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Capturing the body motion of fish has been gaining considerable attention from scientists of various fields. In this paper, we
propose a method which is able to track the full-body motion of multiple fish with frequent interactions. We firstly propose to
model the midline subspace of a fish body which gives a compact low-dimensional representation of the complex shape and
motion. *en we propose a particle swarm-based optimization framework whose objective function takes into account multiple
sources of information. *e proposed multicue objective function is able to describe the details of fish appearance and is also
effective through mutual occlusions. Excessive experimental results have demonstrated the effectiveness and robustness of the
proposed method.

1. Introduction

*e most effective way to quantitatively research behavior
patterns and underlying rules of fish schools is tracking each
fish. It is also helpful in many related applications such as
robotics and virtual reality. For example, based on the body
motion of fish, people can build man-made fish-like
swimming robots and create vivid virtual fish in com-
puters [1–9]. Top-view video and 2D tracking obtain suf-
ficiently informative motion data for behavior investigation
because a shallow water tank is used in many fish behavior
research experiment and the fish typically swim around the
same horizontal plane. However, tracking the full-body
motion of fish typically multiple fish with interactions is
still a challenging task due to (1) full-body motion of fish is
highly complex which is difficult to model with a few pa-
rameters. (2) Fish may move abruptly thus the motion
continuity assumption no longer hold, which causes con-
ventional tracking approaches to fail. (3) Multiple fish cause
frequent mutual occlusions which corrupt the appearance
models of the tracking approaches.

Visual tracking is a hot research topic during the past
two decades, and significant improvements have been made

in all aspects of visual tracking such as appearance model
[10, 11, 12] and estimation method [13, 14]. And multiple
trackers can be utilized for tracking multiple targets [15–17].
Nevertheless, conventional visual trackers which are
designed for tracking the positions of generic objects are not
applicable to the full-body motion tracking problem here.
Another branch of multitarget tracking methods follows the
detection and association framework [18, 19], i.e., the
outputs of detectors are associated with trackers across time.
In this problem, however, the detectors may fail to give
correct output during mutual occlusions which frequently
happen and last for sufficiently long time, causing difficulties
for the subsequent data association.

To be truly helpful for biological research, many numbers
of automatic software were developed formultiobject tracking,
such as ANY-maze and EthoVision [2, 20–22]. But only a few
targets can be tracked and professional experiment setup are
needed. A multiple tracking system of fish on the basis of a
scale-space determinant of Hessian (DoH) fish head detector
and Kalman filter is developed by Qian et al. [23]. Delcourt
et al.’s system can track as many as 100 fish simultaneously but
is not suitable for long period tracking [2]. However, these
approaches highly depend on detection results and motion
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continuity for data association, and discriminative in-
formation of the head is not fully exploited. *e body
modeling and motion tracking of multiple fish is preliminarily
discussed and attempted [24]; however, the effect declines
when the number of fish increases.

Problems of tracking will be more difficult when severe
occlusions occur: individuals may be assigned wrong iden-
tities and these errors would propagate throughout the rest of
the video. Several existing tracking methods combine de-
tection and tracking stages together to correct detection errors
timely. Prior knowledge on possible articulations and tem-
poral coherency is used by Andriluka et al. to associate the
detection of each individual across frames, which depends on
the motion model and object specific codebooks constructed
by clustering local features. Kalal et al. [10] proposed the
framework tracking-learning-detection (TLD) to track single
object, which is divided into tracking, learning, and detection
3 subtasks. *e tracker follows the target across frames; the
detector localizes the object in each frame and is corrected,
and it is updated online by P-N learning. Wang et al. [25]
proposed an effective tracking method using convolutional
neural network (CNN) for head identification. *ey firstly
detect fish heads using a scale-space method, and data as-
sociation across frames is then achieved via identifying the
head image pattern of each individual fish in each frame via
CNN specially tailored to suit this task. Finally they combine
prediction of the motion state and the recognition result by
CNN to associate detection across frames. But samples must
be collected for training CNN, and when new targets occur in
the video, their method cannot work.

We present in this paper a method that is capable of
tracking the full-body deformation of multiple fish with fre-
quent mutual interactions. Since in most of the time, fish
motion and deformation are horizontal, we capture the videos
from a top view. In order to model the complex fish body
deformation, a midline subspace model is firstly learned from
a large number of training samples which give a compact
representation of fish body and thus facilitate subsequent
motion estimation. *en we propose a multicue cost function
which is able to characterize the subtitle appearance details of
fish body during swimming. Moreover, this cost function is
able to work under partial occlusions, making the system fully
automatic. Extensive experimental results have demonstrated
the effectiveness and robustness of the method.

*e contribution of the paper can be summarized as
follows:

(i) We introduce a midline subspace model learned
from large amount of data to model the complex
shape and deformation of a fish body. *is subspace
model is compact and low-dimensional thus greatly
facilitating parameter optimization.

(ii) We propose a highly discriminative and robust
multicue objective function which models different
aspects of the image structures of fish region.

(iii) We have conducted systematic experiments to
demonstrate the effectiveness of the proposed
method.

2. Shape and Kinematic Model

2.1. Midline Representation. Since the videos are captured
from a top view, the shape of fish on images is approximately
symmetrical about its midline as shown in Figure 1. So the
deformation of the body can be viewed as driven by the
midline. We will show later that once the midline is de-
termined, the contour of the whole body shape can be re-
covered easily according to a reference shape.

As shown in Figure 1, a midline can be approximated
with a chain of n− 1 articulated equal-length line segments.
*us a midline is made up of n joints pi 

n

i�1: a head point, a
tail point, and n− 2 middle joints. During one-time-step
deformation, the length of each segment is kept fixed. We
use Θ � (x, y, θ1, θ2, . . . , θN) to denote the parameters of a
midline, where (x, y) is the position of the head point, θ1 is
the orientation of the first line segment, and θi(i> 1) is the
rotation angle of the ith segment relative to the first one (i.e.,
the absolute rotation angle is θ1 + θi). *e first three pa-
rameters Θr � (x, y, θ1) determine a rigid body transform,
and the rest of the parameters Θd � (θ2, θ2, . . . θn) account
for the nonrigid deformation of body shape. Given the
parameter vector Θ, the ith midline points can be recovered
as

pi � x + 
i

j�2
cos θ1 + θj , y + 

i

j�2
sin θ1 + θj ⎛⎝ ⎞⎠. (1)

*e body width of the shape (di) keeps fixed in one time
step, so a pair of contour points q±i can be recovered as

q
±
i � pi ±

di

2
−sin θ1 + θj , cos θ1 + θj  . (2)

*us with a reference contour and a midline represented
by n joints, a set of 2n contour points can be recovered.
Given the image at t as It, the tracking problem can be
formulated as maximizing probability: p(Θt ∣ It).

2.2. Learning Subspace of Midlines. *e major defect of the
above representation is the high dimensionality, as
sufficient number of line segments is essential to guarantee
accurate approximation of the fish body shape. In fact, such
a representation is redundant as the deformation of the fish
is governed by fewer factors. So we seek to embed the
deformation parameters into a lower dimensional linear
subspace, which can be learned from large amount of
training samples.

We collect Nt � 1800 midlines of various postures and
perform principal component analysis (PCA) on their
nonrigid deformation parameters Θi

d 
Nt

i�1. We choose k � 6
basis Φ � (ϕ1, ϕ2, . . . , ϕk) from the PCA results, and thus
each Θd is the linear combination of the following basis:

Θd � 
k

i�1
ξiϕi � Φ ξ1, . . . , ξk( 

T
+ Θd, (3)

where the coefficient ξi � (Θd −Θd)Tϕi andΘd is the sample
mean. We find that 6 bases are sufficient to approximate a
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midline to a satisfactory accuracy. In fact, 6 bases account for
99.9% of the variance. Figure 2 shows the training samples of
PCA and the �rst four principal components of PCA. Now
Θd is replaced with 6 parameters, and thus the parameters to
be estimated can be written as Θ′ � (x, y, θ1, ξ1, . . . , ξk).
Tracking problem becomes �nding the maximum proba-
bility of p(Θt′ ∣ It).

3. Multicue Objective Function

To take into consideration the image cues from the whole
�sh body area as well as some surrounding context, the
midlines are extended as straight lines at the head to
guarantee su�cient coverage. And each line segment pipi+1

�����→

is associated with a rectangular region whose width is
|pipi+1| and length is two times the body width at pi (i.e.,
2di). Each rectangle moves in rigid transforms with pipi+1

�����→.
Considering the observation that the image likelihood of
di�erent parts of the �sh body should play di�erent roles in
tracking, we divide the points into four parts: Ω � ∪4i�1Ωi as
shown in Figure 3 and sample points are uniformly picked in
each rectangle. We compute image likelihood function for
each of the four parts, respectively, and then the weighted
sum of the functions is computed as the �nal objective
function value. �ree kinds of image likelihood which
characterize three kinds of information are considered, and
they are temporal appearance coherence, segmentation
compatibility, and shape self-symmetry.

3.1. Temporal Appearance Coherence. �e appearance co-
herence is the basic assumption in visual tracking, which
enforces the appearance of the estimated target state to be
consistent with a reference appearance model. We compute
the similarity between the pixel values in each part at t and
their correspondences at a reference frame t0. �e nor-
malized cross-correlation (NCC) is adopted as the similarity
metric. For example, the similarity score of the �rst part is

E1
app � Ncc I0 x ∣ x ∈ Ω

t0
1( ), It x ∣ x ∈ Ω

t
1( )( ). (4)

�e scores of the rest three parts can be computed
likewise.

3.2. Segmentation Compatibility. Segmentation compati-
bility is introduced to enforce the estimated shape be
compatible with the segmentation result. Since segmentation

performance is stable across time, enforcing segmentation
compatibility will prevent the tracker from drifting. As we
select a larger region which contains some context pixels,
both the foreground and background should be compatible
with the reference. Let Bt denote a segmented binary image
of It, xti is the ith point in Ωt1, and then the segmentation
compatibility score of the ith part can be computed as E1

seg fg
and E1

seg bg:

Eiseg fg �
i ∣ Bt0 x

i
t0

( ) � Bt xit( ) � 1{ }
∣∣∣∣∣

∣∣∣∣∣
i ∣ Bt0 x

i
t0( ) � 1{ }

∣∣∣∣∣
∣∣∣∣∣

,

Eiseg bg �
i ∣ Bt0 x

i
t0

( ) � Bt xit( ) � 0{ }
∣∣∣∣∣

∣∣∣∣∣
i ∣ Bt0 x

i
t0( ) � 0{ }

∣∣∣∣∣
∣∣∣∣∣

,

(5)

where the �rst term Eseg fg forces the estimated shape cover
more foreground pixels and the second term Eseg bg

(x, y)

(a)

p1p2
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qi+

pi θi
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θ1
x
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Figure 1: (a) An example of �sh shape. (b) Illustration of the midline representation.
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pc1
pc2

pc3
pc4

(b)

Figure 2: (a) Midline samples for training PCA. (b) First four
principal components of PCA.

Rigid rectangles

Ω1
Ω2

Ω3
Ω4

Figure 3: �e distribution of sample points and division of the
points.
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encourages the shape to leave less background pixels un-
covered.�e segmentation compatibility scores of three other
parts can be computed likewise.

3.3. Shape Self-Symmetry. So far, we have exploited the
appearance coherency and segmentation cues; however, the
internal structure of the shape has been ignored. As discussed
previously, the shape is self-symmetrical about themidline. So
if a midline is correctly estimated, the image structures on the
two sides of the midline should be symmetrical. �is prior
knowledge o�ers a stable and drifting free guidance for
tracking. Like the two previous cues, we compute a self-
symmetrical score for each of the four parts. Take the third
part Ω3, for example, the self-symmetrical score is computed
as theNCC between two pixel value vectors, which are formed
by the pixel values of sample points on the two sizes ofmidline
(as shown in Figure 4).�e order of the pixel values should be
adjusted so that two points that are symmetrical about the
midline are in the same position of the array. Formally, the
score can be written as

E3
sym � Ncc I x+i ∣ x

+
i ∈ Ω

+
3( ), I x−i ∣ x

−
i ∈ Ω

−
3( )( ), (6)

where x+i and x
−
i are the ith point pair which are symmetrical

about the midline. �e shape self-symmetry scores for the
other parts can be computed likewise.

3.4. Combination of Multiple Cues. �e �nal objective
function is the weighted sum of the scores of all the four
parts:

E Θt′( ) �∑
4

i�1
wi E

i
app + E

i
seg fg + E

i
seg bg + E

i
sym( ), (7)

where wi is the weight of part i, which is set empirically in
the experiments. Di�erent parts should play di�erent
roles in tracking, and this has been proven in our ex-
periments. We �nd that the head (part 1) and tail (part 4)
should be associated with larger weights than parts 2 and
3, and this is possibly because the image regions of head
and tail contain more discriminative features than the
other two parts.

4. Sequential Particle Swarm Optimization

With the objective function de�ned, the tracking problem
becomes maximizing E(Θt) with respect to the parameters
Θt′. However, this objective function is highly complex and
nondi�erentiable. Particle Swarm Optimization is a sto-
chastic optimization technique which has received much
attention due to its ability in �nding optimum of complex
problems.

We adopt a standard particle swarm optimization
procedure [26]. A set of candidate solutions are maintained
as particles, which move in the parameter space in the in-
�uence of a global best solution and a particle’s local best
solution. In each time step, the tracker generates initial

solutions using a second-order dynamic model:

Θt′ � 2Θt−1′ −Θt−2′ + nt−1, (8)

where nt−1 ∼ N(0,Σ) is the Gaussian noise.

5. Experiments

We captured the data for evaluation: 20 zebra �sh were
placed in a water tank and a video camera was placed on top
of the tank which recorded the movements of the �sh. �e
resolution of the camera is 1024 by 1024, and the frame rate
is 100 fps.

We �rst evaluate the method following the manner of
conventional multiple target tracking. �e tracking of a
target is considered to be completed if no ID switch or
target lost occurs during the entire time step. We have
manually labeled a 650-frame long video for automatic
evaluation. A tracker is considered to be failed if both
estimated shape’s head and tail positions are more than 20
pixels away from the labeled positions which are con-
sidered as groundtruth. We get an 800-frame video with
10 zebra �sh, which is shot in front light. �e resolution of
the video is 2048W by 2040 H, and the frame rate is
100 fps. On this data set, we evaluate the adaptability of
our method.

In order to evaluate the role of di�erent cues, we evaluate
di�erent combinations of cues on the labeled data. �e
evaluation results are listed in Tables 1 and 2.

We evaluate di�erent methods on the labeled data and
the 800-frame video. �e evaluation results of di�erent
methods are listed in Tables 3 and 4. Qian’s method is more
prone to IDS and lost when the number of frames occluded
by each other increase. In Wang’s method, the lower image
resolution possibly leads to the worse e�ect of CNN
(1024∗1024 vs 2048∗ 2040). �e proposed method utilizes
more body shape information and thus has better
performance.

To evaluate the accuracy of the estimated shape, we give a
plot of errors of the head and tail point of one �sh in
Figure 5. From the �gure, we see that the error does not
accumulate as time grows. �e estimated tail point vibrates
more violently than the head point, and this is possibly
because the appearance of the tail is not quite stable as that of
the head point.

We also give some qualitative results of the tracked shape
under complex mutual interactions in Figure 6. With the

Ω3
+

Ω3
–

Symmetrical
point pair

Figure 4: Illustration of the computation of the self-symmetry cue.
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designed multicue objective function and midline-based
subspace model, our method is able to overcome medium
degree of partial occlusions. And we find our method may
fail if the occluded area is too large. Finally, we plot the
trajectories of the estimated head position of 20 fish in
Figure 7. For better visualization, we added time as the third
dimension of the plot.

6. Conclusion

We present in this paper a method that is capable of tracking
the full-body deformation of multiple fish with frequent oc-
clusions and interactions. We propose a midline subspace-
based model to represent each complex shape and de-
formation of the fish. And we further propose a PSO-based

Table 1: Evaluation results of different cues on video of 650 frames.

Methods cue1 + cue2 cue1 + cue3 Full
IDS 4 6 2
Lost 2 2 1
Completed 14 12 17
Total trajectories 20 20 20

Table 2: Evaluation results of different cues on video of 800 frames.

Methods cue1 + cue2 cue1 + cue3 Full
IDS 2 2 1
Lost 1 1 0
Completed 7 7 9
Total trajectories 10 10 10

Table 3: Evaluation results of different methods on video of 650 frames.

Methods IDS Lost Completed
Proposed 2 1 17
Qian et al. [23] 3 3 14
Wang et al. [25] 3 2 15

Table 4: Evaluation results of different methods on video of 800 frames.

Methods IDS Lost Completed
Proposed 1 0 9
Qian et al. [23] 2 1 7
Wang et al. [25] 1 1 8

0 100

20

15

10

5

0
200 300

Tail
Head

400 500 600 700

Figure 5: Error plot of the tracked head and tail positions of one target by our method.
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multicue optimization method to estimate the parameters of
the model. Experimental results demonstrate the e�ectiveness
of the proposed method.
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Figure 7: �e resultant trajectories of the �sh head by the proposed method.
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