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Processor array architectures have been employed, as an accelerator, to compute similarity distance found in a variety of data
mining algorithms. However, most of the proposed architectures in the existing literature are designed in an ad hoc manner
without taking into consideration the size and dimensionality of the datasets. Furthermore, data dependencies have not been
analyzed, and often, only one design choice is considered for the scheduling andmapping of computational tasks. In this work, we
present a systematic methodology to design scalable and area-efficient linear (1-D) processor arrays for the computation of
similarity distance matrices. Six possible design options are obtained and analyzed in terms of area and time complexities. (e
obtained architectures provide us with the flexibility to choose the one that meets hardware constraints for a specific problem size.
Comparisons with the previously reported architectures demonstrate that one of the proposed architectures achieves less area and
area-delay product besides its scalability to high-dimensional data.

1. Introduction

(e computational complexity of machine learning and
data mining algorithms, that are frequently used in today’s
embedded applications such as handwritten analysis,
fingerprint/iris/signature verification, and face recognition,
makes the design of efficient hardware architectures for these
algorithms a challenge. (e computation of similarity dis-
tance matrices is one of the computational kernels that is
required by several machine learning and data mining al-
gorithms to measure the degree of similarity between data
samples [1]. For several algorithms such as K-means [2],
SVM [3], and KNN [4], distance calculation is a compu-
tationally intensive task that accounts for a significant
portion of the overall processing time [5].

Given the complexity of today’s applications, machine
learning and data mining algorithms are expected to handle
big and high-dimensional data. In [6], an optimized FPGA
implementation of the K-means clustering algorithm has been

presented. (e authors reported that the maximum number
of features that could fit on Stratix V A7 FPGA is around 160.
Even partitioning the computation and caching partial results
in local memory to accommodate larger sizes was not efficient
due to excessive global memory transactions. Most of the
existing hardware architectures for similarity distance com-
putation have not taken into consideration the size and/or
dimensionality of the datasets. (eoretical time and area
complexities for some architectures, including the ones
presented in [7–9], have not been validated experimentally.
Implementation results reported for other architectures, in-
cluding [10, 11], are for low-dimensional datasets of di-
mensions 4 and 9, respectively. Despite the fact that these
architectures have low theoretical time complexities, their
poor scalability to high-dimensional data makes them not
suitable for hardware implementation or implementable with
poor performance, as discussed in [6].

In our recent work [12], we have systematically explored the
design space of 2-D processor array architectures for similarity
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distance computation. Using the employed methodology, we
were able to obtain the same architectures, as proposed in [7, 8]
and also to identify an additional four architectures with im-
proved area and time complexities. Furthermore, the obtained
architectures have been classified into two groups based on the
size and dimensionality of input datasets. 2-D processor arrays
are generally faster than 1-D (linear) processor arrays as more
processing elements (PEs) are used to perform the computation
in parallel. On the contrary, linear arrays are more suitable for
resource-constrained applications with limited area and I/O
bandwidth, typically found in embedded applications. In this
work, we present a systematic technique to explore the design
space of linear processor arrays for the computation of similarity
distance matrices in order to obtain additional design options
for area and bandwidth efficiency optimization, which is de-
sirable in the embedded system design.

In summary, the key contributions of this paper are as
follows:

(i) We present an algebraic technique to design scalable
low-complexity linear processor arrays for the
computation of similarity distance matrices based
on an algebraic analysis of data dependencies.
Compared to the classical approach of analyzing
data dependencies that relies on studying how
output variables depend on inputs, the employed
technique relies on defining a computational do-
main using algorithm indices and studying how
input and output variables depend on these indices.

(ii) We propose six scheduling functions using com-
putational geometry and matrix algebra. In addition
to theminimum restrictions we used in [12] to obtain
valid scheduling vectors, more time restrictions are
introduced in this work to meet area and bandwidth
constraints. Associated projection matrices for the
obtained scheduling vectors are also introduced, to
map points in the 3-D computation domain to PEs in
the projected 1-D processor arrays.

(iii) We perform full design space exploration using the
proposed scheduling vectors and their associated
projectionmatrices. Six design options are obtained,
analyzed in terms of area, speed, and bandwidth
efficiency, and compared analytically and experi-
mentally with existing architectures in the literature.

(e rest of this paper is organized as follows: related
work is presented in the next section. (e similarity distance
computation problem is formulated in Section 3. In Section
4, the systematic technique used to parallelize distance
computation is introduced. In Section 5, a systematic design
space exploration is performed to obtain the proposed ar-
chitectures. Design comparison and implementation results
are presented in Section 6 and Section 7, respectively. Fi-
nally, Section 8 concludes the paper.

2. Related Work

Several processor array architectures have been proposed for
accelerating the computation of similarity distance. In [7], a

distance calculation unit for a VLSI cluster analysis archi-
tecture has been proposed as a K × N 2-D processor array to
calculate similarity distances between N samples of an input
dataset and K cluster centroids. For datasets with large
number of samples N, the proposed architecture is not
feasible for hardware implementation as it consists of a large
number of processing elements (PEs) with numerous input
features being fed simultaneously. (e authors of [8] pro-
posed a K × M 2-D processor array for the calculation of
similarity distances between samples of an M-dimensional
dataset and K cluster centroids. For high-dimensional
datasets with large number of features M per sample, the
proposed architecture is not feasible for hardware imple-
mentation due to chip constraints in I/O bandwidth and
number of pins.

Compared to 2-D processor arrays, linear arrays are
generally more area-efficient with less bandwidth and energy
demands. In [9], a linear processor array for the compu-
tation of similarity distance has been proposed. (e pro-
posed architecture is used to calculate similarity distances
between data samples of an input dataset and clusters
centroids in a VLSI clustering analyzer. Input data samples
are fed in a feature-serial format. (e proposed linear array
has higher time complexity than 2-D processor arrays.
However, both area complexity and number of I/O pins have
been reduced. Another linear array for the computation of
similarity measures has been proposed in [13].(e proposed
architecture is used to calculate a special case of the simi-
larity distance matrix that is required by some machine
learning algorithms, in which pairwise distances among all
samples of a dataset are calculated.

In [10], a distance calculation unit has been proposed to
calculate similarity distances between data samples and
cluster centroids in a hardware implementation of the
K-means clustering algorithm. (e proposed design calcu-
lates K distances between a data sample ofM features and K
cluster centroids concurrently using K adder trees of M− 1
adders each. A similar architecture with pipelined adder
trees has been presented in [11] to minimize the critical path
delay and improve the throughput.

3. Similarity Distance Computation

Given datasetX ofN samples and dataset Y of K samples with
each sample in the two datasets having M features. A simi-
larity measure such as Manhattan, Euclidean, or Cosine
distance [1, 13] can be used to generate a distance matrixD of
K × N elements. (e distance between the nth sample of
datasetX and the kth sample of datasetY is represented by the
value of element D(k, n) of matrix D. In this work, the
calculation of the similarity distance matrix, using Manhattan
distance between data samples of the two datasets X and Y, is
used to illustrate the introduced concepts and methodologies.
Manhattan distance can be expressed as follows:

D(k, n) � 
M−1

m�0
|X(m, n)−Y(k, m)|, 0≤ k<K, 0≤ n<N,

(1)
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where N and K are the number of samples of datasets X and
Y, respectively, and M is the dimensionality (number of
features) of the two datasets.(e emphasis of this paper is on
the parallelization of similarity distance computation rather
than the similarity measure used. Hence, the work presented
in this paper can be generalized to other similarity measures.

Similarity distance computation in the K-means clus-
tering algorithm [2], for instance, is performed in the same
way as described in this section. Distances between N
samples of dataset X and the set of centroids of K clusters Y
are calculated in order to identify the closest cluster for each
data sample.

4. Parallelizing the Computation of
Similarity Distance

In our recent work [12], we have systematically explored the
design space of 2-D processor array architectures for sim-
ilarity distance computation using the methodology pro-
posed by Gebali for designing digital filters systolic arrays
[14]. In this work, we focus on extending the methodology to
explore the design space of area-efficient linear processor
arrays for the computation of similarity distance matrices.
For more details on the employed methodology, refer [15].

4.1. Computation Domain. As shown in Figure 1, the com-
putation domain of Manhattan distance (1) is defined by the
algorithm indices k,m, and n. Every point in the computation
domain has three coordinates, represented as follows:

p � k m n 
t
. (2)

4.2. Data Dependencies. In the traditional approach, data
dependencies are analyzed in dependence graphs, by
showing how output variables depend on input variables. In
this work, however, data dependencies are analyzed using
dependence matrices that show how input and output
variables depend on indices k, m, and n, as discussed in our
work on 2-D processor array architectures [12]. From (1),
output variable D depends on indices k and n of the al-
gorithm. Hence, its dependence matrix is given by the 2 × 3
integer matrix:

AD �
1 0 0

0 0 1
 . (3)

(e three elements in each row of the dependence matrix
refer to the ordered algorithm indices k, m, and n. (e first
row shows that variable D depends on index k, and the
second row shows that the variable depends on index n.
From (1) also, the dependence matrices of input variables
X(m, n) and Y(k, m) are given by the following equation:

AX �
0 1 0

0 0 1
 ,

AY �
1 0 0

0 1 0
 .

(4)

(e associated null space basis vectors of these de-
pendence matrices could be given by the following equation
[12]:

eX � 1 0 0 
t
, (5)

eY � 0 0 1 
t
, (6)

eD � 0 1 0 
t
. (7)

(e employed methodology, described in the following
subsections, relies on these vectors to obtain valid scheduling
and projection vectors to explore the design space of linear
processor arrays for the computation of similarity distance
matrices.

4.3. Data Scheduling. A scheduling function determines the
computation load to be executed at each time step by
assigning each point in the computation domain a time
value. All tasks assigned the same time value will be executed
in parallel. Broadcasting an algorithm variable results in
assigning all points in its broadcast subdomain the same
time value. Points in the subdomain of a pipelined variable,
on the other hand, are assigned different time values. When
an input variable is broadcast, a copy of each data element is
available to all PEs through a global broadcast bus, while
pipelined input variables are stored by each PE and passed to
its neighbor through a local link in the next clock cycle.
Broadcasting an output variable results in performing all
computations on partial results from all PEs in the same
clock cycle. For a pipelined output variable, the partial result
that is generated by each PE is accumulated and passed to the
next PE until the final result is accumulated by the last PE.
One simple scheduling function that is used to schedule
computation tasks is the linear scheduling function [15]:

t(p) � sp, (8)

where t(p) is the time value assigned to a point p in the
computation domain and s � s1 s2 s3  is the scheduling
vector. To broadcast an algorithm variable whose null vector
is e, we must have

(0, 0, N – 1)

(0, M – 1, 0)
(K – 1, 0, 0)

k

m

n

Figure 1: Computation domain.
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se � 0, (9)

and to pipeline this variable, we must have

se≠ 0. (10)

Conditions in (9) and (10) are the minimum constraints
that can be used to get a valid scheduling function.

Our strategy for arriving at suitable scheduling functions
combines pipelining and broadcast restrictions in (9) and
(10). We start by choosing to pipeline the evaluation of all
points that lie in a plane perpendicular to one of the three k-,
m-, and n-axes. Next, we pipeline the evaluation of all points
that lie on lines in the chosen plane. (ese lines are parallel
to one of the remaining two axes in that plane. Finally, we
broadcast the evaluation of all points in the chosen line. In
total, we have three axes to choose the planes and two di-
rections to choose the lines in the planes.(is gives rise to six
possible scheduling functions. Subsection 4.3.1 illustrates
how this technique is used to derive our first scheduling
vector s1.

4.3.1. Calculation of the First Scheduling Vector s1. Let us
choose to broadcast input variable X. From (5) and (9), we
have

s1 s2 s3 

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (11)

which implies s1 � 0.
To avoid feeding large number of features simulta-

neously, we choose to supply input variable X in a feature-
serial format (i.e., along the m-axis). (is implies that, for
any data sample, the time between the calculations for
feature m and feature m + 1 is a one-time step:

t(X(k, m + 1, n))− t(X(k, m, n)) � 1,

0 s2 s3 

k

m + 1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦− 0 s2 s3 

k

m

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1,
(12)

which implies s2 � 1.
We choose to start the first calculation for sample n + 1

after the last calculation for sample n. (e time between
these two calculations is also a one-time step:

t(X(k, 0, n + 1))− t(X(k, M− 1, n)) � 1,

0 1 s3 

k

0

n + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦− 0 1 s3 

k

M− 1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1,
(13)

which implies s3 �M. Hence, the first valid scheduling vector
is given by the following equation:

s1 � 0 1 M . (14)

In accordance with Figure 2, the calculated scheduling
vector s1 results in assigning all points on each of the

continuous lines the same time value. (ese lines are called
equitemporal zones since the computations for all points on
each line are performed simultaneously [15]. From the
geometric perspective, scheduling vector s1 results in exe-
cuting all points in a plane with a fixed value of coordinate n
before points in the plane with the next value of n. Within
each plane, all points on a line with a fixed value of coordinate
m are executed before points on the line with the next value of
m. Points on each of these lines are executed in parallel.

4.3.2. Calculation of the Remaining Scheduling Vectors.
(e remaining five scheduling vectors can be calculated
using the same procedure employed to calculate s1 with
different orders of execution along the three axes. In Fig-
ure 3, the equitemporal zones are also lines along the k-axis
with another order of execution. (e associated scheduling
vector is given by the following equation:

s2 � 0 N 1 . (15)

Other two timing alternatives with equitemporal zones
along the m-axis are shown in Figures 4 and 5. (e asso-
ciated scheduling vectors for these timing alternatives are
given by the following equation:

s3 � 1 0 K ,

s4 � N 0 1 .
(16)

Figures 6 and 7 show two timing alternatives with
equitemporal zones along the n-axis. (e associated
scheduling vectors are given as follows:

s5 � M 1 0 ,

s6 � 1 K 0 .
(17)

n

k

t1

t7

tMN–1

t4

t3

t0
t2

m

Figure 2: Equitemporal zones for scheduling vector s1.
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4.4. ProjectionOperation. (e computations associated with
different points in the computation domain are executed in
different time steps. Mapping each point in the computation
domain to a single PE results in poor hardware utilization
since a PE is active only for one-time instant and idle the rest
of the time. Linear projection is defined as the mapping of
several points in the n-dimensional computation domainD

to a single point in a k-dimensional domain D, where k≤ n.
A projection matrix P that can be used to perform the
projection operation can be obtained using a set of
l � (n− k) projection direction vectors di that belong to the
null space of the projection matrix and satisfy the following
condition as illustrated in the following equation [14]:

sdi ≠ 0, (18)

where s is the chosen scheduling vector. In this work, our
goal is to map the points in the 3-D computation domain
shown in Figure 1 to a 1-D domain. Hence, two projection
direction vectors have to be specified for each of the six
scheduling vectors presented in the previous section. For the
scheduling vector s1 � 0 1 M  and according to (18), two
possible projection directions could be given as follows:

d11 � 0 1 0 
t
,

d12 � 0 0 1 
t
.

(19)

tN

t2N–1

tMN–1

t0

t1

m

tN–1

t2

k

n

Figure 3: Equitemporal zones for scheduling vector s2.

t7

t3

k

t4

tKN–1

t0

t1

t2
m

n

Figure 4: Equitemporal zones for scheduling vector s3.

t2N–1

tKN–1

tN–1

tN

t0

t1

t2

k

m

n

Figure 5: Equitemporal zones for scheduling vector s4.

tKM–1

k

m

n

t7

t4

t3

t0 t1 t2

Figure 6: Equitemporal zones for scheduling vector s5.
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(ese projection directions are then used to calculate the
associated projection matrix according to the procedure
described in [14]:

P1 � 1 0 0 
t
. (20)

Using projection directions d11 and d12 results in
eliminating them- and n-axes, respectively, and ensures that
the projected processor array will be a linear array of K PEs
along the k-axis. Table 1 shows the chosen projection di-
rections and the associated project matrices for the six
obtained scheduling vectors.

5. Design Space Exploration

In this section, we explore the design space of linear pro-
cessor arrays for similarity distance computation using the
derived scheduling vectors and projection matrices in
Table 1.

5.1. Design #1: Using s1 � 0 1 M  and P1 � 1 0 0 .
In this design option, each point p � k m n 

t ∈ D is
assigned a time value using scheduling function (8):

t(p) � 0 1 M 

k

m

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � m + Mn. (21)

(e projection matrix P1 maps any point p in the
computation domain to the point:

p � P1p � 1 0 0 

k

m

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � k, (22)

which implies that the resulting processor array is a linear
array along the k-axis with K PEs. All points in the com-
putation domain with the same k coordinate are mapped to
the same point, or PE, in the projected computation domain.
(e input variable X is broadcast, and the broadcast di-
rection is mapped to the vector:

eX � P1eX � 1 0 0 

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1, (23)

which implies that input data are fed using broadcast lines
along the k-axis in the projected architecture. Input variable
Y is pipelined since the pipeline condition in (10) is satisfied.
(e pipeline direction is mapped to the vector:

eY � P1eY � 1 0 0 

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (24)

which implies that input Y is localized in the projected
architecture. Hence, the kth PE uses only the M features of
the kth sample of input matrix Y. Output variable D is also
pipelined, and the pipeline direction is mapped to the vector:

eD � P1eD � 1 0 0 

0

1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (25)

which implies that output D is also localized. For every M
cycles, each PE generates the distance D(k, n) between the
nth sample of dataset X and the kth sample of dataset Y. K
distances are calculated in parallel by the K PEs. Hence, the
total number of time steps is MN steps or clock cycles. (e
time complexity of the proposed architecture can also be
determined by calculating the time value assigned by the
scheduling function in (21) to the point with maximum
values of coordinates k, m, and n:

t pmax(  � 0 1 M 

K− 1

M− 1

N− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � MN− 1. (26)

Since the first time value is zero, the total number of time
steps is t(pmax) + 1 � MN steps. (e resulting processor
array and the structure of each PE are shown in Figures 8 and
9, respectively. (e remaining five processor array

tKM–1

t7

t4

t3

t0
t1

m

t2

k

n

Figure 7: Equitemporal zones for scheduling vector s6.

Table 1: Possible projection directions and associated projection
matrices.

Scheduling
vector

Chosen projection
directions

Associated projection
matrix

s1 � 0 1 M 
d11 � 0 1 0 

t

P1 � 1 0 0 d12 � 0 0 1 
t

s2 � 0 N 1 
d21 � 0 1 0 

t

P2 � 1 0 0 d22 � 0 0 1 
t

s3 � 1 0 K 
d31 � 1 0 0 

t

P3 � 0 1 0 d32 � 0 0 1 
t

s4 � N 0 1 
d41 � 1 0 0 

t

P4 � 0 1 0 d42 � 0 0 1 
t

s5 � M 1 0 
d51 � 1 0 0 

t

P5 � 0 0 1 d52 � 0 1 0 
t

s6 � 1 K 0 
d61 � 1 0 0 

t

P6 � 0 0 1 d62 � 0 1 0 
t
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architectures shown in the following subsections are ob-
tained using the same procedure as for Design #1.

5.2. Design #2: Using s2 � 0 N 1[ ] and P2 � 1 0 0[ ].
�e projection matrix is the same as that of Design #1.
Hence, all points in the computation domain are mapped to
a linear processor array of K PEs similar to that in Figure 8
with variable X being broadcast while variables Y and D are
localized. �e chosen scheduling vector results in assigning
each point in the computation domain the time value:

t(p) � 0 N 1[ ]
k

m

n


 � Nm + n. (27)

�e total number of time steps is also MN steps.
However, the scheduling vector imposes a di�erent order of
execution. As shown in Figure 3, N computations for feature
m of all data samples are performed before the N compu-
tations for feature m + 1. Hence, N registers are required by
each PE to store the intermediate results compared to only
one register in Design #1.

5.3. Design #3: Using s3 � 1 0 K[ ] and P3 � 0 1 0[ ].
�e scheduling function for this design alternative is

t(p) � 1 0 K[ ]
k

m

n


 � k +Kn. (28)

Accordingly, the total number of time steps is KN steps.
�e projection matrix P3 maps any point p in the com-
putation domain to the point:

p̃ � P3p � 0 1 0[ ]
k

m

n


 � m, (29)

which implies that the resulting processor array is a linear
array along the m-axis with M PEs. Both input variables X
and Y are localized, and output D is broadcast with its
broadcast direction mapped to a line along the m-axis.
Broadcasting an output variable requires that partial results
from all PEs are used concurrently to generate one data
element of the output matrix in every clock cycle, as shown
in Figure 10.

�e PE structure is shown in Figure 11. Compared to the
PE of Design #1 in Figure 9, no registers are required to store
partial results since distance calculation is performed within
a single clock cycle.

5.4. Design #4: Using s4 � N 0 1[ ] and P4 � 0 1 0[ ].
�e scheduling function for this design choice is

t(p) � N 0 1[ ]
k

m

n


 � Nk + n. (30)

�e time complexity for this design is equivalent to that of
Design #3 that is KN time steps. �e processor array ar-
chitecture and the PE structure are the same as in Figures 10
and 11, respectively. �e main di�erence between the two
designs is in the order of execution that results in generating
elements of the output matrix D in a di�erent order.

5.5. Design #5: Using s5 � M 1 0[ ] and P5 � 0 0 1[ ].
�e scheduling function for this design option is

X(m, n)

Y(0, m)

PEK–1

D(0, n) Y(1, m) D(1, n) Y(2, m) D(2, n) Y(K – 1, m) D(K – 1, n)

PE2PE1PE0

Figure 8: Processor array architecture for Design #1.

Y(k, m)
–

+

+

Clk

abs

+

D(k, n)

X(m, n)

+

+

Figure 9: Processing element for Design #1 in Figure 8.
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t(p) � M 1 0[ ]
k

m

n


 �Mk +m. (31)

�e total number of time steps is KM steps. �e pro-
jection matrix P5 maps any point p in the computation
domain to the point:

p̃ � P5p � 0 0 1[ ]
k

m

n


 � n, (32)

which implies that the resulting processor array is a linear
array along the n-axis with N PEs. Both input variable X and
output variable D are localized. �e input variable Y is
broadcast with its broadcast direction mapped to a line along
the n-axis. For everyM cycles, each PE generates the distance
D(k, n) between the nth sample of dataset X and the kth
sample of dataset Y. N distances are calculated in parallel by
the N PEs. �e processor array architecture is shown in
Figure 12 with the PE structure being the same as that of
Design #1 in Figure 9.

5.6. Design #6: Using s6 � 1 K 0[ ] and P6 � 0 0 1[ ].
�e scheduling function for this design option is

t(p) � 1 K 0[ ]
k

m

n


 � k +Km. (33)

�e processor array architecture and its time complexity
are the same as of Design #5. However, the order of exe-
cution that is imposed by the chosen scheduling vector,
shown in Figure 7, dictates that K registers are required by
each PE to store the intermediate results compared to only
one register in Design #5.

6. Design Comparison

�e systematic approach adopted in this paper facilitates
design space exploration of linear processor arrays for the
computation of similarity distance matrices. �e obtained
architectures provide us with the �exibility to choose the one
that meets hardware constraints for speci�c values of system
parameters K, M, and N.

Design #1 and Design #2 are suitable for parallelizing
distance calculation tasks involved in processing datasetX of
large size N compared to K that represents the size of dataset
Y. Distance calculation that is required for clustering data
samples of a large-scale dataset X using the K-means
clustering algorithm, for example, �ts these design options
since the size of dataset N and the number of featuresM are
generally much larger than the number of clusters K.
Compared to Design #1, Design #2 is not practical since it
has the same time complexity but with a large number of
additional registers to store intermediate results.

�e systematic methodology adopted in this work can be
used to obtain the previously devised architecture in [9].�is
architecture is similar to Design #1 with input X being
pipelined rather than broadcast. Scheduling vector s1 can be
modi�ed to re�ect this change by applying the pipeline
restriction in (10) instead of the broadcast restriction in (9).
�e modi�ed scheduling vector is as follows:

s7 � 1 1 M[ ]. (34)

�e total number of time steps is K +MN− 1 as
compared to MN steps for Design #1. �e resulting

Y(k, m)
–

+

abs

+X(m, n)

Figure 11: Processing element for Design #3.
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Figure 10: Processor array architecture for Design #3 with M � 4.

8 Scienti�c Programming



processor array architecture is shown in Figure 13. A total of
K(K− 1)/2 delay registers are required to feed features of the
input dataset Y. �e structure of PE is the same as of Design
#1 shown in Figure 9 with one more register for the pipe-
lined input X.

Design #3 and Design #4 are similar to the distance
calculation unit proposed in [10]. �e main drawback of
these three architectures is their slow clock rate when used
for processing high-dimensional data sinceM partial results
have to be added within a single clock cycle. Clock speed of
these architectures can be improved by pipelining the adder
trees, with each level representing a pipeline stage and a total
of extra K(M− 1) pipeline registers, as proposed in [11].
Large-scale datasets are usually stored in o�-chip or on-chip
RAMs with limited bandwidth and number of data ports.
Hence, architectures in [10, 11] are not practical for high-
dimensional data with large number of features M as they
require the feeding of a large number of features simulta-
neously. �ese two architectures are implemented as K
instances of Design #3. However, the proposed architecture
is more scalable to high-dimensional data, even if multiple
instances of it are used, since only one feature is fed at a time.
Another drawback of architectures in [10, 11] is that all
features of each cluster centroid are read simultaneously.
Hence, cluster centroids cannot be stored in on-chip RAMs
with limited data ports and have to be stored in register
banks. Our proposed architectures, on the contrary, are
more �exible as the designer can choose to store cluster
centroids in either on-chip RAMs or register banks based on
data dimensionality and hardware constraints. �is �exi-
bility is critical for implementing hardware architectures for
the K-means clustering algorithm since cluster centroids
have to be updated at the end of each iteration of the
algorithm.

Design #5 is another option that is similar to Design #1.
�e main di�erences between the two architectures are in
the choice of broadcasting or localizing input variables X
and Y and the number of PEs. Design #5 is not amenable for
hardware implementation when the value of N is very large
since it results in a huge number of PEs. However, this
design option is suitable for processing high-dimensional,
low sample size (HDLSS) datasets [16]. One example of these
datasets is the gene expression microarray datasets. �ese
datasets typically have a small number of samples N and a
large number of genes that represent the features [17]. �e
time complexity for Design #6 is the same as that of Design
#5 with extra K ×N registers to store intermediate results.

Table 2 summarizes circuit and time complexities of the
six proposed processor array architectures obtained in this
work and the three previous architectures in [9–11]. Critical

path delays are also presented, with Ta referring to the delay
of a w-bit adder to model the delay of subtraction, absolute
value, and addition operations, where w is the data width.

7. Implementation Results

As discussed in the previous section, Design #1 is the best
design for calculating similarity distances in the K-means
clustering algorithm for large-scale datasets with size N being
much larger than the number of clusters K. For a fair
comparison, Design #1 and previous architectures in [9–11]
are implemented on the same FPGA device to accelerate
distance computation involved in clustering 4,096 samples of
an image dataset (Bridge) [18], with each sample consisting of
16 numerical features of the integer data type. �e four ar-
chitectures are implemented in Verilog hardware description
language with Xilinx ISE Design Suite 13.4 targeting Xilinx
Virtex7 XC7VX330T. Table 3 shows implementation results
for distance calculation involved in one iteration of the
K-means clustering algorithm withN� 4,096 samples,M� 16
features, and number of clusters K � 64.

Implementation results show that Design #1 out-
performs Design of [9] in terms of area and speed with 25%
decrease in area and 51% decrease in the area-delay product
(ADP). Design of [9] occupies more slices due to the delay
registers used to feed features of input dataset Y. Execution
time is determined by the number of clock cycles required to
calculate all elements of distance matrixD and the clock rate.
Design of [9] requiresK− 1 additional clock cycles and has a
slower clock speed. Although the clock speed for Design #1 is
a�ected by the delay of long broadcast bus used to feed
features of dataset X, it still attains a higher clock rate due to
the higher clock skew for Design of [9], as inspected by the
Xilinx tool.�e e�ect of clock skew and long broadcast buses
can be minimized by using clock distribution networks and
bu�er insertion for Design of [9] and Design #1, respectively,
at the cost of more area and power consumption.

Based on time complexities of the four designs in Table 2,
as expected, Designs of [10, 11] require less time to complete
the computation of all elements of distance matrixD. On the
contrary, Design #1 achieves 58% and 14% decrease in ADP
compared to Designs of [10, 11], respectively, using only 6%
of their area.

8. Conclusion

�e systematic technique presented in this work is used to
explore the design space of scalable and area-e¦cient
processor arrays for the computation of similarity dis-
tance matrices. Six new processor arrays, in addition to a

Y(k, m)

X(m, 0)

PEN–1

D(k, 0) X(m, 1) D(k, 1) X(m, 2) D(k, 2) X(m, N – 1) D(k, N – 1)

PE2PE1PE0

Figure 12: Processor array architecture for Design #5.
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previously devised one, are obtained systematically.
Implementation results for previous architectures and one of
our proposed architectures show that the proposed archi-
tecture achieves the best compromise between area and
speed with an average decrease of 71% in area and 41% in
ADP. �e proposed architecture is more scalable to high-
dimensional data as it requires the feeding of only one
feature at time.

Scheduling and projection operations introduced in this
work allow for control on time and area complexities of the
proposed architectures. We intend to analyze the proposed
architectures in terms of power e¦ciency and extend the
proposed methodology to design power-e¦cient architec-
tures that are critical for embedded applications.
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Data sources in this work are from the public clustering
datasets available at http://cs.uef.�/sipu/datasets.
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