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Dynamically dimensioned search (DDS) is a well-known optimization algorithm in the field of single solution-based heuristic
global search algorithms. Its successful application in the calibration of watershed environmental parameters has attracted
researcher’s extensive attention.,e dynamically dimensioned search algorithm is a kind of algorithm that converges to the global
optimum under the best condition or the good local optimum in the worst case. In other words, the performance of DDS is easily
affected by the optimization conditions. ,erefore, this algorithm has also suffered from low robustness and limited scalability. In
this work, an improved version of DDS called DDS-POBL is proposed. In the DDS-POBL, two effective methods are applied to
improve the performance of the DDS algorithm. Piecewise opposition-based learning is introduced to guide DDS search in the
right direction, and the golden section method is used to search for more promising areas. Numerical experiments are performed
on a set of 23 classic test functions, and the results represent significant improvements in the optimization performance of DDS-
POBL compared to DDS. Several experimental results using different parameter values demonstrate the high solution quality,
strong robustness, and scalability of the proposed DDS-POBL algorithm. A comparative performance analysis between the DDS-
POBL and other powerful algorithms has been carried out by statistical methods by using the significance of the results.,e results
show that DDS-POBL works better than PSO, CoDA, MHDA, NaFA, and CMA-ES and gives very competitive results when
compared to INMDA and EEGWO. Moreover, the parameter calibration application of the Xinanjiang model shows the ef-
fectiveness of the DDS-POBL in the real optimization problem.

1. Introduction

,e rapid development of productivity of human society has
brought a great demand for optimization algorithms.
Obtaining a good solution to the complex optimization
problems in the real world becomes the specialized task for
the optimization algorithms. Traditional optimization al-
gorithms such as Newton’s method and the gradient
method, which are based on mathematical theory, can
hardly solve these complex optimization problems due to the
extreme computation burdens. ,erefore, highly efficient
optimization algorithms have become the focus of research
in recent years. ,e metaheuristic algorithm inspired from
various phenomena of nature is one of the prevailing highly

efficient algorithms. ,e biggest characteristic of these al-
gorithms is to continuously evaluate candidate solutions
through multiple iterations and try to improve upon these
solutions. ,ese metaheuristic algorithms are usually clas-
sified into two main categories [1]: single solution-based
heuristic global search algorithms and population-based
heuristic algorithms. Some of the famous single solution-
based heuristic global search algorithms are simulated
annealing (SA) [2], threshold accepting method (TA) [3],
microcanonical Annealing (MA) [4], tabu search (TS) [5],
guided local search (GLS) [6], and dynamically dimensioned
search (DDS) [7, 8]. Population-based ones include evolu-
tionary algorithms (EA) [9], genetic algorithms (GA) [10],
particle swarm optimization (PSO) [11], dragonfly algorithm
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(DA) [12, 13], and shuffled complex evolution (SCE) al-
gorithms [14].

According to the No Free Lunch (NFL) theorem [15], it
is hard for researchers to propose a metaheuristic algorithm
that is best suited for solving all optimization problems.,at
is to say, a particular algorithm may show very promising
solutions only on certain problems but not on others. From
this view, both the single solution-based heuristic global
search algorithms and population-based heuristic algo-
rithms have their respective strengths and weaknesses. ,e
main trouble they all encounter is that the rates of con-
vergence are very low, thus bringing them both a high
computing burden and low results accuracy and limiting
their applications in the real world. ,is study will focus on
single solution-based heuristic global search algorithms
especially the DDS algorithm and try to rectify its slow
convergence speed and low solutions accuracy.

,e dynamically dimensioned search (DDS) algorithm,
introduced by Tolson and Shoemaker [7], provides a rel-
atively new potential for the family of single solution-based
heuristic global search algorithms. At the initial stages of
iteration, the algorithm is mainly based on the global search
and is converted to local search at the later stages of it-
eration. ,is special search mechanism of the DDS algo-
rithm is achieved by dynamically and probabilistically
reducing the number of dimensions in the neighborhood
[7]. Different versions of DDS have been proposed and
successfully applied to practical engineering optimization
problems such as the hybrid discrete dynamically di-
mensioned search (HD-DDS) which was used to solve
discrete, single-objective, constrained water distribution
system (WDS) design problems [8], the modified dy-
namically dimensioned search (MDDS) which was pre-
sented to optimize the parameter for distributed
hydrological model [16], the DDS algorithm which was
used to automate the calibration process of an unsteady
river flow model [17], the Pareto archived dynamically
dimensioned search (PA-DDS) which was applied for
multi-objective optimization [18], and the combining filter
method and dynamically dimensioned search which was
designed for constrained global optimization problems
[19]. Although the DDS algorithm partly overcomes the
common drawback of single solution-based search algo-
rithms to some extent, it does not still provide an ideal
solution to address the poor and slow convergence of the
global optimum in the best case or an acceptable local
optimum in the worst case completely.

,e drawbacks of the DDS algorithm, by which the
global optimal is obtained in the best case and a local op-
timum is achieved in the worst case, make DDS not to be a
perfect algorithm. In practical applications, most optimi-
zation problems involve complex constraints. To overcome
these drawbacks and obtain a solution that is globally op-
timal or close to it, DDS needs to be improved. ,rough the
in-depth analysis of the potential solution update principle
of the DDS algorithm, we found that DDS does not have a
clear search direction when updating this potential solution.
,is makes us realize that the lack of clear search direction in
DDS may be the main reason why it cannot converge to the

global optimal vicinity in poor conditions. In literature [20],
POBL is introduced to be an algorithm that can guide the
search direction of each dimension. In this paper, we use
POBL to guide the search direction of the DDS algorithm. In
addition, the golden section (GS) search is used in con-
junction with the POBL algorithm to guide DDS to quickly
gather the potential solution near the global optimal solution
and accelerate the convergence speed of the DDS. Hence, an
improved version of dynamically dimensioned search al-
gorithm named the “dynamically dimensioned search al-
gorithm embedded with piecewise opposition-based
learning” (DDS-POBL) algorithm is presented in this work.
,e proposed algorithm reconstructs the framework of the
DDS algorithm by introducing piecewise opposition-based
learning (POBL). ,e bounds of each variable will be
updated dynamically along with the number of iterations
and increased by adopting the golden ratio and the piecewise
opposite number of the obtained best positions. A dy-
namically dimensioned search algorithm combined with
dynamic bounds adjustment and opposition-based learning
is one of the major contributions of this work.

,e rest of the content of the paper can be listed as
follows: in Section 2, a brief description to the DDS algo-
rithm is presented. Section 3 contains description of mo-
tivation and the proposed DDS-POBL algorithm. Several
numerical experiments and statistical analysis are reported
in Section 4 and the comparison experiments between the
proposed DDS-POBL and standard DDS and other state-of-
the-art algorithms has also been carried out. And finally, a
brief conclusion and future research direction are detailed in
Section 5.

2. Dynamically Dimensioned Search Algorithm

,e DDS algorithm is a greedy type of algorithm developed
by Tolson and Shoemaker in 2007 [7]. ,e main purpose of
the proposed DDS algorithm is to solve the calibration
problems that exist in the context of watershed simulation
models. Since it is easy for programming and based on a
simple concept and takes into account the global and local
search, it has attracted extensive attentions for research
studies.,emain difference between the DDS algorithm and
existing optimization algorithms is that the neighborhood is
dynamically adjusted by changing the dimension of the
search and no algorithm parameter needs tuning. In the
optimization process, the DDS algorithm obtains a good
approximation of the globally optimal solution, rather than
the precise global optimum within a specified maximum
number of function evaluations. ,us, DDS is suited for
computationally expensive optimization problems such as
distributed watershed model calibration.

As mentioned above, the DDS algorithm takes into
account the global and local search in its iteration because
the algorithm searches globally in the initial iterations and
becomes increasingly local when approaching the maximum
allowable number of iterations [7, 16]. In each iteration, j is
randomly selected with probability P from the decision
variables D for inclusion in neighborhood Iperturb. ,e ex-
pression of probability P is as follows:

2 Scientific Programming



P(k) � 1−
ln(k)

ln kmax( 
, (1)

where k indicates the number of current iteration and kmax
represents the maximum number of iteration.

At each iteration k, a new potential solution xtrial
k,j is

obtained by perturbing the current best solution xbest
k,j only in

the randomly selected dimensions. ,ese perturbation
magnitudes are sampled using a standard normal random
variable N(0, 1), reflecting at decision variable bounds as
follows:

x
trial
k,j �

xbest
k,j , if Iperturb(j) ∈∅,

xbest
k,j + r · ubj − lbj  · N, otherwise,

⎧⎪⎨

⎪⎩

(2)

where r is a scalar neighborhood size perturbation factor,
ubj and lbj correspond to the upper and lower bounds of the
jth dimension (variable), and N denotes a standard normal
random number.

In order to accurately choose the best solution between
the current best xbest

k and the trial potential xtrial
k for the

next iteration, the greedy search method is employed.
,e current best xbest

k will be replaced by the trial xtrial
k if

the objective function value of xtrial
k is smaller than xbest

k

(f(xtrial
k )<f(xbest

k )); otherwise, the current best position
xbest

k is reserved for the next iteration. ,e pseudocode de-
scription of the DDS algorithm is presented in Algorithm 1.

3. Proposed DDS-POBL Algorithm

3.1. Analysis of the Low Searching Ability of DDS Algorithm.
As described above, the DDS algorithm is not only a local
optimization algorithm, but it also has strong ability to
search globally. At the beginning, the probability that
provokes the number of dimensions to be perturbed in the
neighborhood is large, which makes the DDS algorithm
searche globally. With the increase of iterations, the prob-
ability decreases gradually and becomes a local search.
During this search, the trial candidate is achieved by per-
turbation operation on the current best point by using
standard normal distribution, which brings more useful
information to the search.

Based on the above analysis, it can be found that the DDS
algorithm can be successfully transformed from the global
search to the local search with the decrease of perturbation
probability and that the diversity of trial candidate solution
is also obtained from the current best solution through the
disturbance of the standard normal distribution. But then
two natural questions are raised: what is the effective search
direction for the DDS algorithm, and which promising area
is more likely that the trial candidate solution or the current
best solution will approach the global optimum? Un-
fortunately, however, it is difficult to find reasonable answers
from the existing literature. ,is is the main drawback of the
DDS algorithm, and probably this is the reason why the final
solution of DDS is always a good approximation of the
globally optimal solution rather than the precise global

optimum. It tells us that it is very important to adaptively
adjust the search direction and search area in the iteration
process. ,erefore, an improved search mechanism for
guiding the DDS algorithm search efficiently is needed in
avoiding the problem of premature convergence and stag-
nation in local optima.

To accomplish this task, in this work, the dynamically
dimensioned search algorithm embedded with piecewise
opposition-based learning has been proposed, in which the
search direction is determined by piecewise opposition-
based learning strategy, and the promising areas are ob-
tained by adjusting the boundaries of variables using the
golden ratio.

3.2. Piecewise Opposition-Based Learning (POBL) 4eory.
Before the detailed description of the piecewise opposition-
based learning theory, it is necessary to define the important
concepts related to this algorithm.

Definition 1. Let P(x1, x2, . . . , xn) be a point in n-di-
mensional space, where x1, x2, . . . , xn ∈ Ω and xi ∈ [lbi, ubi]

∀i ∈ 1, 2, · · · , n. ,e piecewise opposite point of P is defined
by P+(x+

1 , x+
2 , · · · , x+

n ):

x
+
i � lbi + ubi − xi. (3)

Let P+(x1, x2, . . . , xn) be a candidate solution in an n-
dimensional solution space with xi ∈ [lbi, ubi]

∀i ∈ 1, 2, · · · , n. ,e quality of a candidate solution is
measured by calculating its fitness function value f(x). If
f(P+)≥f(P) (for a maximization problem) or f(P+)

≤f(P) (for a minimization task), then replace P with P+;
otherwise, P is preserved in the next iteration. A formal
description of the piecewise opposition-based learning al-
gorithm is presented in Algorithm 2.

3.3. Piecewise Opposition-Based Learning Determines the
Right Search Direction. For the current heuristic optimiza-
tion algorithms, how to find its best search direction does
not have a fixed operationmode. In general, researchers tend
to use a greedy search method, namely, the trial-and-error
method, to determine the search direction of candidate x. At
each iteration, the algorithm tries to improve upon this
candidate x until it eventually converges to the ideal optimal
solution or meets certain predefined termination criteria.
,erefore, the computational burden of these algorithms
subjects to the quality of the candidate solution. However,
the initial estimates are not always close to the actual so-
lution. In some cases where they place on the opposite
location of where the current candidate solution resides, it is
always computationally expensive for the algorithm to
converge [21]. According to Tizhoosh [21], searching for the
candidate solution at all directions simultaneously is an
available method to improve the poor quality of the initial
guess. Fortunately, the POBL algorithm is proposed as the
right way to guide the algorithm to search for the right
direction based on this intuition, in which the opposite
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estimate x+ of x is simultaneously taken into account with x
at each iteration of the algorithm.,erefore, introducing the
POBL theory into the DDS algorithm can guide the algo-
rithm to search the right direction effectively. Meanwhile, in
order to obtain a better initial guess, we set the current best
solution of the standard DDS algorithm as the initial can-
didate solution of the POBL algorithm, as shown in
Algorithm 2.

3.4.4eGoldenSection (GS)CanGuide the Solutions to Search
for Promising Areas. ,e golden section (GS) is one of the
most amazing phenomena present in nature. ,e successful
applications of GS-based rule have been widely observed.
One of them is the optimal method based on the GS. ,e
core framework of this method is to divide the space into
several sections or groups. ,e main goal is to separate the
space using this region division method in a way that allows
for better functionality, spacing, and distribution [22]. It is
well known that the feasible or theoretical optimal solution

of the optimization problem is distributed in a certain in-
terval of its solution space. ,erefore, if we can find such a
promising interval quickly, the algorithm will quickly find
the optimal solution. At present, the bisection method and
GS are two main fast search methods that gradually reduce
the interval to find the minimum. However, the search ef-
ficiency of the GS is higher than that of the bisectionmethod.
It has been proved in practice that the GS method can
achieve the results obtained through 2,500 experiments by
the bisection method only with 16 trials. ,erefore, the GS
search is an efficient method to gradually reduce the interval
where the minimum value is located. ,e key is to keep that
no matter how many points have been evaluated, the
minimum value is within the interval defined by the two
points adjacent to the point with the lowest evaluated value
so far [23]. According to [23], its specific implementation
steps and principle are as follows:

Figure 1 shows a simple step in the technique of finding a
minimum in one-dimensional solution space of a unimodal
function. As described in Figure 1, the functional values off(x)

Inputs: Scalar neighborhood size perturbation factor r � 0.2, maximum number of iterations kmax, number of variables
(dimension) n, upper bounds ub and lower bounds lb

Outputs: xbest and fbest

(1) Initialization
x0 � [x0

1, x0
2, . . . , x0

n], x0
i � lbj + rand · (ubj − lbj)

Set k� 1, xbest � x0, fbest � f(xbest), Iperturb � ∅
(2) while k≤ kmax do
(3) Compute the probability of perturbing the decision variables Pk using equation (1)
(4) for j � 1 to n do
(5) Generate uniform random numbers, ω
(6) if ω<Pk then
(7) Set Iperturb(j) � 1
(8) end if
(9) end for
(10) Generate a standard normal random numbers, N

(11) for j � 1 to n do
(12) xtrial

j � xbest
j + (ubj − lbj) · Iperturb(j) · r · N //equation (2)

(13) end for
(14) for j � 1 to n do
(15) if xtrial

j < lbj then
(16) Set xtrial

j � lbj + (lbj −xtrial
j )

(17) if xtrial
j > ubj then

(18) Set xtrial
j � lbj

(19) end if
(20) end if
(21) if xtrial

j > ubj then
(22) Set xtrial

j � ubj − (xtrial
j − ubj)

(23) if xtrial
j < lbj then

(24) Set xtrial
j � ubj

(25) end if
(26) end if
(27) end for
(28) Evaluate f(xtrial)

(29) if f(xtrial)<fbest then
(30) Set xbest � xtrial, fbest � f(xtrial)

(31) end if
(32) Set k � k + 1
(33) end while

ALGORITHM 1: DDS algorithm.
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are represented on the vertical axis, and the horizontal axis is the
range of values of x parameter. First, the functional values of
f(x) at the three points of x1, x2, and x3 are calculated, and the
results that f1 >f3 >f2 are known. Since f2 is smaller than
either f1 or f3, it is clear that the interval from x1 to x3 is a
promising area that can be used to �nd a minimum.

�e next operation in the minimization process is to
“probe” the function by evaluating a new value x, namely, x4.
Since the unimodal functional values satisfy f2 <f3 <f1, a
function value smaller or bigger than f2 can be �nd in the
interval between x2 and x3. �erefore, it is most e�ective to
select x4 in the largest interval, i.e., between x2 and x3. From
Figure 1, in the case where the function yields f4a, a
minimum lies between x1 and x4, and the three points x1,x2,
and x4 will be the new triplet points. However, if the
function yields the value of f4b, then a minimum lies be-
tween x2 and x3, and the new triplet of points will be x2, x4,
and x3. Based on this analysis, in either case, we can �nd a
narrower promising search area guaranteed to contain the
minimum value of function.

3.5. Design of Proposed DDS Embedded with Piecewise
Opposition-Based Learning: DDS-POBL. Based on the anal-
ysis of the POBL algorithm, it can be seen that a good choice of
the initial guess is crucial for the algorithm to quickly �nd the
right search direction. To apply the POBL algorithm correctly
to the DDS algorithm and to help it �nd the right search
direction, we use the current best solution obtained from the
DDS algorithm as the initial guess for POBL. After using the
POBL algorithm to determine the optimal search direction for
the DDS algorithm, the next step is to use the GS search
method to guide the DDS algorithm to search for the most
promising interval. By determining the correct search direction
of the DDS algorithm and guiding it search to the most
promising area, the present DDS-POBL algorithm has greatly
improved its global and local optimization performance
compared with the standard version of the DDS algorithm, and
its applications have also been greatly expanded.

�e pseudocode of the proposed DDS-POBL algorithm
is described as Algorithm 3. In Algorithm 3, we �rst initialize
the parameters of the DDS algorithm and set r� 0.2,
g � 0.618, and Iperturb � 0. �en, we run the DDS algorithm
using pseudocode of lines 1 through 31 to get a better so-
lution xbest and its �tness value f(xbest). Next, we invoke
Algorithm 2 to �nd the right search direction and use the
xbest as the initial input for the POBL algorithm. A potential
optimal solution P+ is found by executing the POBL algo-
rithm, i.e., executing the �rst to the ninth lines of Algo-
rithm 2. Finally, the GS method is used to search the most
promising interval, i.e., the 10th through 18th lines of Al-
gorithm 2 are executed.

4. Numerical Experiments and Results

4.1. Benchmark Functions and Parameter Settings. A set of
benchmark functions, including 23 test problems, were col-
lected from several literature studies [13, 24–26] and applied

Begin: Input xbest and its �tness value f(xbest), golden section ratio g � 0.618
(1) Set P � xbest, f(P) � f(xbest)
(2) for j � 1 to n do
(3) P+j � lbj + ubj − xbestj
(4) end for
(5) Calculate the �tness value of P+, f(P+)
(6) if f(P+)>f(P) then
(7) P+ � P
(8) end if
(9) Set xbest � P+

Update the search interval [lbj, ubj] for next iteration using GS method
(10) for j � 1 to n do
(11) Set X1 � lbj + g · (ubj − lbj), X2 � ubj −g · (ubj − lbj)
(12) Calculate the �tness values of X1 and X2, f1 and f2
(13) if f(X1)>f(X2) then
(14) Set lbj � X1
(15) else
(16) Set ubj � X2
(17) end if
(18) end for

ALGORITHM 2: POBL and GS algorithm [21].

f1

f2

f3
f4a

f4b

x1 x2 x4 x3

a b

c

Figure 1: Schematic diagram of the golden section.
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to evaluate the performance of the proposed algorithm. ,e
selected test functions are classified into two categories:
unimodal and multimodal benchmark test functions. ,e
unimodal problems with only one global optimum and no
local optima are suitable for investigating the exploitation of
the DDS-POBL algorithm. However, multimodal problems
are often used to investigate the exploration performance of
the algorithm and the local optimal avoidance ability since it
has more than one local optimal solution [27]. Detailed
description of the selection of test functions and their re-
spective global optimums are summarized in Table 1. In
Table 1, fmin represents the global optimal value.

In order to obtain a fair comparison, we set the neigh-
borhood disturbance parameters and the maximum number
of iterations of theDDS andDDS-POBL algorithms to 0.2 and
500, respectively, i.e., r � 0.2 and kmax � 500.,eDDS-POBL

and conventional DDS algorithms were coded in MATLAB
R2015a, and all experiments were performed on a personal
computer (Core i5@ 2.5GHz, 2.70GHz, and 64GB RAM).

4.2. 4e Evaluation Metrics of Function Optimization
Performance. When evaluating the optimization perfor-
mance of an algorithm, researchers often prefer to investigate
its efficiency through metrics such as the acceleration rate
(AR) and success rate (SR). According to [21, 27], AR is a
metric related to the convergence speed of the algorithm. In
the present work, AR is employed to compare the conver-
gence rate of the DSS-POBL algorithm against the conver-
gence rate of the DDS algorithm. It is defined as follows:

ARDDS−POBL �
NFCDDS

NFCDDS−POBL
, (4)

Inputs: Scalar neighborhood size perturbation factor r � 0.2, maximum number of iterations kmax, number of variables
(dimension) n, upper bounds ub and lower bounds lb

Outputs: xbest and fbest

(1) Initialization
x0 � [x0

1, x0
2, . . . , x0

n], x0
i � lbj + rand · (ubj − lbj)

Set k� 1, xbest � x0, fbest � f(xbest), Iperturb � ∅
(2) while k≤ kmax do
(3) Compute the probability of perturbing the decision variables Pk using equation (1)
(4) for j � 1 to n do
(5) Generate uniform random numbers, ω
(6) if ω<Pk then
(7) Set Iperturb(j) � 1
(8) end if
(9) end for
(10) Generate a standard normal random numbers, r

(11) for j � 1 to n do
(12) xtrial

j � xbest
j + (ubj − lbj) · Iperturb(j) · r

(13) end for
(14) for j � 1 to n do
(15) if xtrial

j < lbj then
(16) Set xtrial

j � lbj + (lbj −xtrial
j )

(17) if xtrial
j > ubj then

(18) Set xtrial
j � lbj

(19) end if
(20) end if
(21) if xtrial

j > ubj then
(22) Set xtrial

j � ubj − (xtrial
j − ubj)

(23) if xtrial
j < lbj then

(24) Set xtrial
j � ubj

(25) end if
(26) end if
(27) end for
(28) Evaluate f(xtrial)

(29) if f(xtrial)<fbest then
(30) Set xbest � xtrial, fbest � f(xtrial)

(31) end if
End of DDS and Invoking Algorithm 2

(32) Invoking Algorithm 2
(33) Set k � k + 1
(34) end while
(35) return xbest and fbest

ALGORITHM 3: DDS-POBL algorithm.
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where NFC indicates the number of function calls and the
reported NFCs are used in the present experiments for each
function. For the average over 50 trials, AR> 1 means that
the convergence rate of DDS-POBL is faster than DDS,
whereas AR � 1 means that DDS-POBL has the same
convergence rate to DDS; AR< 1 means that the conver-
gence rate of DDS-POBL is slower than DDS.

,e success rate (SR) is an important metric to evaluate
the performance for the optimization algorithm, which is
defined as the ratio of the number of trials that the algo-
rithm successfully reaches the desired value before reaching
the maximum number of function calls and the total
number of experimental trails. Its expression is described as
follows:

SR �
number of trials reaching the desired value

total number of trials
. (5)

Based on the description of AR and SR, the average AR
(ARave) and SR (SRave) can be calculated over the n
benchmark functions as follows:

ARave �
1
n



n

i�1
ARi,

SRave �
1
n



n

i�1
SRi.

(6)

4.3. Comparison with Conventional DDS Algorithm. A
comparison result of optimization performance between the
proposed DDS-POBL algorithm and the conventional dy-
namically dimensioned search (DDS) algorithm for 23 test
problems is presented in Table 2. In this experiment, each
test function was tested 50 times for 30 and 60 dimensions to
observe the performance of both algorithms. Four common
criteria were introduced to compare the algorithms [25],
i.e., Best, Mean, Worst, and Standard deviation.

From Table 2, for the 30 and 60 dimensions, the DDS-
POBL algorithm has better “Best,” “Mean,” “Worst,” and “St.
dev” values for all test functions except f21 and f23 than the
conventional DDS algorithm. For the four test functions
(i.e. f7, f8, f13, and f21), the DDS-POBL algorithm could
achieve theoretical optima (0). Moreover, on the test
functions f1–f5, f14–f17, f19, and f20, the DDS-POBL algorithm
provided much closer results to the global optimum. Both
DDS-POBL and DDS could obtain global optimum in test
function f21. DDS had better “St. dev” value than DDS-POBL
in function f23 and better “Best” value in function f18 for
dimension 30. In addition, the DDS algorithm provided
solutions close to the solution of the DDS-POBL algorithm
in the test functions f9, f11, f12, f18, f22, and f23.

To analyze the convergence of the algorithms, the
convergence curves of the DDS-POBL and DDS on some
typical test functions have been plotted for 30 and 60

Table 1: Summary of the benchmark test functions used in the experiment of this work.

Function type Function name Definition Search interval fmin

Unimodal functions

Sphere f1(x) � 
n
i�1x

2
i [−100, 100] 0

Sum-square f2(x) � 
n
i�1ix

2
i [−10, 10] 0

Schwefel’s 2.22 f3(x) � 
n
i�1|xi| + 

n
i�1|xi| [−10, 10] 0

Rotated hyperellipsoid f4(x) � 
n
i�1(

i
j�1xj)

2 [−100, 100] 0
Schwefel’s 2.21 f5(x) � max |xi|, 1≤xi ≤ n  [−100, 100] 0
Rosenbrock f6(x) � 

n
i�1[100(xi+1 −x2

i )2 + (xi − 1)2] [−30, 30] 0
Step f7(x) � 

n
i�1([xi + 0.5])2 [−100, 100] 0

Quartic f8(x) � 
n
i�1ix

4
i [−1.28, 1.28] 0

Noise f9(x) � 
n
i�1ix

4
i + random[0, 1) [−1.28, 1.28] 0

Sum-power f10(x) � 
n
i�1|xi|

(i+1) [−1, 1] 0

Multimodal functions

Rastrigin f11(x) � 
n
i�1[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12] 0

Ackley f12(x) � −20exp(−0.2
����������
(1/n)

n
i�1x

2
i


)

− exp((1/n)
n
i�1cos(2πxi)) + 20 + e

[−32, 32] 0

Griewank f13(x) � (1/4000)
n
i�1x

2
i −

n
i�1cos(xi/

�
i

√
) + 1 [−600, 600] 0

Levy f14(x) � 
n
i�1(xi − 1)2[1 + sin2(3πxi+1)] +

sin2(3πx1) + |xn − 1|[1 + sin2(3πxn)]
[−10, 10] 0

Alpine f15(x) � 
n
i�1|xi sin(xi) + 0.1xi| [−10, 10] 0

Inverted cosine mixture f16(x) � 0.1n− (0.1
n
i�1cos(5πxi)−

n
i�1x

2
i ) [−1, 1] 0

Zakharov f17(x) � 
n
i�1x

2
i + (

n
i�10.5ixi)

2 + (
n
i�10.5ixi)

4 [−5, 10] 0

Pathological f18(x) � 
n
i�20.5 + ((sin2(

����������
100x2

i−1 + x2
i


)− 0.5)

/(1 + 0.001(x2
i−1 − 2xi−1xi + x2

i )2))
[−100, 100] 0

Levy and montalo f19(x) � 0.1(sin2(3πx1)) + 
n−1
i�1 (xi − 1)2(1 +

sin2(3πxi+1)) + (xn − 1)2(1 + sin2(2πxn))
[−5, 5] 0

Elliptic f20(x) � 
n
i�1(10

6)(i−1)/(n−1)x2
i [−100, 100] 0

Easom f21(x) � (−1)n+1
n
i�1cos(xi) · exp[−n

i�1(xi − π)2] [−100, 100] 0

Salomon f22(x) � 1− cos(2π
������


n
i�1x

2
i


) + 0.1

������


n
i�1x

2
i


[−100, 100] 0

Schaffer f23(x) � 0.5 +

(sin2(
������


n
i�1x

2
i


)− 0.5/(1 + 0.001(

n
i�1x

2
i ))2)

[−100, 100] 0
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dimensions in Figure 2. All the convergence curves are plotted
by the mean result achieved in the 50 runs. In the figure, the
number of iterations is indicated on the horizontal axis and
the vertical axis represents the mean of logarithms (log) of
objective function values. As displayed in Figure 2, the DDS-
POBL algorithm has faster convergence than the classical

DDS algorithm for all of the benchmark test functions. ,is
means that the guide on the search direction of algorithm is
right and that the boundaries updated by the GS canmake the
search lead to more promising area.

To better evaluate single solution-based search algo-
rithms, we calculate the acceleration rate (AR) and success

Table 2: Best, Mean, Worst, and Standard deviation value obtained by the DDS and DDS-POBL algorithm for 23 test functions. ,e best
results are highlighted in italic.

Function Dim
DDS DDS-POBL

Best Mean Worst St. dev Best Mean Worst St. dev

f1
30 3.08E+ 004 4.93E+ 004 6.52E+ 004 7.73E+ 003 1.82E− 203 1.74E− 202 1.48E− 201 0.00E+ 00
60 1.34E+ 005 1.63E+ 005 2.14E+ 005 1.82E+ 004 6.78E− 203 3.92E− 202 1.76E− 201 0.00E+ 00

f2
30 4.17E+ 003 6.36E+ 003 8.93E+ 003 1.07E+ 003 3.71E− 204 9.25E− 203 3.39E− 201 0.00E+ 00
60 2.63E+ 004 2.45E+ 004 5.99E+ 004 5.52E+ 003 1.70E− 203 3.22E− 201 1.52E− 199 0.00E+ 00

f3
30 8.92E+ 002 4.57E+ 009 1.09E+ 011 1.67E+ 010 2.28E− 102 3.76E− 102 1.09E− 101 1.77E− 102
60 1.36E+ 018 1.14E+ 025 2.96E+ 026 4.89E+ 025 4.89E− 102 7.44E− 102 1.54E− 101 2.09E− 102

f4
30 3.96E+ 004 7.61E+ 004 1.15E+ 005 1.65E+ 004 1.21E− 202 4.95E− 201 1.01E− 199 0.00E+ 00
60 1.93E+ 005 3.07E+ 005 4.22E+ 005 5.00E+ 005 1.48E− 202 1.65E− 200 2.73E− 199 0.00E+ 00

f5
30 7.34E+ 001 9.19E+ 001 9.98E+ 001 6.98E+ 000 1.29E− 102 1.16E− 101 4.35E− 101 9.06E− 102
60 9.41E+ 001 9.86E+ 001 9.99E+ 001 1.32E+ 000 3.04E− 102 2.37E− 101 1.10E− 100 2.37E− 101

f6
30 1.09E+ 008 1.97E+ 008 3.77E+ 008 5.80E+ 007 0.00E+ 00 1.86E− 029 5.93E− 029 1.94E− 029
60 5.64E+ 008 9.31E+ 008 1.31E+ 009 1.74E+ 008 0.00E+ 00 3.81E− 029 1.53E− 028 3.17E− 029

f7
30 2.79E+ 004 4.71E+ 004 7.09E+ 004 9.69E+ 003 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 1.16E+ 005 1.56E+ 005 1.93E+ 005 1.72E+ 004 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f8
30 3.48E+ 001 8.29E+ 001 1.45E+ 002 2.71E+ 001 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 3.31E+ 002 8.29E+ 002 1.39E+ 003 2.03E+ 002 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f9
30 2.87E+ 001 8.81E+ 001 1.89E+ 002 3.39E+ 001 2.00E− 002 7.05E− 002 1.55E− 001 3.40E− 002
60 5.14E+ 002 8.79E+ 002 1.32E+ 003 1.74E+ 002 1.83E− 002 5.55E− 002 9.08E− 002 1.58E− 002

f10
30 2.79E− 001 1.36E+ 000 4.47E+ 000 9.01E− 001 1.33E− 212 8.37E− 209 1.94E− 207 0.00E+ 00
60 1.05E+ 000 3.42E+ 000 6.46E+ 000 1.24E+ 000 2.68E− 216 4.68E− 208 1.24E− 206 0.00E+ 00

f11
30 3.42E+ 002 4.11E+ 002 4.72E+ 002 2.69E+ 001 29.8488 29.8488 29.8488 3.59E− 014
60 8.28E+ 002 9.79E+ 002 1.15E+ 003 5.52E+ 001 59.6975 59.6975 59.6975 7.18E− 014

f12
30 1.96E+ 001 2.04E+ 001 2.09E+ 001 2.96E− 001 3.5745 3.5745 3.5745 1.65E− 015
60 2.05E+ 001 2.09E+ 001 2.11E+ 001 1.12E− 001 3.5745 3.5745 3.5745 2.52E− 015

f13
30 2.56E+ 002 4.62E+ 002 6.25E+ 002 6.54E+ 001 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 1.12E+ 003 1.42E+ 003 1.88E+ 003 1.70E+ 002 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f14
30 4.69E+ 002 7.15E+ 002 9.70E+ 002 1.09E+ 002 0.00E+ 00 1.06E− 031 2.96E− 031 7.25E− 032
60 1.78E+ 003 2.32E+ 003 3.18E+ 003 2.72E+ 002 9.86E− 032 4.44E− 018 2.22E− 016 3.14E− 017

f15
30 4.86E+ 001 6.25E+ 001 7.83E+ 001 7.44E+ 000 7.63E− 017 1.17E− 016 1.61E− 016 1.88E− 017
60 1.27E+ 002 1.51E+ 002 1.76E+ 002 1.09E+ 001 1.87E− 016 2.42E− 016 3.99E− 016 3.19E− 017

f16
30 5.57E+ 000 8.08E+ 000 1.03E+ 001 9.41E− 001 2.55E− 207 4.04E− 205 1.86E− 203 0.00E+ 00
60 1.73E+ 000 2.19E+ 000 2.53E+ 000 1.58E+ 000 4.98E− 207 1.25E− 205 3.50E− 204 0.00E+ 00

f17
30 3.26E+ 004 3.69E+ 005 9.01E+ 005 2.44E+ 005 2.49E− 205 7.05E− 203 7.03E− 202 0.00E+ 00
60 3.38E+ 005 5.81E+ 006 1.47E+ 007 2.71E+ 006 3.23E− 205 1.40E− 201 2.97E− 200 0.00E+ 00

f18
30 1.41E+ 001 1.45E+ 001 1.46E+ 001 8.45E− 002 1.40E+ 001 1.40E+ 001 1.40E+ 001 7.69E− 011
60 2.92E+ 001 2.95E+ 001 2.99E+ 001 1.05E− 001 2.90E+ 001 2.90E+ 001 2.90E+ 001 1.84E− 012

f19
30 5.69E+ 001 1.10E+ 002 1.72E+ 002 2.71E+ 001 1.35E− 032 1.19E− 031 4.94E− 031 9.72E− 032
60 2.56E+ 002 3.62E+ 002 4.98E+ 002 5.53E+ 001 1.35E− 032 2.19E− 031 5.93E− 031 1.35E− 031

f20
30 2.22E+ 008 4.27E+ 008 6.90E+ 008 1.06E+ 008 8.31E− 199 2.92E− 197 7.56E− 196 0.00E+ 00
60 1.45E+ 009 2.54E+ 009 3.99E+ 009 5.79E+ 008 1.91E− 198 3.77E− 197 4.59E− 196 0.00E+ 00

f21
30 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f22
30 1.86E+ 001 2.35E+ 001 2.69E+ 001 1.95E+ 000 4.99E− 001 4.99E− 001 4.99E− 001 3.88E− 016
60 3.58E+ 001 4.07E+ 001 4.47E+ 001 2.13E+ 000 1.2776 1.4578 1.4999 6.53E− 002

f23
30 4.99E− 001 4.99E− 001 4.99E− 001 3.42E− 005 4.92E− 001 4.95E− 001 4.96E− 001 1.40E− 003
60 5.00E− 001 5.00E− 001 5.00E− 001 2.89E− 006 4.67E− 001 4.79E− 001 4.83E− 001 4.40E− 003
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Figure 2: Continued.
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Figure 2: Continued.
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rate (SR) (as described in Section 4.1) for several benchmark
functions.�ese results are recorded in Table 3. As described
in Table 3, the proposed DDS-POBL algorithm converges to
the desired result faster than the conventional DDS algo-
rithm for 15 out of 23 test functions. For the other 8 test
functions, the convergence speed of the DDS-POBL algo-
rithm is equal to that of the DDS algorithm. From the value
of metrics of the average acceleration rate (ARave) in Table 3,
it can be observed that the DDS-POBL algorithm has a more
superior average convergence rate than DDS. Overall, in

terms of achieving global optimum and avoiding local op-
tima, the DDS-POBL algorithm outperforms DDS.

4.4. Comparison with Other State-of-the Art Algorithm.
To further show the signi�cant superiority of DDS-POBL, we
compared it with eight state-of-the-art optimization algo-
rithms, i.e., the particle swarm optimizer (PSO) [28], the
piecewise opposition-based learning (POHS) [20],
the completely derandomized self-adaptation evolution
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Figure 2: Convergence curves for D� 30 and D� 60 of certain typical functions. (a) Function f1. (b) Function f2. (c) Function f3.
(d) Function f4. (e) Function f5. (f ) Function f8. (g) Function f10. (h) Function f12. (i) Function f14. (j) Function f16. (k) Function f17.
(l) Function f19. (m) Function f20. (n) Function f22.

Table 3: Comparison results of acceleration rates and success rates between the DDS-POBL algorithm and DDS algorithm.

Function
Success rate (SR) Acceleration rate

(ARDDS−POBL)DDS-POBL DDS
Dim� 30 Dim� 60 Dim� 30 Dim� 60 Dim� 30 Dim� 60

f1 1 1 0 0 5.68 5.62
f2 1 1 0 0 5.75 5.60
f3 1 1 0 0 3.09 3.06
f4 1 1 0 0 5.44 5.33
f5 1 1 0 0 3.07 3.05
f6 1 1 0 0 1.25 1.10
f7 1 1 0 0 5.58 5.53
f8 1 1 0 0 11.51 11.23
f9 0 0 0 0 1 1
f10 1 1 0 0 6.82 6.81
f11 0 0 0 0 1 1
f12 0 0 0 0 1 1
f13 1 1 0 0 9.32 9.20
f14 1 0.94 0 0 1.27 1.02
f15 0 0 0 0 1 1
f16 1 1 0 0 6.26 6.19
f17 1 1 0 0 5.73 5.61
f18 0 0 0 0 1 1
f19 1 1 0 0 1.26 1.05
f20 1 1 0 0 4.96 4.90
f21 1 1 1 1 1 1
f22 0 0 0 0 1 1
f23 0 0 0 0 1 1
Average 0.7391 0.7365 0.0435 0.0435 3.70 3.62
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strategies (CMA-ES) [29], the composite differential evolution
(CoDE) [30], the memory-based hybrid dragonfly algorithm
(MHDA) [28], the exploration-enhanced grey wolf optimizer
(EEGWO) [24], the hybrid method based on the DA and the
improved NM simplex algorithm (INMDA) [13], and the
firefly algorithmwith neighborhood attraction (NaFA) [31]. In
this experiment, the parameter settings of EEGWO, INMDA,
and DDS-POBL are as follows: the population size is 30, the
maximum number of iterations is 500, the number of in-
dependent experiments is 50, and the other parameters related
to the algorithm are consistent with its original literature. Since
the function values for each test function of the POHS, CMA-
ES, MHDA, and NaFA algorithm were taken directly from
their original papers, the parameter settings of these algo-
rithms remain the same as the original papers.

In this experiment, the best fitness values are averaged
(represented by “Mean”), and the corresponding standard
deviation values (indicated by “St. dev”) are computed. Ta-
ble 4 records the experimental results obtained byDDS-POBL
and other eight algorithms forD� 30. Please note that the best
results achieved for each test function is highlighted in italic.

,e comparison results presented in Table 4 show that the
proposed DDS-POBL algorithm yields better results than
PSO in 7 test functions (f1, f3, f4, f5, f6, f9, and f13) except for 2
test functions (f11 and f12). In terms of functions f11 and f12,
POHS is able to achieve better results than DDS-POBL, but
DDS-POBL achieves better results on f1, f5, f6, and f13. ,e
DDS-POBL algorithm provides better optimization values
than the CMA-ES algorithm for 8 out of 9 benchmark test
functions, while CMA-ES provides better “Mean” result on
function f11. ,e DDS-POBL algorithm shows poorer opti-
mization results than CoDE only in function f12 for 9 test
problems. With respect to MHDA, DDS-POBL obtains better
“Mean” and “St. dev” results on functions f1, f3, f4, f5, f6, f9, and
f13, but MHDA has better performance in functions f11 and
f12. In terms of functions f11 and f12, POHS is able to achieve
better results than DDS-POBL, and DDS-POBL achieves
better results on f1, f5, f6, and f13. When compared to INMDA,
DDS-POBL provides very competitive results on all functions
except functions f9, f11, and f12. INMDA gets better results
than DDS-POBL on functions f11 and f12, on the contrary,
worse on f9. NaFA obtains better results than DDS-POBL on
functions f11 and f12 for “Mean” value. Compared with
EEGWO, DDS-POBL gets competitive results for five func-
tions (f1, f3, f4, f5, and f9) and similar for one function (f13). In
addition, DDS-POBL obtains better results than EEGWO for
one function (f6) but worse for two functions (f11 and f12).

For the Rastrigin function, not all optimization algo-
rithms can converge to the global optimal value of zero. ,is
can be easily found in the existing literature. For example,
the POHS algorithm in literature [20] has an optimized value
of 2.08E+ 01 for the Rastrigin function, while the optimized
value is 5.90E – 07 when using the MHDA in literature [28].
In the literature [31], the optimized value obtained by NaFA
is 2.09E+ 01 for Rastrigin function and that by CoDE [30] is
3.41E+ 01. In this paper, the optimal solution of Rastrigin
function obtained by the DDS and DDS-POBL algorithm is
not a global solution. Although the value 29.8488 obtained
by DDS-POBL is smaller than that by CoDE, it is still far

from the zero. Maybe this is one of the drawbacks of the DDS
and DDS-POBL algorithm.

As can be seen from Table 4, the optimization perfor-
mance of DDS-POBL is very close to that of EEGWO and
INMDA, and it is difficult to determine which algorithm is
better. ,erefore, the comparison of algorithms should be
done using some statistical analysis. To conduct statistical
analysis of the comparison results scientifically, we adopted
two statistical methods, namely, the sign test and Wilcoxon
signed-rank test, which are taken from reference [32]. ,e
statistical analysis results are given in Tables 5 and 6. In the
sign test shown in Table 5, DDS-POBL shows a significant
improvement over CMA-ES and CoDE with a level of
significance α� 0.05 and over PSO and MHDA with a level
of significance α� 0.1. From the Wilcoxon signed-rank test
results recorded in Table 6, we can see that DDS-POBL
outperforms CMA-ES with a level of significance α� 0.01
and outperforms CoDE, NaFA, and MHDA with α� 0.1. In
addition, DDS-POBL is inferior to INMDA, with a level of
significance α� 0.05, not significantly better than PSO and
not significantly worse than EEGWO.

In order to reveal which algorithm reaches to vicinity of
global solution fast, Figure 3 displays the convergence curves
of DDS-POBL, EEGWO, and INMDA on functions f1, f5, f11,
and f13. As can be seen in Figure 3, DDS-POBL and EEGWO
showed almost the same convergence rate and both were
inferior to INMDA on functions f1 and f5. On function f11,
EEGWO presented the fastest convergence rate, followed by
INMDA, and DDS-POBL was the worst. For function f13,
DDS-POBL and EEGWO showed the fastest convergence
rate, while INMDA was slower than the former two, but all
of them converged to the global optimal.

4.5. Robustness of the Proposed Algorithm. For the DDS al-
gorithm, performance is often determined by a scalar
neighborhood size perturbation factor r. ,e author of paper
[7] suggested that the optimization performance of DDS is
best when r � 0.2. In the present work, in order to investigate
the effect of different values of r on the performance of the
DDS-POBL algorithm, the parameter r is varied at five dif-
ferent values i.e. 0.1, 0.2, 0.3, 0.5, and 0.9, with the rest of the
parameters kept the same as mentioned in the previous
subsection. All of the 23 test functions listed in Table 1 were
run 20 times independently. Table 7 records the experimental
results obtained by DDS-POBL with five different values of a
scalar neighborhood size perturbation factor r for D� 30,
where “Mean” indicates the mean best objective function
value and “St. dev” represents the corresponding standard
deviation value. To quickly recognize the best results, the best
results for each function are marked in italic.

As it is described in Table 7, the total optimization per-
formance of the DDS-POBL algorithm with r �0.2 was su-
perior to other cases.,e specific optimization results of DDS-
POBL are as follows: when r is 0.1 and 0.5, 8 optimal results are
obtained; when r is 0.2, 13 optimal results are obtained; when r

is 0.3, 7 optimal results are obtained; and when r is 0.9, 6
optimal results are obtained. However, the optimization re-
sults of different values of r are not significantly different
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Table 4: Comparison of the DDS-POBL algorithm with other state-of-the-art algorithms (D� 30).

Function Index PSO POHS CMA-ES CoDE EEGWO MHDA INMDA NaFA DDS-POBL

f1
Mean 2.70E− 09 1.39E− 23 6.15E− 29 2.36E− 10 1.58E− 203 4.07E− 42 0 4.43E− 29 1.74E− 202
St. dev 1.00E− 09 5.10E− 01 1.72E− 29 1.69E− 10 0.00E+ 00 2.22E− 41 0 4.06E− 30 0.00E+ 00

f3
Mean 7.15E− 05 — 1.8127 6.64E− 06 1.11E− 102 6.62E− 15 0 2.98E− 15 3.76E− 102
St. dev 2.26E− 05 — 6.9028 3.41E− 06 8.56E− 103 3.61E− 14 0 2.80E− 15 1.77E− 102

f4
Mean 4.71E− 06 — 3.12E− 27 8.10E− 01 2.54E− 200 2.55E− 50 0 2.60E− 28 4.95E− 201
St. dev 1.49E− 06 — 8.17E− 28 5.39E− 01 0.00E− 00 1.30E− 49 0 2.37E− 29 0.00E+ 00

f5
Mean 3.25E− 07 5.49E− 21 3.84E− 15 2.95E− 02 2.10E− 102 4.99E− 05 0 3.43E− 15 1.16E− 101
St. dev 1.02E− 08 8.5E− 01 4.93E− 16 1.10E− 02 2.64E+ 102 2.73E− 04 0 2.89E− 17 9.06E− 102

f6
Mean 1.23E− 01 5.04E+ 03 0.7125 2.79E+ 01 2.89E+ 01 3.34E− 22 0 2.39E+ 01 1.86E− 029
St. dev 2.16E− 01 2.50E+ 01 1.9802 1.75E+ 01 2.42E− 02 5.67E− 22 0 8.96E− 01 1.94E− 029

f9
Mean 1.39E+ 00 — 0.2101 1.38E− 02 5.96E− 05 5.25E− 05 7.77E− 05 2.91E− 02 8.37E− 209
St. dev 0.001269 — 0.0555 5.70E− 03 4.72E− 05 5.02E− 05 2.92E− 05 1.56E− 02 0.00E+ 00

f11
Mean 2.78E− 01 2.08E+ 01 2.32E+ 02 3.41E+ 01 0.00E+ 00 5.90E− 07 0 2.09E+ 01 29.8488
St. dev 2.18E− 01 0.90E+ 01 5.54E+ 01 5.70E+ 00 0.00E+ 00 3.23E− 06 0 6.96E+ 00 3.59E− 014

f12
Mean 1.11E− 09 0.15E+ 01 19.4830 3.89E− 06 8.88E− 16 6.34E− 15 8.88E− 16 3.02E− 14 3.5745
St. dev 2.39E− 11 7.80E− 02 0.1369 1.51E− 06 0.00E+ 00 2.72E− 14 0.00E+ 00 8.94E− 15 1.65E− 015

f13
Mean 2.73E− 01 6.76E− 01 1.40E− 03 5.14E− 05 0.00E+ 00 2.40E− 04 0 0.00E+ 00 0.00E+ 00
St. dev 2.04E− 01 0.60E− 02 3.30E− 03 2.81E− 04 0.00E+ 00 2.25E− 02 0 0.00E+ 00 0.00E+ 00

Table 6: Wilcoxon signed-rank test results on six state-of-the-art algorithms.

Comparison R+ R- p value Comparison R+ R- p value
DDS-POBL versus PSO 28 17 0.5703 DDS-POBL versus POHS NaN NaN NaN
DDS-POBL versus CMA-ES 45 0 0.007 DDS-POBL versus CoDE 38 7 0.0742
DDS-POBL versus EEGWO 13 23 0.5469 DDS-POBL versus INMDA 3 33 0.0391
DDS-POBL versus MHDA 42 3 0.0195 DDS-POBL versus NaFA 31 5 0.0781

Table 5: Summary of sign test results on six state-of-the-art algorithms.

DDS-POBL PSO POHS CMA-ES CoDE EEGWO MHDA INMDA NaFA
Wins (+) 7 ≥ 4 9 8 2 7 1 6
Approximates ( ≈ ) 0 NaN 0 0 5 0 5 1
Loses (_) 2 NaN 0 1 2 2 3 2
Detected di�erences α � 0.1 NaN α � 0.05 α � 0.05 – α � 0.1 – –
Note. �e symbol “NaN” in this paper indicates the vacancy value, which cannot be calculated since the corresponding value in the reference is missing.
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except for one function (f13). Figure 4 clearly shows the average
convergence speed and the performance of the DDS-POBL
algorithm when di�erent r values are taken. �erefore, the
proposed DDS-POBL algorithm has good robustness.

4.6. Scalability of the Proposed Algorithm. To further in-
vestigate the scalability and optimization performance of the
proposed algorithm in high dimensional space, experiments
are repeated on some typical test functions (f1, f2, f5–f8, f10,
f13, f16, f17, and f20–f21) with dimensions 100, 300, and 500.
Each test function is run 30 times independently, and the
rest of the parameters are the same setting as Section 4.2.
Table 8 records this experiment results.

As can be seen from Table 8, the greatly increased di-
mension of the test functions dose not result in degrade of
optimization performance of the DDS-POBL algorithm too
much. Although the optimization performance of the DDS-
POBL algorithm can be reduced as the dimension increases
on several test functions (i.e., f1, f2, f5, f6, f10, f16, f17, and f20),
the reduction is too small to be ignored. In addition, the
optimization performance of DDS-POBL on several test
functions (f7, f8, f13, and f21) does not change with increasing
dimension, and all of them obtain global optima 0.

4.7. Application of the Proposed Method to Parameter Cali-
bration of Xinanjiang Model (Day Model). �e Xinanjiang
model is a well-known hydrological model put forward by
Zhao R. J. of Ho-hai University, which is a concept with
decentralized parameters watershed hydrological model. Its
detailed information can be found in reference [33]. �ere
are many studies on parameter optimization of this model,
mainly including the surrogate modeling approach [34],
genetic algorithm (GA) [35], and SEC-UA [36]. In this
subsection, we choose this model as a real optimization
problem to test the eªciency of the proposed method and

select the Yanduhe catchment of the �ree Gorges, with a
drainage area of 601 km2 [37] as the study area. �is area has
a humid climate, good vegetation, and loose soil and is
divided into 59 basic units, including 30 outer units and 29
inner units. �e area, chain length, and slope length of the
inner and outer units, respectively, are surveyed, and the
results are shown in Table 9. �e historical runo� data used
was from January 1, 1981, to December 30, 1981.

�e parameters of the Xinanjiang model are divided into
four categories, including 15 parameters [31]. �e �rst
category “evapotranspiration parameters” includes K,
WUM, WLM, and C. �e second category “runo� pro-
duction parameters” consists of WM, B, and IMP. �e third
category “parameters of runo� separation” contains SM, EX,
KSS, and KG. �e last category “runo� concentration pa-
rameters” includes KKSS, KKG, CS, and L. Among these
parameters, WM, WUM, WLM, B, C, and IMP are in-
sensitive parameters and are generally valued by experience,
and their value is recorded in Table 10. On the contrary, the
other 9 parameters are sensitive parameters. In these sen-
sitive parameters, K, EX, and L do not need to be calibrated
and are determined by experience as shown in Table 10. �e
other six sensitive parameters need to be calibrated, and their
range is described in Table 11. To further verify the e�ec-
tiveness of the proposed algorithm, we used the DDS-POBL
and DDS to calibrate these six sensitive parameters. �e
results are shown in Table 11. Table 12 listed the proportion
of di�erent intervals of the runo� calculation relative error.
Figure 5 plotted the �t of the calculation ®ow and observed
®ow of the DDS-POBL and DDS algorithm after calibrating
the nine sensitive parameters.

It can be seen from Table 12 that, in the runo� calcu-
lation, relative error intervals are [0, 20] and (30,100], the
proportion of the DDS is larger than DDS-POBL, while in
the interval (0, 30], DDS-POBL is much larger than DDS. In
addition, the proportion of DDS-POBL in runo� calculation
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Figure 3: Convergence curves of DDS-POBL, EEGWO, and INMDA with D� 30. (a) Function f1. (b) Function f5. (c) Function f11.
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relative error interval (20, 30] is greater than the sum of DDS
in the interval [0, 50]. From Figure 5, DDS-POBL has a
slightly poor �tting e�ect compared to DDS during the

relatively smooth period of runo� variation, but the DDS
�tting e�ect is signi�cantly inferior to DDS-POBL when the
runo� changes drastically.
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Figure 4: Convergence curves forD� 30 with di�erent r values on some typical functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f8. (g) f10. (h)
f14. (i) f15. (j) f17. (k) f9. (l) f20.
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5. Conclusions

An improved version of DDS combined with hybrid
piecewise opposition-based learning, called DDS-POBL, has
been proposed in this work. Compared with DDS, DDS-
PBOL has been significantly improved in the two following

aspects. One is to introduce the piecewise oppositional
learning strategies to help the DDS algorithm to search the
correct direction; the other is to use the golden section
method to guide potential solutions to search more
promising areas. Several different numerical experiments
were performed to verify the advantages of the proposed

Table 11: Calibration results for 6 sensitive parameters.

Parameter Definition DDS DDS-POBL Range

SM Areal mean of the free water capacity of the surface
soil layer 30.561 50 [10, 50]

KSS Outflow coefficients of the free water storage to
groundwater and interflow relationships. 0.39 0.382 [0.3, 0.4]

KG Outflow coefficients of the free water storage to
groundwater and interflow relationships. 0.491 0.397 [0.3, 0.5]

CS
Recession constant in the “lag and route” method for
routing through the channel system within each sub-

basin
0.655 0.63 [0.2, 0.7]

KKSS Recession constant of the lower interflow storage 0.8 0.85 [0.8, 0.9]
KKG Recession constant of groundwater storage 0.998 0.91 [0.9 0.999]

Table 8: Evaluation of the performance of the DDS-POBL algorithm over 30 independent runs for dimensions 100, 300, and 500.

Function
Dim� 100 Dim� 300 Dim� 500

Mean St. dev Mean St. dev Mean St. dev
f1 2.33E− 201 0.00E+ 000 5.81E− 201 0.00E+ 000 3.86E− 200 0.00E+ 000
f2 6.77E− 202 0.00E+ 000 4.33E− 201 0.00E+ 000 1.21E− 200 0.00E+ 000
f5 3.01E− 101 4.05E− 101 9.65E− 101 1.34E− 100 6.75E− 101 5.44E− 101
f6 8.86E− 029 4.97E− 029 3.83E− 028 1.52E− 028 7.97E− 028 3.36E− 028
f7 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000
f8 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000
f10 7.83E− 208 0.00E+ 000 6.62E− 209 0.00E+ 000 2.32E− 208 0.00E+ 000
f13 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000
f16 6.16E− 205 0.00E+ 000 7.11E− 205 0.00E+ 000 7.51E− 205 0.00E+ 000
f17 3.81E− 201 0.00E+ 000 1.07E− 199 0.00E+ 000 1.03E− 198 0.00E+ 000
f20 2.92E− 197 0.00E+ 000 1.83E− 196 0.00E+ 000 2.88E− 195 0.00E+ 000
f21 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000 0.00E+ 000

Table 9: Result of basic cell survey.

Unit Amount Average area (km2) Average chain length (km2) Average slope length (km)
Inner unit 29 6.081 2.846 1.069
Outer unit 30 14.164 3.118 1.136

Table 10: Empirical values of 6 parameters.

Parameter Definition Empirical value
WM Areal mean tension water capacity 120
WUM Tension water capacity of the upper layer 20
WLM Tension water capacity of the lower layer 60

K Ratio of potential evapotranspiration to pan
evaporation 0.55

B Exponent of the tension water capacity curve 0.15
C Coefficient of deep evapotranspiration 0.15
IMP Ratio of the impervious to the total area of the basin 0.01

EX Exponent of the free water capacity curve influences
the development of the saturated area 2.2

L Corresponding “lag” 0
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approach in optimizing performance. Firstly, tests were
done on 23 benchmark test functions. �e simulation results
showed that on the 15 out of 23 test functions, DDS-POBL
had better optimization performance than traditional DDS.
Secondly, nine typical test functions were chosen to verify
the performance of DDS-POBL compared to other state-of-
the-art algorithms. Experimental results revealed that the
proposed DDS-POBL algorithm could o�er highly com-
petitive results compared to other state-of-the-art algo-
rithms in most cases. �irdly, an experiment on a scalar
neighborhood size perturbation factor was performed with
di�erent values of DDS-POBL to investigate its robustness.
�e optimization results showed that the proposed DDS-
POBL algorithm could provide optimization results with
little di�erence. Furthermore, the parameter calibration
application of the Xinanjiang model reveals the superiority
of DDS-POBL over DDS in practical optimization problems.

In addition, several representative large-scale test
functions were selected as experimental objects to verify the
scalability of the DDS-POBL algorithm, and the results of
large-scale test problems proved that the proposed method
has good scalability. However, for functions f11 and f12, the
proposed DDS-POBL algorithm could not �nd a satisfactory
result. �erefore, the proposed DDS-POBL algorithm is still
not an ideal algorithm. In our future work, the exciting
research and applications can be explored further.
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