component for solving this problem on supervised datasets. Each of these
traditional approaches has drawbacks: if SOM runs with a small map size, all centroids are located contiguously rather than at
their original distances according to the high-dimensional structure; MS2Fs is not an efficient method because it does not take
features outside of the method into account, and lastly, PCA is a supervised method and loses the most valuable feature. In this
study, five novel hybrid approaches were proposed to eliminate these drawbacks by using the quantum genetic algorithm
(QGA) method and four feature selection methods, Pearson’s correlation, gain ratio, information gain, and relief methods.
Experimental results demonstrate that, for 14 datasets of different sizes, the prediction accuracy of the proposed weighted
clustering approaches is higher than the traditional K-means++ clustering approach. Furthermore, the proposed approach
combined with K-means++ and QGA shows the most efficient placements of the centroids on a two-dimensional map for all
the test datasets.

1. Introduction

Human visual perception can be insufficient for the in-
terpretation of a pattern within a multivariate (or high
dimensional) structure, causing errors at the decision-
making stage. In knowledge discovery processes, the
same drawback is encountered in multivariate datasets
because of not being able to print the dataset to a visual
interface as a two-dimensional (2D) structure. Further-
more, inefficient features in a multivariate dataset nega-
tively impact the accuracy and running performance of
data analysis tasks. )erefore, the notion of dimensional
reduction is of particular relevance in the preprocessing
phase of data analysis. Many algorithms and methods have

been proposed and developed for dimensional reduction
[1], of which principal component analysis (PCA) is one of
the most popular methods [2]. Regardless of popularity,
neither PCA nor the other available dimensional reduction
methods are suitably efficient to independently visualize
all instances in the dataset because at the data prepara-
tion stage before the usage of the data-mining algorithm,
PCA performs some feature selection tests separately
for different dimensions. )ereafter, the optimal feature
number and the optimal model are determined with
respect to the variance values of these proposed models.
)e dataset is presented as a 2D map using PCA results in
a low variance value. Another drawback of PCA is that
the most valuable feature is transformed to new values [2].
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As a result, PCA is not typically successful at mapping
the dataset in 2D, except in image representation and
facial recognition studies [3, 4]. Another difficulty is
that even if a dimensional reduction is applied, the vi-
sualization of all instances in a large dataset causes storage
and performance problems. To address this problem,
clustering algorithms can be used for data summarization
and the visualization methods applied afterwards. K-Means
is the most-used clustering algorithm; however, K-means
submits only the high-dimensional centroids, without any
visualization and without any dimensional reduction
operation.

Literature records three approaches to the visualization
of K-means. )e first approach involves mapping for two
selected features from a multivariate dataset (MS2Fs).
Curman et al. have clustered the coordinate data in
Vancouver using K-means and presented them on a map
[5]; Cicoria et al. have clustered “Titanic Passenger Data”
using K-means and printed the survival information that
was the goal of the study to different 2D maps according to
features [6]; an obtained binary image was clustered onto
a 2D interface using K-means for face detection in a study
by Hadi and Sumedang [7]; and lastly, Fang et al. imple-
mented software to visualize a dataset according to two
selected features [8]. )e second approach is visualization
that takes place after K-means clustering of the dataset is
dimensionally reduced by PCA. Nitsche has used this type
of visualization for document clustering [9], and Wagh
et al. have used it for a molecular biological dataset [10].
)e third approach is the visualization of the dataset
clustered by K-means in conjunction with an approach like
neighborhood method location in the self-organizing map
(SOM) technique, used by Raabe et al. to implement a new
approach to show K-means clustering with a novel tech-
nique locating the centroids on a 2D interface [11]. SOM is
a successful mapping and clustering algorithm; neverthe-
less, it relies on the map-size parameter as the cluster
number, and if it runs with a small map-size value, all
centroids of the clusters are located contiguously, not at
their original distances according to the high-dimensional
structure.

In our study, new approaches are proposed to visu-
alize the centroids of the clusters on a 2D map, preserving
the original distances in the high-dimensional structure.
)ese different approaches are implemented as hybrid
algorithms using K-means++ (an improved version of
K-means), SOM++ (an improved version of SOM),
and the quantum genetic algorithm (QGA). QGA was
selected for use in our hybrid solutions because di-
mensionality reduction and visualization problems for
multivariate centroids (DRV-P-MC) are also an optimi-
zation problem.

)e contributions of this study are threefold: first,
clustering by K-means++; then, mapping the centroids onto
a 2D interface using QGA; and evaluating the success of this
method. A heuristic approach is proposed for DRV-P-MC,
and the aim is to avoid the drawback of locating the clusters
contiguously as in the traditional SOM++. Mapping the
centroids onto a 2D interface using SOM++ and evaluating

the success of this approach are performed to enable
comparison. Second, the usage of four major feature se-
lection methods was mentioned in the paper by De Silva and
Leong [12], specifically relief, information gain, gain ratio,
and correlation. )e aim is to preserve the most valuable
feature and to evaluate it as the X axis. Additionally, the Y
axis is obtained by a weighted calculation using the co-
efficient values returned from these feature selection
methods. )is provides an alternative to PCA for generating
a 2D dataset that avoids the PCA drawback of losing the
most valuable feature. )en, clustering the datasets by
K-means++ and mapping the centroids by these novel
approaches separately onto a 2D interface are performed.
Moreover, mapping the centroids onto a 2D interface using
PCA and evaluating the success of this approach for com-
parative purposes are performed. )ird, a versatile tool is
implemented with the capability to select the desired file,
algorithm, normalization type, distance metric, and size
of the 2D map to calculate successes across six differ-
ent metrics: “sum of the square error,” “precision,” “recall,”
“f-measure,” “accuracy,” and “difference between multi-
variate and 2D structures.” )ese metrics are formulated in
detail in Problem Definition.

In literature, generally, MS2Fs has been the preferred
method to manually determine the relations between
features. Our tool is not only built on MS2Fs but also
contains another algorithm that maps the centroids by
using information gain, for comparison with our novel
approaches. It assumes that the X axis is the most valuable
feature, followed by the Y axis, according to information
gain scores.

)is paper details our study in seven sections. DRV-P-
MC is defined in detail in Section 2; related works providing
guidance on DRV-P-MC, including traditional algorithms,
hybrid approaches, and the notion of dimensionality re-
duction, are submitted in Section 3; in Sections 4 and 5, the
reorganized traditional approaches and the proposed al-
gorithms are formulated and presented in detail; the ex-
perimental studies performed by using 14 datasets with
different characteristics and their accuracy results are given
in Section 6; and finally, Section 7 presents conclusions
about the proposed methods.

2. Problem Definition

Considering that K-means++ is the major clustering algo-
rithm used in this sort of problem, the significance of pattern
visualization in decision-making is clear. However, the vi-
sualization requirement for the centroids of K-means++
uncovers the need for DRV-P-MC, since the centroids
returned and the elements in them are presented by the
traditional K-means++ irrespective of any relation among
the centroids. )e aim in solving this problem is to map the
centroids onto a 2D interface by attaining the minimum
difference among the multivariate centroids and their ob-
tained 2D projections.

DRV-P-MC can be summarized as obtaining E from C.
To detect whether the solution E of this problem is optimal
or not, ℓ must be measured as zero or a value close to zero.
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Two theorems and their proofs are described in this section
with an illustration for the measurement of ℓ.

2.1. %eorem 1. In measuring the distance between two
matrices like S and T, performing the divisions of the values
in S and T by the minimum distances in the matrices
separately avoids the revealed numeric difference owing to
the dimensional difference between E and C, and thus,
a proportional balance between S and T is supplied as in (1)
and (2):
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where Tmi,mj is the minimum distance value in T.

2.2. Proof 1. Focusing on the optimal M, it can be observed
that the distance between the most similar centroids must be
located in the closest cells inM, and the smallest values must
be obtained for both S and T. Moreover, in this optimal M,
the other values in S and Tmust be obtained proportionally
to their smallest values.

2.2.1. Illustration. After clustering and placement opera-
tions for k� 4, f� 3, r� 6, and c� 6, assume that C� {{0.2,
0.3, 0.1}, {0.3, 0.4, 0.2}, {0.5, 0.6, 0.4}, {0.9, 0.9, 0.8}} and E�

{{0, 0}, {0, 3}, {2, 2}, {5, 5}}, and M is obtained as in the
following equation:

M �

— — — — — C3

— — — — — —

— — — — — —

— — C2 — — —

— — — — — —

C0 — — C1 — —

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

For M, S and T matrices are obtained as the following
equations:
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where x and y ∈ R+, x is the minimum number in S, and y is
the minimum number in T.

2.3. %eorem 2. To calculate the distance between two
matrices containing values that are balanced with each other,
traditional matrix subtraction can be used. )e subtraction
operations must be performed with the absolute values, like
the approach in Manhattan distance, to obtain a distance
value greater than or equal to zero. After the subtraction
operations, a Z matrix is obtained, and the sum of all values
gives the difference between these matrices as follows:
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2.4. Proof 2. To compare the two instances containing nu-
meric values using machine learning, normalization oper-
ations must be performed to supply numeric balance among
the features before the usage of any distance metric like
Euclidean distance or Manhattan distance. )e first theo-
rem, essentially, claims a normalization operation for S and
Tmatrices.)e second theorem claims that, with normalized
values, the distance calculation can be performed by using
the traditional subtraction operation.

To illustrate, both S and T have the smallest value as 1
and normalized values. )e closer the E is to the optimal
solution, the smaller the values in the subtraction matrix Z.
)us, ℓ can be obtained as a value close to zero. In this
example, the value of ℓ is 7.4 + 5.5 + 1.8 + 5.9 + 2.6� 23.2, as
in the following equation:
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3. Related Works

In our study, some traditional machine learning algorithms
were utilized to implement hybrid approaches: K-means++,
SOM++, PCA, and QGA. In this section, these algorithms,
hybrid logic, and dimensionality reduction are described,
and reasons for preferences in our study are explained along
with supporting literature.

)e K-means++ algorithm is a successful clustering al-
gorithm, inspired by K-means, that has been used in studies
across broadly different domains. For example, Zhang and
Hepner have clustered a geographic area in a phenology study
[13]; Sharma et al. have clustered satellite images in an as-
tronomy study [14]; Dzikrullah et al. have clustered a pas-
senger dataset in a study of public transportation systems [15];
Nirmala andVeni have used K-means++ to obtain an efficient
hybrid method in an optimization study [16]; and lastly,
Wang et al. have clustered a microcomputed tomography
dataset in a medical study [17].

K-means++ is consistent in that it returns the same
pattern at each run. In addition, the K-means++ algorithm
submits related clusters for all instances and offers the ad-
vantage of starting the cluster analysis with a good initial set
of centers [18]. Conversely, it suffers the drawback of poor
running performance in determining this initial set of
centers, and as to find good initial centroids, it must perform
k passes over the data.)erefore, it was necessary to improve
K-means++ for use of large datasets, leading to the devel-
opment of a more efficient parallel version of K-means++
[19]. Another study [20] addressed the problem by using
a sorted dataset, which is claimed to decrease the running
time.)e literature also includes many studies on enhancing
the accuracy or the performance of K-means++, but none on
visualizing a 2D map for the clusters of this successful al-
gorithm. )erefore, in this study, a novel approach to vi-
sualizing K-means++ clusters on a 2D map is detailed.

SOM is both a clustering and a mapping algorithm, used
as a visualization tool for exploratory data in different do-
mains owing to its mapping ability [21]. Each cluster in SOM
is illustrated as a neuron, and after the training process in an
artificial neural network (ANN) structure, each neuron has
X and Y values as a position on a map. In addition, all
clusters in a SOM map are neighboring [22]. Nanda et al.
used SOM for hydrological analysis [23]; Chu et al. used
SOM for their climate study [24]; Voutilainen et al. clustered
a gerontological medical dataset using SOM [25]; Kanzaki
et al. used SOM in their radiation study to analyze the liver
damage from radon, X-rays, or alcohol treatments in mice
[26]; and Tsai et al. have clustered a dataset about water and
fish species in an ecohydrological environment study [27].

Although SOM produces a map where each neuron
represents a cluster and all clusters are neighboring [21, 22], the
map does not position the returned centroids adjacent to each
other as 1-unit distances; in fact, these clusters must be located
on farther cells of the map. In this study, a novel approach to
visualize SOM mappings in 2D retaining practically original
distances among clusters is detailed, using the fast version
of SOM, SOM++. In SOM++, the initialization step of
K-means++ is used to find the initial centroids of SOM [28].

PCA is another popular machine learning method for
feature selection and dimensionality reduction. Owing to its
versatility, this algorithm is also used across different domains:
Viani et al. used PCA to analyze channel state information
(CSI) for wireless detection of passive targets [29]; Tiwari et al.
analyzed solar-based organic ranking cycles for optimization
using PCA [30]; Hamill et al. used PCA to sort multivariate
chemistry datasets [31]; Ishiyama et al. analyzed a cytomega-
lovirus dataset in a medical study [32]; and Halai et al. used
PCA to analyze a neuropsychological model in a psychology
study [33]. PCA is used to eliminate some features for mul-
tivariate datasets before machine learning analysis, as the
dataset may be large and contain some features that would
make analysis efficient [34].)ese unnecessary featuresmay be
identified by PCA for subsequent removal, resulting in a new
dataset with new values and fewer features [2]. Essentially, this
algorithm is not a clustering algorithm; however, PCA is
relevant owing to its dimensionality reduction capacity; this is
utilized in our study to obtain a new 2D dataset, which is then
clustered using the traditional K-means++ approach.

QGA is a heuristic optimization algorithm. It refers to the
smallest unit storing information in a quantum computer as
a quantum bit (qubit). A qubit may store a value in between
the binary values of “1” or “0,” significantly decreasing run-
ning time in the determination of an optimized result [35, 36].
)is contemporary optimization algorithm is in wide-spread
use. Silveira et al. used QGA to implement a novel approach
for ordering optimization problems [37]; Chen et al. used
QGA for a path planning problem [38]; Guan and Lin
implemented a system to obtain a structural optimal design
for ships using QGA [39]; Ning et al. used QGA to solve a “job
shop scheduling problem” in their study [40]; and Konar et al.
implemented a novel QGA as a hybrid quantum-inspired
genetic algorithm to solve the problem of scheduling real-time
tasks in multiprocessor systems [41]. DRV-P-MC, the focus of
interest in our study, is an optimization problem as well, so
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this algorithm’s efficient run-time performance is employed to
determine suitable cluster positions on a 2D map.

Hybrid approaches combine efficient parts of certain al-
gorithms into new wholes, enhancing the accuracy and the
efficiency of these algorithms, or producing novel algorithms.
In literature, there are many successful hybrid data-mining
approaches: Kumar et al. implemented a highly accurate
optimization algorithm from the combination of a genetic
algorithm with fuzzy logic and ANN [42]; Singhal and Ashraf
implemented a high-performance classification algorithm
from the combination of a decision tree and a genetic algo-
rithm [43]; Hassan and Verma collected successful high-
accuracy hybrid data-mining applications for the medical
domain in their study [44]; )amilselvan and Sathiaseelan
reviewed hybrid data-mining algorithms for image classifi-
cation [45]; Athiyaman et al. implemented a high-accuracy
approach combination of association rule mining algorithms
and clustering algorithms for meteorological datasets [46];
Sahay et al. proposed a high-performance hybrid data-mining
approach combining apriori and K-means algorithms for
cloud computing [47]; Yu et al. obtained a novel solution
selection strategy using hybrid clustering algorithms [48]; Sitek
and Wikarek implemented a hybrid framework for solving
optimization problems and constraint satisfaction by using
constraint logic programming, constraint programming, and
mathematical programming [49]; Abdel-Maksoud et al. pro-
posed a hybrid clustering technique combining K-means and
fuzzy C-means algorithms to detect brain tumours with high
accuracy and performance [50]; Zhu et al. implemented
a novel high-performance hybrid approach containing hier-
archical clustering algorithms for the structure of wireless
networks [51]; Rahman and Islam combined K-means and
a genetic algorithm to obtain a novel high-performance genetic
algorithm [52]; and Jagtap proposed a high-accuracy tech-
nique to diagnose heart disease by combining Näıve Bayes,
Multilayer Perceptron, C4.5 as a decision tree algorithm, and
linear regression [53]. What we can infer from a detailed
examination of these studies is that K-means and genetic
algorithms, and their variants, can be adapted to other algo-
rithms to implement a hybrid approach successfully. More-
over, the combination of K-means and genetic algorithms
creates an extremely efficient and highly accurate algorithm.

In data analysis, unnecessary features cause two main
problems in performance and accuracy. If a dataset is large or
has insignificant features, a downscaling process should be
performed by a dimensionality reduction operation to enable
efficient use of the analysis algorithms. In literature, many
techniques related to dimensionality reduction are presented.
For example, Dash et al. claimed that using PCA for di-
mensionality reduction causes a drawback in understanding
the dataset owing to the creation of new features with new
values. Furthermore, they posit that the most effective at-
tributes are damaged. )erefore, they presented a novel ap-
proach based on an entropy measure for dimensionality
reduction [54]. Bingham and Mannila used a random pro-
jection (RP) method instead of PCA for the dimensionality
reduction of image and text datasets, singular value de-
composition (SVD), latent semantic indexing (LSI), and
discrete cosine transform, claiming that RP offers simpler

calculation than the other methods and has low error rates
[55]. Goh and Vidal have used k-nearest neighbor and
K-means to obtain a novel method for clustering and di-
mensionality reduction on Riemannian manifolds [56]; Na-
poleon and Pavalakodi implemented a new technique using
PCA and K-means for dimensionality reduction on high-
dimensional datasets [57]; Samudrala et al. implemented
a parallel framework to reduce the dimensions of large-scale
datasets by using PCA [58]; Cunningham and Byron used
PCA, factor analysis (FA), Gaussian process factor analysis,
latent linear dynamical systems, and latent nonlinear dy-
namical systems for the dimensional reduction of human
neuronal data [59]; and Demarchi et al. reduced the di-
mensions of the APEX (airborne prism experiment) dataset
using the auto-associative neural network approach and the
BandClust algorithm [60]. Boutsidis et al. implemented two
different dimensional reduction approaches for K-means
clustering: the first based on RP and the second based on SVD
[61]. Azar and Hassanien proposed a neurofuzzy classifier
method based on ANN and fuzzy logic for the dimensional
reduction of medical big datasets [62]; Cohen et al. imple-
mented a method using RP and SVD for the dimensional
reduction in K-means clustering [63]; Cunningham and
Ghahramani discussed PCA, FA, linear regression, Fisher’s
linear discriminant analysis, linear multidimensional scaling,
canonical correlations analysis, slow feature analysis,
undercomplete independent component analysis, sufficient
dimensionality reduction, distance metric learning, and
maximum autocorrelation factors in their survey article and
observed that, in particular, PCA was used and evaluated in
many studies as a highly accurate analysis [1]; and Zhao et al.
used 2D-PCA and 2D locality preserving projection for the
2D dimensionality reduction in their study [64]. Sharifzadeh
et al. improved a PCA method as sparse supervised principal
component analysis (SSPCA) to adapt PCA for di-
mensionality reduction of supervised datasets, claiming that
the addition of the target attribute made the feature selection
and dimensional reduction operations more successful [65].

)ese studies show PCA to be the most-used method for
dimensionality reduction despite reported disadvantages
including the creation of new features, which may hamper
the understanding of the dataset, changing the values in the
most important and efficient features, and complex calcu-
lation and low performance for big datasets.

In other sample clustering studies, Yu et al. proposed some
distribution-based distance functions, used to measure the
similarity between two sets of Gaussian distributions, in their
study, and distribution-based cluster structure selection. Ad-
ditionally, they implemented a framework to determine the
unified cluster structure from multiple cluster structures in all
data used in their study [66]. In another study by Yu and
Wong, a quantization driven clustering approach was designed
to obtain classes for many instances. Moreover, they proposed
two different methods to improve the performance of their
approach, the shrinking process, and the hierarchical structure
process [67]. A study by Wang et al. proposed a local gravi-
tationmodel and implemented two novel measures to discover
more information among instances, a local gravitation clus-
tering algorithm for clustering and evaluating the effectiveness
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of the model, and communication with local agents to attain
satisfactory clustering patterns using only one parameter [68].
Yu et al. designed a framework known as the double affinity
propagation driven cluster for clustering on noisy instances
and integrated multiple distance functions to avoid the noise
involved with using a single distance function [69].

4. The Reorganized Traditional Approaches

)is paper assumes two ways of K-means++ clustering, the
traditional usage, and a weighted usage. After normalization
techniques are used to balance the dataset features and
normalize the dataset, traditional K-means++ clustering is
performed. )is has a preprocess step to discover the initial
centroids for the standard K-means. After the initialization
of the centroids, K-means clustering runs using the initial
centroid values. K-means++ is expressed as Algorithm 1.

In this study, three reorganized traditional mapping
approaches were implemented to visualize the centroids of
K-means++ returned by Algorithm 1: mapping by SOM++,
by PCA, and according to the best two features determined
by information gain. )ese three algorithms are the ap-
proaches that were implemented previously in the literature.
To compare these approaches with the other five proposed
algorithms under the same conditions, the former three
algorithms are appropriately reorganized and implemented
in this study and formulated in the following manner.

4.1. K-Means++ and Mapping by SOM++ (KS). )e best-
knownmapping algorithm is SOM, and in this study, SOM++
was implemented as the improved version of SOM, providing
the centroids generated by K-means++ as the initial weights
for SOM to solve DRV-P-MC. In this approach, the traditional
K-means++ clustering runs first and then returns the cen-
troids to bemapped.)e SOM++ algorithm trains the weights
of the neurons on its map by using the Gaussian function as
the update function, as in (7). After a specific number of
iterations, the weight values reach a trained-value state
according to the centroids. To map the centroids, the winning
neurons with the nearest distance for all centroids separately
are calculated, and the weight values of these winning neurons
are converted to the multivariate values of the related cen-
troids, as in (8). Finally, M, containing the pure multivariate
values of the centroids as the weight values, is returned.

Let us assume that C is obtained by Algorithm 1, θ is the
closest cell in M for each element in C, d is the minimum
distance between the current instances, and Cc and θ, and for
each neighbor of θ, is computed, as in the following equation:

h � exp
−d2

2σ2
􏼠 􏼡,

ω⟵ 􏽘

f

i�1
ωi � ωi + h∗ η∗ Cc,i −ωi􏼐 􏼑,

(7)

where α is the neighborhood width parameter, η is the
learning rate parameter, h is the neighbourhood function,
and ω is the set of weight values in each cell in M.

􏽘

k

i�1
􏽘

f

j�1
WC(i, j) � C(i, j), (8)

whereWC is the set of the winner cells for each element in C.

4.2. K-Means++ and Mapping by PCA (KP). )e next ap-
proach implemented in this study to map the centroids of
K-means++ incorporates evaluated PCA. In this approach,
once again the traditional K-means++ clustering runs first
and then returns the centroids to be mapped. )e PCA
algorithm is a supervised learning algorithm; therefore, the
dataset cannot be used by PCA without a target attribute. In
the next step, to enable the use of PCA, another dataset was
created with all the features in the original version and an
extra attribute to function as the target attribute. )is new
attribute is filled for each instance according to the obtained
centroids, by calculating the distances among the instances
and these centroids. Finally, PCA calculates two components
by using this new dataset and considering the target attri-
bute, and a 2D structure is attained to map the centroids on
M. )is approach is formulated in the following expressions.

Let us assume that C is obtained by Algorithm 1, Ω
computed by C is the set of the clusters of the instances in I,
and I′ is a new set of the instances with a new attribute
created as the target by filling it with Ω.

Let us assume that, for matrix L, Lx and Ly are the result
matrices, as shown in the following equations, respectively:

Lx � L∗L
T
,

Ly � LT ∗L.
(9)

An alternative way of computing Ly is as in the following
equation:

EVx � L∗EVy ∗EL
1/2

,

Ly � EVy ∗EL∗EVyT,

L⟵􏽘
n

i�1
Ii
′ − µ( 􏼁,

Ly⟵􏽘

n

i�1
L

T ∗L,

(10)

where EL is the same positive eigenvalue of Lx and Ly, EVx is
the eigenvectors of Lx, EVy is the eigenvectors of Ly, and μ is
the mean vector of the instances in I.

IPCA is the 2D dataset computed by PCA as in the
following equation:

IPCA � U
T
2 ∗ L, (11)

where U2 � [u1, u2] is the set of the two first components for
the 2D structure.

In the next expressions, the aim is to obtain 2D centroids
equivalent to their multivariate structure.)erefore, firstly, the
means of two new features of the instances in the same cluster
are calculated for each cluster and each feature separately. Let
us assume that Ω is valid for the 2D instances in IPCA, and
CPCA is calculated as 2D centroids as in the following equation:
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CPCA⟵ 􏽘
n

i�1
􏽘

2

j�1
CPCA(Ωi, j) � CPCA(Ωi, j) + IPCA(i, j),

CPCA⟵ 􏽘
k

i�1
􏽘

2

j�1
CPCA(i, j) �

CPCA(i, j)

n
.

(12)

Moreover, the map has the number of its column between
0 and c and the number of its row between 0 and r, and PCA
returns two features as decimal numbers. )erefore, secondly,
an operation for normalization must be implemented to place
these centroids on the map having c× r dimensions. )us,
these decimal numbers shift their integer equivalents by using
the min-max normalization technique.)e centroids can then
be placed on the c× rmap. FinallyM, in which the centroids in
E are mapped, is obtained as in the following equation:

E⟵ 􏽘
k

i�1
􏽘

2

j�1
E(i, j) �

CPCA(i, j)−minj􏽨 􏽩∗ c

maxj −minj􏼐 􏼑
, (13)

where NC1 is the set of the first column values in CPCA, NC2
is the set of the second column values in CPCA, minNC1 is the
minimum value in NC1, maxNC1 is the maximum value in
NC1, minNC2 is the minimum value in NC2, and maxNC2 is
the maximum value in NC2.

4.3. K-Means++ and Mapping according to the Best Two
FeaturesDetermined by InformationGain (B2FM). )e third

approach, mapping the centroids by information gain
according to the best two features, is formulated in the
following expressions. Firstly, K-means++ runs, and the
centroids are obtained. )e aim in this approach is to
evaluate only the most valuable features for mapping;
therefore, the information gain method is used, computed to
determine the root feature by decision tree algorithms. Two
features having the highest information gain scores are
considered as the X axis and the Y axis of the map. )e
information gain method is a supervised learning algorithm,
and it needs a target attribute like PCA. For this reason, in
the second step of this approach, a new dataset with the
target attribute is created by evaluation of the distances
between all centroids and all instances. )us, the infor-
mation gain method can use this new dataset and obtain the
scores for each feature. At the end of this approach, the
values in these features in the centroids shift their integer
equivalents between 0 and c and between 0 and r by using the
min-max normalization technique. Finally, the centroids are
placed on the c x r map.

Let us assume that C is obtained by Algorithm 1, Ω
computed by C is the set of the clusters of the instances in I,
I′ is a new set of the instances using a new attribute as the
target (by filling it with Ω), IG is obtained by information
gain feature selection method with I′, expressed in (23), fc
is the highest ranked feature in IG, and FC is the set of
the values in the fcth feature in C as in (14); sc is the
second highest ranked feature in IG, and SC is the set of the
values in the scth feature in C, as shown in the following
equations:

Input: Number of the centroids, k
Output: Set of the final centroids, C
Begin
v≔Randomly selected element in I
V: Set of the initial centroids
Y: Set of the distances between v and the closest element to v in V

y: Length of Y
Add v into V

Add the distance between v and the closest element to v in V, into Y
Repeat
For i� 1 : y
U≔U+Y2

i

u≔A random real number between 0 and U
p≔ 2
Repeat
U ′≔ 0
For i� 1 : p− 1
U ′≔U′+Y2

i

p≔ p+ 1
Until U≥ u>U′
Add Ip−1 into V

Add the distance between Ip−1 and the closest element to Ip−1 in V, into Y
Until V has k centroids
Run the standard K-means with V

Return C returned from the standard K-means
End

ALGORITHM 1: K-means++.
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FC⟵ 􏽘
k

i�1
C(i, fc), (14)

SC⟵ 􏽘
k

i�1
C(i, sc). (15)

Finally, M, where the centroids in E are mapped, is
obtained as in the following equation:

E⟵ 􏽘
k

i�1
􏽘

2

j�1
E(i, j) �

CPCA(i, j)−minj􏽨 􏽩∗ c

maxj −minj􏼐 􏼑
, (16)

where minfc is the minimum value in FC, maxfc is the
maximum value in FC, minfc is the minimum value in FC,
and maxfc is the maximum value in FC.

5. The Proposed Approaches

)e five approaches proposed in this study are K-means++
using QGA mapping and weighted K-Means++ using
mapping by Pearson’s correlation, gain ratio, information
gain, and relief feature selection methods. )ese five ap-
proaches are implemented in the study and formulated in
the following manner.

5.1. K-Means++ and Mapping by QGA (KQ). )e first
proposed approach in our study uses QGA to map the
centroids of K-means++. Solving DRV-P-MC can be con-
sidered as a heuristic approach because k numbers of
centroids are tried for placement on a c− r dimensional map,
meaning that there are (c∗ r)∗ (c∗ r− 1)∗ (c∗ r− 2)∗
(c∗ r− 3)∗ · · · ∗ (c∗ r− k+ 1) probabilities. )erefore, this
problem resembles the well-known “Travelling Salesmen”

optimization problem. Given the large number of proba-
bilities, the fittest map pattern can be attained by an opti-
mization algorithm. In this study, QGA, the improved
version of genetic algorithms, is used. In QGA, the chro-
mosomes represent the 2D map matrix,M, and the genes in
the chromosomes represent the cells in M. Moreover, each
gene in QGA has a substructure named “qubit” with 2
components α and β; α represents the probability of the
existence of the evaluated centroid for the current cell, and β
represents the probability of the absence of the evaluated
centroid for the current cell. )is multicontrol mechanism
helps QGA achieve high performance for a large search space.

)e first operation is initialization of each qubit (α, β)
with 1/

�
2

√
in genes identically. In the second step, the aim is

to check the probabilities of placing the centroids into the
cells separately and to obtain the map in which all centroids
are placed, as a candidate map. )ese operations are per-
formed by the makeOperator() method using a randomi-
zation technique containing three random numbers. Two of
them specify the column and the row, and the third de-
termines the cell of the current centroid [36]. )e fitness
function in this approach calculates the differences between
E and C, which is described in detail in Problem Definition.
)erefore, the value returned by the fitness function is
ideally approximately zero. QGA has a generation number as
a parameter, and if this generation number of iterations
completes, the best individual with the lowest fitness
function value is assumed as the fittest map. If not, QGA
needs another assistant method called updateOperator().

Let us assume that rc is the random column number
attained by random [0, c), rr is the random row number
attained by random [0, r), rn is the random number attained
by random [0, 1), and M′ returned by makeOperator() is
computed as in the following equation:

M′⟵ 􏽘
r

i�1
􏽘

c

j�

Mi,j
′ � 0,

M′⟵ 􏽘
k

i�1
Mrc, rr′ �

i, rn> αrc,rr
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌2,

i, it � 0,

obtain new rc and rr numbers, decrease it,

and for the current i, continue to control, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

)e updateOperator() method updates all qubits in the
individuals in the population according to the best indi-
vidual, to approximate its angularity using a trigonometric
approach. Firstly, this method needs a subfunction called the
sign function, sf, to obtain a score between 0 and 1 according
to the distance between the fitness function values of the best
individual and the individual being evaluated. After that, this
sf value is evaluated in a lookup table containing a condition
list to determine the angle [36].

Let us assume that ff is the value of the fitness
function; BS is the best individual in the previous

population according to ff(BS); CS is the current indi-
vidual in the current population according to ff(CS); bv
is a gene value obtained by makeOperator() for BS; cv is
a gene value obtained by makeOperator() for CS; α′ and β′
are the previous values of α and β for CS; sf is the sign
function, and its value is extracted according to the
conditions list as in (18); ∆z is the orientation of rotation
angle to update the qubit values as in (19); and α and β are
updated for each gene in each chromosome in QM as in
(20). Finally, QM with new qubit values is returned by
updateOperator():
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sf α′, β′( 􏼁 �

+1, α′ ∗ β′ ∗ [ff(BS)− ff(CS)]< 0,

−1, α′ ∗ β′ ∗ [ff(BS)− ff(CS)]> 0,

±1, α′ � 0 and (bv− cv)∗ [ff(BS)− ff(CS)]< 0,

±1, β′ � 0 and (bv− cv)∗ [ff(BS)− ff(CS)]> 0,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

Δz �

0.025π, ff(BS)≥ ff(CS) and cv � 1 and α′ � 0 and β′ � −1 and sf α′, β′( 􏼁 � ±1,

0.005π, ff(BS)< ff(CS) and cv � 1 and bv � 1 and α′ � 0 and β′ � −1 and sf α′, β′( 􏼁 � +1,

0.01π, ff(BS)< ff(CS) and cv � 1 and bv � 0 and α′ � ±1 and β′ � +1 and sf α′, β′( 􏼁 � +1,

0.05π, ff(BS)≥ ff(CS) and cv � 0 and bv � 1 and α′ � ±1 and β′ � +1 and sf α′, β′( 􏼁 � −1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

α
β

􏼢 􏼣 �
cos(Δz) −sin(Δz)

sin(Δz) cos(Δz)
􏼢 􏼣∗

α′

β′
􏼢 􏼣. (20)

)e calling of the makeOperator() and updateOperator()
methods continues until the generation number is reached.
After completing the iterations, the fittest map is returned by
the algorithm as given in Algorithm 2.

5.2. Weighted K-Means++ and Mapping by Feature Selection
Methods. Literature indicates that when the supervised
analysis of a dataset involves many features, insignificant
features can negatively affect the results of the analysis.
)erefore, feature selection methods are used to eliminate
some features according to their degrees of influence over
the class attribute. In the next proposed approaches, all
features can be considered as being determined by the X and
Y axes without any elimination and with losing the most
valuable feature, unlike in PCA, even if 2D mapping needs
only two dimensions. Indeed, the aims of these approaches
are to keep the most valuable feature and to assume it to be
the X axis and in addition, to evaluate other all features in
a weighted manner as the Y axis. As a result, these ap-
proaches use four feature selectionmethods to determine the
efficiencies of the features separately: Pearson’s correlation,
gain ratio, information gain, and relief. In these proposed
approaches, the centroids obtained by the traditional
K-means++ clustering are not evaluated in their pure form

but are converted to their weighted values according to the
scores returned by the feature selection methods.

In Algorithm 3, the weighted K-means++ clustering is
expressed. Firstly, the values of the features in all instances are
multiplied by the weight values, and a new set of the instances
is attained. Finally, these transformed instances are used by the
traditional K-means++ clustering, and the more qualified
centroids are returned by this method. )e efficiency and the
success of theweighted clustering approach are detailed in [70].

5.2.1. Weighted K-Means++ and Mapping by Pearson’s
Correlation (WMC). In all approaches in this study, un-
supervised analyses are the focus; therefore, to use feature
selection methods, which are supervised learning algo-
rithms, firstly, the traditional K-means++ clustering is
implemented, and a new dataset with the clusters returned is
created. )e correlation coefficient values are formulated in
the following expressions, for all features can be calculated
with this dataset; thus, these values are evaluated by weighted
K-means++ clustering, and the centroids that are returned
can be placed on the 2D map.

Let us assume that CC is the set of the correlation co-
efficient values between all features and the target attribute as
in the following equation:

CC⟵ 􏽘

f

i�1

n∗􏽐
n
j�1 Iij ∗ tj􏼐 􏼑−􏽐

n
j�1Iij ∗􏽐

n
j�1tj

������������������������������������������

n∗􏽐
n
j�1I

2
ij − 􏽐

n
j�1Iij􏼐 􏼑

2
􏼔 􏼕∗ n∗􏽐

n
j�1t

2
j − 􏽐

n
j�1tj􏼐 􏼑

2
􏼔 􏼕

􏽲 ,

CC⟵ 􏽘

f

i�1
CCi �

CCi

mincc
, mincc > 0> 0,

maxcc
CCi

maxcc < 0,

CCi −mincc
maxcc −mincc

∗ 0.9 + 0.1, else,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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where mincc is the minimum value in CC and maxcc is the
maximum value in CC.

Algorithm 4, formulated to preserve the most valuable
feature determined by Pearson’s correlation, gives a detailed
presentation of the weighted mapping of the centroids on
the 2D map. In this method, the values in the most valuable
feature and the weighted averaged values in the other fea-
tures in the centroids shift their integer equivalents between
0 and c, and between 0 and r, by using the min-max nor-
malization technique. Finally, M is returned.

5.2.2. Weighted K-Means++ and Mapping by Gain Ratio
(WMG). In Algorithm 5, the weighted K-means++ using
gain ratio feature selection and weighted mapping by

preserving the most valuable feature are formulated. )e
same operations as in Algorithm 4 are implemented in this
proposed approach, except the calculation of the weight
values. )e weight values are obtained by the gain ratio
feature selection method in this approach. In addition,
owing to the different weight values from the correlation
coefficient values, centroids with different multivariate
feature values are computed in this mapping method.

Let us assume that Bi represents the ith category in t,
P(Bi) is the probability of the ith category, Gj represents the
jth category in a feature, P(Gi) is the probability of the jth
category, P(Bi|Gj) is the conditional probability of the ith
category given that term Gj appeared, and GR is the set of
the gain ratio values between all features and the target
attribute, as shown in the following equation:

Input: Number of the centroids, k, iteration number (it)
Output: Map with C placed, M
Begin
QM: Population containing individual qubit matrices
PM: Population containing individual probability matrices
qm: Length of QM
pm: Length of PM
tr≔ 0
C: Set of the centroids returned by Algorithm 1
Repeat
For a� 1 : qm
For i� 1 : c
For j� 1 : r
QM · αa,i,j ≔ 1/√2
QM · βa,i,j ≔ 1/√2

For a� 1 : pm
makeOperator(it, PMa)

QM� updateOperator(QM)
tr≔ tr + 1
Until tr� it
Return M having the fittest value
End

ALGORITHM 2: K-means++ and mapping by QGA.

Input: Set of the weight values for all features (W)
Output: Set of the final centroids, C
Begin
For i� 1 : n

For j� 1 : f
Ii,j � Ii,j ∗Wj

Call Algorithm 1 for I to cluster with K-means++
Return C returned by Algorithm 1
End

ALGORITHM 3: )e weighted K-means++ clustering.
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GR⟵
−􏽐b

i�1P Bi( 􏼁 log P Bi( 􏼁 + 􏽐
b
i�1􏽐

g

j�1P Gi( 􏼁􏽐
b
i�1P Bi Gj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 log P Bi Gj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

−􏽐g
j�1P Gi( 􏼁 log P Gi( 􏼁

,

GR⟵􏽘

f

i�1
GRi �

GRi

mingr
, mingr > 0,

maxgr
GRi

, maxgr < 0,

GRi −mingr
maxgr −mingr

∗ 0.9 + 0.1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where mingr is the minimum value in GR and maxgr is the
maximum value in GR.

5.2.3. Weighted K-Means++ and Mapping by Information
Gain (WMI). In Algorithm 5, the weighted K-means++
using information gain feature selection and weighted
mapping by preserving the most valuable feature is
formulated. )e same operations are implemented as in
the previous approach, except the calculation of the
weight values. )e weight values are obtained by the in-
formation gain feature selection method in this approach.

Furthermore, because of the different weight values from
gain ratio values, centroids with different multivariate
feature values are computed in this mapping method
(Algorithm 6).

Let us assume that Bi represents the ith category in t, and
P(Bi) is the probability of the ith category; Gj represents the
jth category in a feature, and (Gj) is the probability of the jth
category; P(Bi|Gj) is the conditional probability of the ith
category given that term Gj appeared, and IG is the set of the
information gain values between all features and the target
attribute:

Input: Number of the centroids, k
Output: Map with C placed, M
Begin
C′: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 1
Ω: Set of the clusters of the instances in I, computed by C′
I′: Set of the instances, with a new attribute as the target by filling it with Ω,
CC: Set of the weight values obtained by Pearson’s correlation feature selection method
C: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 3
fc: )e highest ranked feature in CC
FC: Set of the values in the fcth feature in C
wc: Sum of the scores in the features except the fcth feature
WC: Set of the average of the values in the other features
For i� 1 : k
FCi �Ci,fc

For i� 1 : k
For j� 1 : f
If j is not equal to fc
WCi �WCi+Ci,j

For i� 1 : f
If j is not equal to fc
wc�wc+CCi

For i� 1 : k
WCi �WCi/wc

minfc: )e minimum value is in FC
maxfc: )e maximum value is in FC
minwc: )e minimum value is in WC
maxwc: )e maximum value is in WC
For i� 1 : k
For j� 1 : f
Ei,j � [Ci,j−minj]∗ c/(maxj−minj)

Return M where the centroids in E are mapped
End

ALGORITHM 4: )e weighted K-means++ and mapping by Pearson’s correlation.
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Input: Number of the centroids, k
Output: Map with C placed, M
Begin
C′: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 1
Ω: Set of the clusters of the instances in I, computed by C′
I′: Set of the instances, with a new attribute as the target by filling it with Ω
GC: Set of the weight values obtained by gain ratio feature selection method
C: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 3
fc: )e highest ranked feature in GR
FC: Set of the values in the fcth feature in C
wc: Sum of the scores in the features except the fcth feature
WC: Set of the average of the values in the other features
For i� 1 : k
FCi �Ci,fc

For i� 1 : k
For j� 1 : f
If j is not equal to fc
WCi �WCi+Ci, j

For i� 1 : f
If j is not equal to fc
wc�wc+GRi

For i� 1 : k
WCi �WCi/wc

minfc: )e minimum value is in FC
maxfc: )e maximum value is in FC
minwc: )e minimum value is in WC
maxwc: )e maximum value is in WC
For i� 1 : k
For j� 1 : f
Ei,j � [Ci,j−minj]∗ c/(maxj−minj)

Return M where the centroids in E are mapped
End

ALGORITHM 5: )e weighted K-means++ and mapping by gain ratio.

Input: Number of the centroids, k
Output: Map with C placed, M
Begin
C′: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 1
Ω: Set of the clusters of the instances in I, computed by C′
I′: Set of the instances, with a new attribute as the target by filling it with Ω
IG: Set of the weight values obtained by information gain feature selection method
C: Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 3
fc: )e highest ranked feature in IG
FC: Set of the values in the fcth feature in C
wc: Sum of the scores in the features except the fcth feature
WC: Set of the average of the values in the other features
For i� 1 : k
FCi �Ci,fc

For i� 1 : k
For j� 1 : f
If j is not equal to fc
WCi�WCi+Ci,j

For i� 1 : f
If j is not equal to fc
wc�wc+ IGi

For i� 1 : k
WCi �WCi/wc

minfc: )e minimum value is in FC

ALGORITHM 6: Continued.
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+ 􏽘
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i�1
P Bi Gj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 log P Bi Gj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,
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f

i�1
IGi �

IGi

minIG
, minIG > 0,

maxIG
IGi

, maxIG < 0,

IGi −minIG
maxIG −minIG

∗ 0.9 + 0.1, else,
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where minIG is the minimum value in IG and maxIG is the
maximum value in IG.

5.2.4. Weighted K-Means++ and Mapping by Relief (WMR).
In Algorithm 7, the weighted K-means++ using relief feature
selection and weighted mapping by preserving the most
valuable feature is formulated. )e same operations as in the
previous approach are implemented, except the calculation
of the weight values. )e weight values are obtained by the
relief feature selection method in this approach. Moreover,
because of the different weight values from information gain
values centroids with different multivariate feature values
are computed in this mapping method. Let us assume that R
is a random instance fromD, Ih is the closest instance to R in
the same class where R exists, Im is the closest instance to R
in another class where R does not exist, and RF is the set of
the relief feature values between all features and the target
attribute in the following equation:

RF⟵􏽘

f

i�1
RFi � 0,

RF⟵􏽘
n

i�1
􏽘

f

j�1
RFj � RFj − Ihj −Ri

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Imj −Ri

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

RF⟵􏽘

f

i�1
RFi �

RF
minrf

, minrf > 0,

maxrf
RFi

, maxrf < 0,

RFi −minrf
maxrf −minrf

∗ 0.9 + 0.1, else,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where minrf is the minimum value in RF and maxrf is the
maximum value in RF.

6. Experimental Results and Discussions

Accuracy, consistency, and compatibility tests are imple-
mented in the study.)e accuracy tests involvemeasurements
of precision, recall, f-measure, and accuracy. Consistency tests
involve calculation of the sum of squared error (SSE).
Compatibility tests consider the difference between multi-
variate and 2D structures (DBM2). )is section details the
implementation of the tests on the proposed and traditional
algorithms on 14 datasets of various sizes and comparison of
the test results. For the measurement of the relevant metrics
for these processes, a versatile tool, whose interface is shown
in Figure 1, was developed as a desktop application on Visual
Studio 2017 using the WEKA data-mining software package
for background operations [71]. To implement this tool,
programming aspects included the development of pseudo-
code (fragments were given in Section 4 and Section 5), with
consideration of mainly object-oriented programming con-
cepts, leading to the placement of each algorithm as a class
structure within the application. Finally, C# was selected as
a programming language, in which sorted lists were imple-
mented as data structures.

)e test tool was developed with the capability to select
the desired file, algorithm, size of the 2Dmap, normalization
type, and distance metric. Aside from the algorithms, the
options are 2D map sizes from 2× 2 to 20× 20, Euclidean
(25), Manhattan (26), or Chebyshev (27) distance metrics,
and four normalization types, specifically min-max (28),
z-score (29), decimal scaling (30), and division by maximum
value methods (31):

di,j �

������������

􏽘

f

a�1
Ii,a − Ij,a􏼐 􏼑

2

􏽶
􏽴

, (25)

di,j � 􏽘

f

a�1
Ii,a − Ij,a

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (26)

di,j � max 􏽘

f

a�1
Ii,a − Ij,a

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (27)

where di,j is the distance between the ith and jth instances.

maxfc: )e maximum value is in FC
minwc: )e minimum value is in WC
maxwc: )e maximum value is in WC
For i� 1 : k
For j� 1 : f
Ei,j � [Ci,j−minj]∗ c/(maxj−minj)

Return M where the centroids in E are mapped
End

ALGORITHM 6: )e weighted K-means++ and mapping by information gain.
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Input: Number of the centroids, k
Output: Map with C placed, M
Begin
C′ : Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 1
Ω : Set of the clusters of the instances in I, computed by C′
I′ : Set of the instances, with a new attribute as the target by filling it with Ω
RF : Set of the weight values obtained by information gain feature selection method
C : Set of the centroids obtained by the traditional K-means++ clustering in Algorithm 3
fc : )e highest ranked feature in RF
FC : Set of the values in the fcth feature in C
wc : Sum of the scores in the features except the fcth feature
WC : Set of the average of the values in the other features
For i� 1 : k

FCi �Ci,fc
For i� 1 : k

For j� 1 : f
If j is not equal to fc
WCi �WCi+Ci,j

For i� 1 : f
If j is not equal to fc
wc�wc+RFi

For i� 1 : k
WCi �WCi/wc

minfc: )e minimum value is in FC
maxfc: )e maximum value is in FC
minwc: )e minimum value is in WC
maxwc: )e maximum value is in WC
For i� 1 : k

For j� 1 : f
Ei,j� [Ci,j -minj] ∗ c/(maxj -minj)

Return M where the centroids in E are mapped
End

ALGORITHM 7: )e weighted K-means++ and mapping by relief.

Figure 1: An interface of the tool after clustering.

14 Scientific Programming



NV �
FV− FVmin

FVmax − FVmin
∗ NVmax −NVmin( 􏼁 + NVmin, (28)

NV �
FV− µ

b
, (29)

NV �
FV
10τ

, (30)

NV �
FV

NVmax
, (31)

where FV is the current value, NV is the normalized value of
FV, FVmin is the minimum value in the current feature (F),
FVmax is the maximum value in F, NVmax is the new max-
imum value in F, NVmin is the new minimum value in F, µ is
the mean of the values in F, b is the standard deviation value
in F, and τ is lowest integer value such that max (|NV|)< 1.

6.1. Dataset Description. )e datasets used in our study are
listed in Table 1 together with their characteristics. )ey are
open-source datasets, from the UCI machine learning re-
pository, and are the same datasets used in previous studies
in the literature containing supervised analyses because of
their class attributes.

6.2. Validation Metrics. To verify the accuracy of the algo-
rithms, blind versions of these datasets were created in the
experimental studies, and the results of the precision (Pr), recall
(Re), f-measure (Fm), and accuracy (Ac) tests were generated by
means of matches between the desired and proposed classes.
)e Pr, Re, Fm, andAc test results in this section were calculated
using min-max normalization between 0 and 1 and using the
Euclidean distance metric owing to this being generally used
for K-means++ clustering in literature. In addition, the clus-
tering operations were performed according to the original
class numbers of the datasets, in order to be able to compare the
desired classes with the proposed clusters.

In Table 2, the Ac, Fm, Re, and Pr values, which were
computed by the standard K-means++ clustering, and the
weighted K-means++ clustering with Pearson’s correlation,
gain ratio, information gain, and relief features selection
methods are given. )ey are presented separately as per-
centages for 14 datasets in Table 2. )e Ac, Fm, Re, and Pr
values can be computed as follows, respectively:

Ac �
Tp + Tn

Tp + Tn + Fp + Fn
, (32)

Fm � 2∗
Pr ∗Re

Pr + Re
, (33)

Re �
Tp

Tp + Tn
, (34)

Pr �
Tp

Tp + Fp
, (35)

where Tp is the true-positive value, Tn is the true-negative
value, Fp is the false-positive value, and Fn is the false-negative
value.

To verify the consistency of the centroids, the measure-
ments for SSE analyses were implemented in this experi-
mental study. )e SSE values for 14 datasets using Euclidean,
Manhattan, and Chebyshev distance metrics to see the var-
iances for each metric were computed separately. SSE is
computed as in the following equation:

SSE � 􏽘
k

i�1
􏽘

f

j�1
Ci,j − I″i,j􏼐 􏼑

2
, (36)

where Ii
′ is the set of the closest instances in I to Ci.

Finally, for compatibility testing, the differences between
multivariate and 2D structures of the centroids as ℓ were
measured as detailed in Problem Definition. )e ℓ value is
expected to be zero or approximately zero. Resultant ℓ
values were evaluated separately in terms of the traditional
(KS, KP, and B2FM) and the proposed (KQ, WMC, WMG,
WMI, andWMR) approaches. )e results shown in Figure 2
were obtained on 10 datasets having more than 2 classes
because it was observed that all approaches could map the 2
centroids of the other 4 datasets (Heart Statlog, Johns Hopkins
University Ionosphere Database, Pima Indians Diabetes
Database, and Wisconsin breast cancer) on the furthest edges
on the map, and consequently, the ℓ values were computed as
0, that is, the most optimal value that can be obtained.

6.3. Experimental Results. )e results of accuracy tests show
generally that information gain is the most successful
clustering approach as it has higher Ac values for 12 datasets
than is standard in comparison with the other approaches.
Gain ratio has higher accuracy values than standard for 9
datasets, correlation has higher accuracy for 7 datasets, and
relief has higher accuracy for 5 datasets. Considering Fm
values, information gain has higher values than standard for
10 datasets, gain ratio has higher values for 8 datasets,
correlation has higher values for 6 datasets, and relief has
higher values for 4 datasets. With respect to Re, information
gain has higher values then standard for 10 datasets, gain
ratio has higher values for 8 datasets, correlation has higher
values for 6 datasets, and relief has higher values 5 for
datasets. Finally, regarding Pr values, info gain has higher
percentage values for 9 datasets than standard; gain ratio has
higher values for 8 datasets, correlation has higher values for
6 datasets, and relief has higher values for 3 datasets. )ese
results support the conclusion that weighted K-means++
clustering with feature selection methods, particularly in-
formation gain, provides more accurate centroids than
traditional K-means++ clustering.

)e values in Table 3 were obtained by calculating the
means of the Ac, Fm, Re, and Pr values in Table 2 for 14
datasets. )e results in this table demonstrate that the
weighted clustering approaches help to increase the accuracy
of the clustering algorithms. In addition, information gain is
shown to be the most efficient feature selection method for
clustering operations, as it has the highest values for the
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Table 1: )e datasets with their types, existence of missing values, and sizes.

Datasets Type Instances Features Classes Missing values
Blocks Classification Numeric 5473 10 5 No
Cardiac Arrhythmia Database Numeric 452 278 16 Yes
Column 3C Weka Numeric 310 6 3 No
Glass Identification Database Numeric 214 9 7 No
Heart Statlog Numeric 270 13 2 No
Iris Plants Database Numeric 150 4 3 No
Johns Hopkins University Ionosphere Database Numeric 351 34 2 No
Optical Recognition of Handwritten Digits Numeric 5620 64 10 No
Pima Indians Diabetes Database Numeric 768 8 2 No
Protein Localization Sites Numeric 336 7 8 No
Vowel Context Data Numeric 990 11 11 No
Waveform Database Generator Numeric 5000 40 3 No
Wine Recognition Data Numeric 178 13 3 No
Wisconsin Breast Cancer Numeric 699 9 2 Yes

Table 2: )e Ac, Fm, Re, and Pr values (%) calculated separately for 14 datasets and the standard and the weighted K-means++ clustering
approaches.

Datasets Standard Correlation Gain ratio Info gain Relief

Blocks Classification

Ac 94.81 95.13∗ 94.93∗ 95.12∗ 95.13∗
Fm 95.37 95.59∗ 95.45∗ 95.58∗ 95.59∗
Re 96.86 96.95∗ 96.89∗ 96.95∗ 96.95∗
Pr 92.69 92.03 94.44∗ 94.81∗ 94.45

Cardiac Arrhythmia Database

Ac 97.64 98.08∗ 96.91 97.66∗ 95.85
Fm 94.35 95.97∗ 93.22 93.77 90.67
Re 96.07 96.60∗ 94.69 95.44 93.28
Pr 92.69 95.35∗ 91.79 92.15 88.21

Column 3C Weka

Ac 85.77 84.73 84.29 86.81∗ 83.81
Fm 79.79 81.03 80.46 83.58∗ 79.86
Re 80.24 81.42 80.93 83.95∗ 80.37
Pr 79.35 80.64 80.00 83.22∗ 79.35

Glass Identification Database

Ac 81.05 75.39 77.62 81.55∗ 75.57
Fm 56.85 51.55 50.49 58.48∗ 48.10
Re 79.85 56.54 66.47 79.99∗ 55.27
Pr 44.13 47.38∗ 40.70 46.09∗ 42.57

Heart Statlog

Ac 69.20 73.61∗ 73.61∗ 73.61∗ 73.61∗
Fm 74.16 77.19∗ 77.19∗ 77.19∗ 77.19∗
Re 75.81 78.11∗ 78.11∗ 78.11∗ 78.11∗
Pr 72.59 72.59 72.22 86.29∗ 80.74∗

Iris Plants Database

Ac 91.97 95.98∗ 96.87∗ 96.87∗ 97.32∗
Fm 88.01 94.00∗ 95.33∗ 95.33∗ 97.32∗
Re 88.03 94.01∗ 95.33∗ 95.33∗ 96.04∗
Pr 88.00 94.00∗ 95.33∗ 95.33∗ 96.00∗

Johns Hopkins University Ionosphere Database

Ac 67.22 67.17 67.56∗ 68.21∗ 67.17
Fm 73.60 73.55 73.85∗ 74.30∗ 73.55
Re 78.58 78.46 78.77∗ 79.05∗ 78.46
Pr 69.23 69.23 69.51∗ 70.08∗ 69.23

Optical Recognition of Handwritten Digits

Ac 84.51 84.52∗ 86.17∗ 85.47∗ 84.50
Fm 19.68 19.54 31.97∗ 26.03∗ 19.49
Re 25.15 24.56 41.63∗ 33.02∗ 24.59
Pr 16.17 16.23∗ 25.95∗ 21.48∗ 16.14

Pima Indians Diabetes Database

Ac 77.77 77.77 77.51 78.01∗ 77.10
Fm 80.98 80.98 80.81 81.10∗ 80.53
Re 83.31 83.31 83.26 83.27 83.10
Pr 78.77 78.77 78.51 79.03∗ 78.12

Protein Localization Sites

Ac 92.38 92.05 95.30∗ 91.75 91.85
Fm 79.44 78.44 88.61∗ 78.01 77.37
Re 81.63 80.66 90.06∗ 79.28 79.86
Pr 77.38 76.33 87.20∗ 76.78 75.03
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Table 2: Continued.

Datasets Standard Correlation Gain ratio Info gain Relief

Vowel Context Data

Ac 88.48 88.81∗ 88.68∗ 88.77∗ 87.75
Fm 42.26 43.49∗ 41.30 41.96 35.87
Re 53.06 54.95∗ 49.54 53.97∗ 43.59
Pr 35.11 35.99∗ 35.41∗ 34.33 30.48

Waveform Database Generator

Ac 83.26 83.24 83.38∗ 83.17 83.09
Fm 79.41 79.39 79.54∗ 79.32 79.23
Re 82.67 82.66 82.80∗ 82.65 82.54
Pr 76.40 76.38 76.54∗ 76.26 76.18

Wine Recognition Data

Ac 96.39 94.77 95.94 97.48∗ 97.51∗
Fm 95.14 92.85 94.45 96.36∗ 96.40
Re 95.35 93.01 94.53 96.65∗ 96.75∗
Pr 94.94 92.69 94.38 96.06 96.06

Wisconsin Breast Cancer

Ac 71.69 72.43∗ 72.58∗ 72.58∗ 72.58∗
Fm 77.19 77.69∗ 77.79∗ 77.79∗ 77.79∗
Re 82.48 82.71∗ 82.76∗ 82.76∗ 82.76∗
Pr 72.53 73.24∗ 73.39∗ 73.39∗ 73.39∗

∗)e Ac, Fm, Re, and Pr values (%) higher than the standard approach.
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Figure 2: Continued.
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means of theAc, Fm, Re, and Pr values. Across 14 datasets, the
average of the Ac values of information gain (Ac) is 85.50%,
whereas the standard value is 84.43%; the average of Fm
values of information gain (Fm) is 76.05%, whereas the
standard value is 74.01%; the average of Re values for in-
formation gain (Re) is 80.03%, whereas the standard value is
78.50%; and the average of Pr values for information gain
(Pr) is 73.23%, whereas the standard value is 70.71%. Gain
ratio and correlation techniques also have higher average
values than standard; however, it is observed that relief
cannot obtain higher average values than standard for all
measurements (specifically, Fm and Re values are lower).

As a result, the values in Tables 2 and 3 support the claim
that the most successful approach for determination of the
weights of the features is weighted K-means++ clustering
with information gain. Furthermore, in comparison with the
other feature selection methods, relief is not efficient for
determining the weights.

Traditional K-means++ clustering and four weighted
K-means++ clustering approaches incorporating feature
selection methods were compared in this analysis. )e
number of clusters for each dataset was assumed to be the
original class number. )e SSE values in Figure 3 show that
distance metrics do not affect them significantly, whereas it
can be seen clearly that all weighted clustering approaches
incorporating feature selection methods produce fewer er-
rors than traditional clustering for all datasets. Moreover, the
weighted clustering decreased the SSE values by a large
proportion, with information gain reducing SSE by 33% for
the “Blocks Classification” dataset; relief reducing SSE by
75% for the “Cardiac Arrhythmia Database” dataset; gain
ratio reducing SSE by 45% for the “Column 3C Weka”
dataset; relief reducing SSE by 67% for the “Glass Identi-
fication Database” dataset; gain ratio, information gain, and
relief reducing SSE by 73% for the “Heart Statlog” dataset;
gain ratio and relief reducing SSE by 35% for the “Iris Plants
Database” dataset; gain ratio reducing SSE by 54% for the
“Johns Hopkins University Ionosphere Database” dataset;
gain ratio reducing SSE by 34% for the “Optical Recognition
of Handwritten Digits” dataset; relief reducing SSE by 56%
for the “Pima Indians Diabetes Database” dataset; gain ratio
reducing SSE by 42% for the “Protein localization sites”
dataset; relief reducing SSE by 77% for the “Vowel Context
Data” dataset; information gain reducing SSE by 51% for the
“Waveform Database Generator” dataset; information gain
reducing SSE by 47% for the “Wine Recognition Data”
dataset; and relief reducing SSE by 76% for the “Wisconsin
Breast Cancer” dataset. In particular, relief, gain ratio, and
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Figure 2: )e ℓ values for 8 algorithms and 10 datasets having more than 2 classes.

Table 3: )e means of the Ac, Fm, Re, and Pr values (%) for 14
datasets and the standard and the weighted K-means++ clustering
approaches.

Means Standard Correlation Gain ratio Info gain Relief
Ac 84.43 84.54∗ 85.09∗ 85.50∗∗ 84.48∗
Fm 74.01 74.37∗ 75.32∗ 76.05∗∗ 73.49
Re 78.50 77.42∗ 79.69∗ 80.03∗∗ 76.54
Pr 70.71 71.48∗ 72.52∗ 73.23∗∗ 71.13∗
∗)e Ac, Fm, Re and Pr values (%) higher than the standard approach. ∗∗)e
highest means of Ac, Fm, Re, and Pr values (%).
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Figure 3: Continued.
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information gain are better than the other approaches in
decreasing errors. Moreover, relief is the most successful
approach to reducing SSE in proportion to its accuracy
results.

In Figure 2, the approaches are compared with each
other separately for each dataset, revealing that KS, KP, and
B2FM have generally higher differences than the other
proposed approaches. However, because the ℓ values were
obtained between different ranges for each dataset the
ℓ values were normalized between 0 and 100 for each dataset,
the average of each was calculated, and the results were
obtained as the percentage value to enable clear comparison
(Table 4). Finally, compatibility values were computed as
40% for KS, 50% for KP, and 39% for B2FM, while much
higher values of 96% for KQ, 65% for WMC, 80% for WMG,
79% for WMI, and 69% for WMR were computed.

)e results support the claim that KQ is the most
compatible approach, achieving 96% for all datasets. Ad-
ditionally, the weighted approaches for KS, KP, and B2FM
are more compatible than the traditional approaches. Fur-
thermore, WMG and WMI have higher compatible values
than the other weighted approaches, WMC and WMR. As
a result, because B2FM has a 37% compatibility result,
besides two most valuable features, it can be claimed that the
other features have high mapping efficiency, as well.

7. Conclusions and Future Work

In this paper, five mapping approaches containing hybrid
algorithms were proposed and presented in detail. One
involves K-means++ and QGA used together, and the others

are weighted approaches based on four different feature
selection methods (Pearson’s correlation, the gain ratio,
information gain, and relief methods). According to the
experimental results, by evaluation of DRV-P-MC as an
optimization problem, mapping K-means++ centroids using
QGA emerges as the most successful approach, with the
lowest differences between the multivariate and 2D struc-
tures for all datasets and the highest compatibility value
(96%). Conversely, despite its reputation as themost popular
mapping algorithm, SOM did not perform as expected in
compatibility tests in comparison with the proposed opti-
mization algorithm. However, the weighted approaches
based on information gain, gain ratio, and relief provided
more consistent clusters than traditional clustering with
means indicating approximately 50% lower SSE values.
Additionally, the experiments demonstrate that weighted
clustering by using information gain provides the highest
average accuracy (85.5%) for all 14 datasets and achieves
more accurate placements on the map than PCA, while
preserving the most valuable features, unlike PCA. As
a result, this study claims that the most successful hybrid
approach for mapping the centroids is the integration of
weighted clustering with the information gain feature se-
lection method and QGA.
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Figure 3: )e SSE values that were obtained by using Euclidean, Manhattan, and Chebyshev distance measurements for 14 datasets: (a)
Blocks Classification; (b) Cardiac Arrhythmia Database; (c) Column 3C Weka; (d) Glass Identification Database; (e) Heart Statlog; (f ) Iris
Plants Database; (g) Johns Hopkins University Ionosphere Database; (h) Optical Recognition of Handwritten Digits; (i) Pima Indians
Diabetes Database; (j) Protein Localization Sites; (k) Vowel Context Data; (l) Waveform Database Generator; (m) Wine Recognition Data;
(n) Wisconsin Breast Cancer.

Table 4: )e compatibility results (%) on 10 datasets for the
traditional and the proposed approaches.

KS KP B2FM KQ WMC WMG WMI WMR
40 50 37 96∗ 65 80 79 69
∗)e highest compatibility result (%).
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)is paper proposes novel approaches that are open to
improvement by the use of different hybrid structured al-
gorithms. For example, all approaches in the paper have
focused on K-means++ clustering; however, the proposed
approaches can be adapted for other partitional clustering
algorithms. In addition, it can be foreseen that, for 3-di-
mensional mapping, the weighted approach based on in-
formation gain will show higher performance than the other
approaches because twomost valuable features are preserved
for two dimensions, and the third one can be computed by
the weighted average of other features. Moreover, this
weighted approach offers utility by means of its consistency
and plain algorithmic structure for the visualization of
stream data because the updatable entries of clustering
features can determine a summary of clusters’ statistics
simply. Moreover, the visualization of a large-scale dataset
can be achieved by using the proposed approaches after data
summarization by clustering with many clusters.

)e proposed algorithms can be used extensively across
a wide range of fields including medicine, agricultural biology,
economics, and engineering sciences.)ese fields have datasets
potentially containingmultidimensional structures. If there are
lots of instances in this multidimensional structure, the size of
the dataset mitigates against understanding the dataset and
makes decisions difficult. Our algorithms presented in this
paper shrink the dataset size vertically by means of clustering
and horizontally by means of dimensional reduction.

Notation

D: Dataset
F: Set of the features in D
f: Length of F
I: Set of the instances in D
t: Target attribute
n: Length of I
C: Set of multivariate values of the centroids
E: Set of 2D values of the centroids
k: Number of centroids
M: Matrix where the centroids are mapped
r: Row length of M
c: Column length of M
ℓ: Difference among the multivariate centroids and their

obtained 2D projections
S: Matrix where the distances among the multivariate

centroids in C located in M are put
T: Matrix where the distances among 2D positions of the

centroids in C located in M are put
Z: Matrix where the values obtained after the subtraction

of S and T are put
G: Set of subcategories in a feature
g: Length of G
B: Set of subcategories in t
b: Length of B.
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)e data used to support the findings of this study are
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