
Research Article
Implementation and Optimization of a CFD Solver Using
Overlapped Meshes on Multiple MIC Coprocessors

Wenpeng Ma ,1 Wu Yuan,2 and Xiaodong Hu2

1College of Computer and Information Technology, Xinyang Normal University, Henan 464200, China
2Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Wenpeng Ma; mawp@xynu.edu.cn

Received 2 February 2019; Revised 27 March 2019; Accepted 23 April 2019; Published 27 May 2019

Academic Editor: Basilio B. Fraguela

Copyright © 2019WenpengMa et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we develop and parallelize a CFD solver that supports overlapped meshes on multiple MIC architectures by using
multithreaded technique. We optimize the solver through several considerations including vectorization, memory arrangement,
and an asynchronous strategy for data exchange on multiple devices. Comparisons of different vectorization strategies are made,
and the performances of core functions of the solver are reported. Experiments show that about 3.16x speedup can be achieved for
the six core functions on a single Intel Xeon Phi 5110P MIC card, and 5.9x speedup can be achieved using two cards compared to
an Intel E5-2680 processor for two ONERA M6 wings case.

1. Introduction

Computing with accelerators such as graphics processing unit
(GPU) [1] and Intel many integrated core (MIC) architecture
[2] has been attractive in computational fluid dynamics
(CFD) areas recent years because it provides researchers with
the possibility of accelerating or scaling their numerical codes
by various parallel techniques. Meanwhile, the fast develop-
ment of computer hardware and the emerging techniques
require researches to explore suitable parallel methods for
applications in engineering. Intel MIC architecture consists of
processors that inherit many key features of Intel CPU cores,
which makes the code migrating less expensive and become
popular in the development of parallel algorithms.

Many CFD-based codes or solvers have been studied on
Intel MIC architecture. Gorobets et al. [3] used various
accelerators including AMD GPUs, NVIDIA GPUs, and
Intel Xeon Phi coprocessors to conduct direct numerical
simulation for turbulent flows and compared the results
from these accelerators. Farhan et al. [4] utilized native and
offload mode of MIC programming model to parallelize the
flux kernel of PETSc-FUN3D, and they obtained about 3.8x
speedup with offload mode and 5x speedup with native
mode by exploring a series of shared memory optimization

techniques. Graf et al. [5] ran their PDE codes on single Intel
Xeon Phi Knights Landing (KNL) node and multiple KNL
nodes respectively by using MPI +OpenMP programming
model with different thread affinity types. Cai et al. [6] cal-
culated the nonlinear dynamic problems on Intel MIC by
employing offload mode and overlapped data transfer
strategy, and they obtained 17x on MIC over sequential
version on the host for the simulation of a bus model. Saini
et al. [7] investigated various numerical codes on MIC to seek
performance improvement with different host-coprocessor
computingmodes comparisons, and they also presented load-
balancing approach for symmetric use of MIC coprocessors.
Wang et al. [8] reported the large-scale computation of a high-
order CFD code on Tianhe-2 supercomputer that consists of
both CPU and MIC coprocessors. And other CFD-related
works on Intel MIC architecture can be found in references
[9–12]. Working as coprocessors, GPUs also have been
popular in CFD. Many researchers [13–17] have studied GPU
computing on structured meshes, which involved coalesced
computation technique [13], heterogeneous algorithm
[15, 17], numerical methods [16], etc. Corrigan et al. [18]
investigated an Euler solver on GPU by employing un-
structured grid and gained important factor of speedup over
CPUs.)en, a lot of results included data structure

Hindawi
Scientific Programming
Volume 2019, Article ID 4254676, 12 pages
https://doi.org/10.1155/2019/4254676

mailto:mawp@xynu.edu.cn
http://orcid.org/0000-0002-6363-4161
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4254676

optimization [19, 20], numerical techniques [21], and ap-
plications [22] based on unstructured meshes on the GPU
platform. For GPU simulations on overlapped (overset)
meshes, Soni et al. [23] developed a steady CFD solver on
unstructured overset meshes by using GPU programming
model, which accelerated both the procedure of grid (mesh)
assembly and the procedure of numerical calculations.)en,
they extended their solver to unsteady ones [24, 25] to make
their GPU implementation capable of handling dynamic
overset meshes. More CFD-related computing on GPUs can
be found in an overview reference [26].

However, most of the existing works either used con-
sistent structured or unstructured meshes without mesh
overlapping over the computational domain on MIC archi-
tecture or studied overlapped meshes on GPUs. A majority of
CFD simulations involving overlapped meshes were imple-
mented or developed on distributed system through message
passing interface (MPI) [27] without using coprocessors in
past several decades. Specifically, Djomehri and Jin [28] re-
ported the parallel performance of an overset solver using a
hybrid programming model with both MPI [27] and
OpenMP [29]. Prewitt et al. [30] conducted a review of
parallel implementations using overlapped mesh methods.
Roget and Sitaraman [31] developed an effective overlapped
mesh assembler and investigated unsteady simulations on
nearly 10000 CPU cores. Zagaris et al. [32] discussed a range
of problems regarding parallel computing for moving body
problems using overlapped meshes and presented the pre-
liminary performance on parallel overlapped grid assembly.
Other overlapped mesh-related works can be found in
[33–36]. Although the work in [7] conducted tests by using a
solver that is compatible with overlapped meshes on MIC
coprocessors, the way it accessed multiple MIC coprocessors
is through the native mode or symmetric mode of MIC. In
this paper, we focus on the use of offload mode of MIC and
investigate the parallelization of a solver with overset meshes
on a single host node with multiple MIC coprocessors.)e
contributions of this work are as follows:

(i) We parallelize an Euler solver using overlapped
meshes and propose an asynchronous strategy for
calculations on multiple MIC coprocessors within a
single host node

(ii) We investigate the performances of core functions
of the solver by employing offload mode with dif-
ferent thread affinity types on the MIC architecture,
and we make detailed comparisons between the
results obtained by Intel MIC vectorization and that
obtained by Intel SSE vectorization

(iii) A speedup of 5.9x can be obtained on two MIC
coprocessors over a single Intel E5-2680 processor
for two M6 wings case

)e remainder of the paper is as follows. We first in-
troduce the MIC architecture and programming model.
And this is followed by equations and numerical algorithms
that have been implemented in the solver. In Section 4,
we discuss implementation and optimization aspects in-
cluding data transfer, vectorization, and asynchronous data

exchange strategy on multiple MIC coprocessors.)e per-
formances of core functions by using different thread affinity
types are reported, and comparisons are made in Section 5.
)e last section summarizes our work.

2. MIC Architecture and Programming Model

Many integrated core (MIC) architecture [2] is a processor
that is capable of integrating many ×86 cores, providing the
computing power of high parallelism.)e architecture used
in the first Intel Xeon Phi product is called Knights Corner,
KNC.)e KNC coprocessors can have many (up to 61)
double dispatched, in-order executing ×86 computing cores.
Each core has a 512 bit vector processing unit (VPU) which
supports 16 single or 8 double floating point operations per
cycle, and each core is able to launch 4 hardware threads.
32KB L1 code cache, 32KB L1 data cache, and 512KB L2
cache are available to each core.)e coprocessor used in this
work is Intel Xeon Phi 5110P [37], which consists of 60 cores
each of which runs at 1.05GHz. It can launch a total of 240
threads simultaneously. And 8GB of GDDR5 memory is
available on it.

Anyone who is familiar with C, C++, or Fortran pro-
gramming language can develop codes onMIC coprocessors
without major revision of their source codes. MIC provides
very flexible programming models, including native host
mode, native MIC mode, offload mode, and symmetric
mode [38]. Coprocessors are not used in native host mode,
and programmers can run their codes on CPUs just like they
do before the MIC architecture was introduced. By contrast,
codes can be conducted only on coprocessors in native MIC
mode when they are compiled with “-mmic” option.
Symmetric mode allows programmers to run codes on both
CPU cores and coprocessors. And offload mode is most
commonly used on a single coprocessor or multiple co-
processors within a single host node.)e basic use of offload
mode for programmers is to write offload directives to make
the code segment run on MIC coprocessors. To take full
advantage of computational resources on MIC, the code
segment can be conducted in parallel by employing mul-
tithreading techniques, such as OpenMP [29].

3. Equations and Numerical Algorithms

3.1. Compressible Euler Equations.)e three-dimensional
time-dependent compressible Euler equations over a con-
trol volume Ω can be expressed in integral form as

z

zt
􏽚
Ω
W dΩ + 􏽉

zΩ
FcdS � 0, (1)

where W � [ρ, ρu, ρv, ρw, ρE]T represents the vector of con-
servative variables and Fc � [ρV, ρuV + nxp, ρvV + nyp,

ρwV + nzp, ρHV]T denotes the vector of convective fluxes
with V � nxu + nyv + nzw.

3.2. Numerical Algorithms.)e flux-difference splitting
(FDS) [39] technique is employed to calculate the spatial
derivative of convective fluxes. In this method, the flux at the
interface (for example, i direction), expressed by Fi±(1/2),j,k,

2 Scientific Programming

can be computed by solving an approximate Riemann
problem as

Fi+(1/2),j,k �
1
2

F WL(􏼁 + F WR(􏼁− Ainv
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 WR −WL(􏼁􏽨 􏽩, (2)

where the left and right state of q, qL, and qR are constructed
by Monotonic Upstream-Centered Scheme for Conserva-
tion Laws (MUSCL) [40] and min-mod limiter.

Equation (1) is solved in time in this work by employing
an implicit approximate-factorization method [41], which
achieves first-order accuracy in steady-state simulations.

Euler wall boundary conditions (also called inviscid
surface conditions), inflow/outflow boundary conditions,
and symmetry plane boundary conditions are applied to
equation (1) by using the ghost cell method [42].

3.3. Mesh Technique. In this work, we aim to solve 3D Euler
equations on multiple MIC devices by using overlapped
mesh technique. In this technique [33, 42], each entity or
component is configured by a multiblock mesh system, and
different multiblock mesh systems are allowed to overlap
with each other. During the numerical calculations, over-
lapped regions need to receive interpolated information
from each other by using interpolationmethods [43, 44].)e
process of identifying interpolation information among
overlapped regions, termed as mesh (grid) assembly
[31–34, 45], has to be employed before starting numerical
calculations.)is technique has reduced the difficulty of
generating meshes for complex geometries in engineering
areas because an independent mesh system with high mesh
quality can be designed for a component without consid-
ering other components. However, it adds the complexity of
conducting parallel calculations (via MPI [27], for example)
on this kind of mesh system. As mesh blocks are distributed
on separated processors where data can not be shared di-
rectly, more detailed work should be done on data exchange
among mesh blocks.)ere are two types of data commu-
nication for overlapped mesh system when calculations are
conducted on distributed computers. One is the data ex-
change on the shared interfaces where one block connects to
another, and the other is the interpolation data exchange
where one block overlaps with other blocks. And the dis-
cussion of both types of communication is going to be
covered in this work.

4. Implementation

4.1. Calculation Procedure.)e procedure of solving
equation (1) depends mainly on the mesh technique
employed. In the overlapped mesh system, the steps of
calculations are organized in Listing 1. As described in
Section 3.3, performing mesh assembly is a necessary step
(Listing 1, line 1) before conducting numerical computing
on an overlapped mesh system. Mesh assembly identifies
cells which need to receive interpolation data (CRI) as well as
cells which provide interpolation data (CPI) for CRIs in
overlapped regions and creates a map to record where the
data associating with each block should be sent to or received

from.)is data map stays unchanged during the steady-state
procedure and is used for data exchange (Listing 1, line 8)
within each iteration.)en, the mesh blocks that connect
with other blocks need to share the solutions at their
common interfaces. When the data from blocks that provide
interpolation and from neighbouring blocks are ready, a
loop (Listing 1, lines 10–13) is launched to compute fluxes
and update solutions on each block one by one.

Figure 1 illustrates how we exploit multithreading
technique to perform all operations in Listing 1 on a single
computing node with multiple MIC coprocessors. Even
though more than one MIC coprocessor can be assembled
on the same node, they are unable to communicate with each
other directly.)ey must communicate through the host
node, and it is expensive for data to be moved between MIC
devices and the host node because of the limited PCI-E
bandwidth.)at requires us to work out data transfer
strategy in order to achieve better performance on MIC
coprocessors as two types of communication occur in every
single iteration.

Our first consideration is to locate each mesh block
cluster (MBC) that is associated with a component or entity
on a specific MIC coprocessor.)is benefits from the nature
feature of the overlapped mesh system (Section 3.3)
employed in this work. Since a MBC consists of one-to-one
matched blocks only, it does not involve operations of in-
terpolation over all mesh blocks it contains. So, this way of
distributing computational workload to MIC coprocessors
avoids one-to-one block data exchange across MIC co-
processors, which reduces the frequency of host-device
communication. However, the data transfer from one
block to all the blocks it overlaps across MIC devices is
inevitable. For data transfer over overlapped regions across
different MIC devices, we proposed an algorithm of com-
munication optimization which will be introduced and
discussed in Section 4.4.

As shown in Figure 1, a bunch of OpenMP threads are
created on the host node, and each thread is associated with a
MIC coprocessor and responsible for the data movement
and computation of at least one MBC.)e operations of
physical boundary conditions (lines 5–7), the data exchange
on one-to-one block interfaces (line 9) over a MBC, and the
most time consuming part (lines 10–13) in Listing 1 are
conducted on the corresponding MIC device. For steady
calculations in this work, the host calls the process of mesh
assembly [46, 47] only once to identify the CRIs and CPIs for
each mesh block and prepare the data structure in over-
lapped regions. At the end of each steady cycle, the updated
solutions of CPIs are used to calculate, update the in-
terpolation data, and then copied to the host memory.)e
host collects the data, redistributes it for CRIs, and copies the
CRIs with new interpolated values back into the MIC
memory. When the interpolated data are ready, a cycle of
spatial and temporal calculations can be performed on mesh
blocks one by one without any data dependence.

4.2. Memory Arrangement. A MIC coprocessor has its own
memory space, and independent memory allocation and

Scientific Programming 3

arrangement have to be performed for the computations
that are offloaded to a MIC device. More importantly,
manipulating memory frequently and dynamically might
have a negative effect on the overall efficiency, and it is the
programmer’s responsibility to control and optimize the
memory usage.

In the computational procedure of solving equation (1),
the core calculations including boundary conditions, spatial
discretizations, and advancements in time just involve
updating the values in arrays that can be used in different
subroutines during the repeated cycles.)erefore, the whole
procedure conducts calculations on allocated variables during
the cycle and then outputs them at the end of the process.)is
fact inspires us to use !dec$ offload begin target(mic:i) and !
dec$ end offload to include all the variables that need to be

allocated on MIC or copied from host before the cycle starts.
)e clause of in(varname:length(len)) is used with alloc_if(.-
true.) free_if(.false.) options to allocate memory for a variable
and initialize it with the values on the host by memory copy.
However, there are a lot of variables that are used as tem-
porary spaces and do not have to be initialized. In this case, we
use the keyword of nocopy(nocopy(tmp:length(len_tmp)
alloc_if(.true.) free_if(.false.))) to avoid extra memory copies
between the host and a MIC coprocessor. When all the
calculations are completed, out clause is declared with allo-
c_if(.false.) free_if(.true.) options and placed between offload
begin and end offload regions to copy the newest conservative
flow variables to the host memory and free the variables in the
device memory.)e memory arrangement described above is
illustrated in Listing 2.

Configuration file
and overlapped

mesh data

..... .

MIC_0 MIC_n

Interpolation data

Thread_0 Thread_i Thread_n

Mesh assembly Host

Initialization

Spatial and temporal
calculation

Data exchange

MBC_n...

Update interpolation data

Boundary conditions
Receiving CRIs

Spatial and temporal
calculation

Data exchange

MBC_0, MBC_1...

Update interpolation data

Boundary conditions
Receiving CRIs

Output file

Figure 1: Flow chart of calculations on multiple MIC coprocessors.

(1) Conduct mesh assembly to obtain interpolation information over the mesh system (MS)
(2) Read flow configuration file and overlapped mesh data
(3) Initialization
(4) repeat
(5) for each iblock in MS do
(6) Apply boundary conditions to iblock
(7) end for
(8) Ws(CRI) � f(Wt(CPI)): exchange interpolated data between overlapped block pair (s, t), where CRI: cells receiving

interpolation data and CPI: cells providing interpolation data
(9) Wi(ghostcells)⟵Wj andWj(ghostcells)⟵Wi: exchange each one-to-one block data at block interface connecting blocki

and blockj

(10) for each iblock in MS do
(11) Calculate Fi

c, F
j
c, and Fk

c fluxes on iblock
(12) AF time advancement and update solutions on iblock
(13) end for
(14) Until convergence
(15) Output flow data

LISTING 1: Procedure of solving equation (1) on overlapped mesh system.

4 Scientific Programming

Inside the cycle, many MIC kernels are launched by the
host, and the nocopy keyword is used again to keep the data
declared out of the cycle persistent across offloading pro-
cedure. For example, as shown in Listing 2, Fluxj_mic is
declared as a function that can be called onMIC directly, and
it reuses the array mbc_n which is declared and allocated
outside the cycle without any extra memory operations
during the cycle. Andmbc_n can either be copied out to host
memory or just deallocated on the coprocessor at the end
point of the cycle.)is concept of memory arrangement,
which has been applied in other applications [6, 7], prevents
frequent data copies inside the cycle from affecting the
overall efficiency.

4.3. Vectorization. Vectorization is an effective way to im-
prove computing speed on CPU by using Streaming SIMD
(single instruction, multiple data) Extension (SSE). Simi-
larly, MIC coprocessors support 512 bit wide Knights Corner
instructions which allow 16 single or 8 double floating point
operations at the same time. In this section, we explore
vector optimization to make full use of MIC computational
resources.

Generally, there are two different ways to implement the
flux calculations.)e first method is to perform a nested loop
over all mesh cells (or mesh nodes). It calculates all the fluxes
that go in or out of a cell’s interfaces and accumulates them for
the cell. And the vector operations can be applied to the
innermost loop by using Intel autovectorization or manual
SIMD directives. However, this algorithm involves redundant
computations, in which the flux of an interface which is
shared by two cells is computed twice. Literatures [18] have
shown that redundant computing was not harmful to GPU
implementation because it can hide the latency of global
memory accesses on GPUs. An alternative way of flux
computation, which is more popular for CPU computing and
employed in this work, is to evaluate the flux of every edge
only once by performing three nested loops along three di-
rections. And then, the fluxes of edges are accumulated into
the cells that contain them. However, there are still different

coding strategies for the later technique.We investigate two of
them and compare the effects on vectorizations.

One of the coding strategies (CS-1) is to conduct flux
computing along different directions. For example, each
thread is responsible for visiting a piece of the array of
solution along i direction, denoted as w(j, k, 1 : id, n), when
Fi is considered. As discontinuous memory accesses occur
when higher dimensions of w are accessed, loading the piece
of w into a one-dimensional temporary array at the be-
ginning is an effective way to reduce cache misses in the
following process. And the remaining flux calculations can
be concentrated on the temporary array completely.)en,
two directives, dir$ ivdep or dir$ simd, can be declared to
vectorize all the loops regarding the temporary array.
Figure 2(a) shows the pseudocode of this strategy.)e
advantage of this consideration is to keep the code of flux
computation along different directions almost same and
reduce the workload of redevelopment. Another method
(CS-2) refers to performing Fj, Fk, and Fi fluxes along the
lowest dimension of w. Fluxes along different directions are
computed by the nested loops with the same innermost loop
to guarantee that the accesses of continuous memory hold,
no matter which direction is under consideration. However,
the body codes inside the nested loops vary from one di-
rection to another. In this circumstance, vectorization di-
rectives are applied to the innermost (the lowest dimension)
loop and the two nested loops outside are unpacked man-
ually to increase the parallelism [7], or applied to the two
inner loops by merging two loops to make full use of the
VPU on MIC.)e method merging the two inner loops is
employed in the present paper, and the pseudocode is shown
in Figure 2(b). It should be noted that the Knights Corner
instructions [38], which can be applied to perform vecto-
rization more elaborately, are not involved in this work,
because this assembly-level optimization may result in poor
code readability and make the overhead of code mainte-
nance increase.

Except for the content of the code inside the loops, the
process of time advancement has the similar structure of

(1) !dec$ offload begin target(mic:n) in(mbc_n:length(len) alloc_if(.true) free_if(.false.)) . . .

(2) !dec$ end offload
(3) repeat
(4)

(5) !dec$ offload target(mic:n) nocopy(mbc_n:length(len) alloc_if(.false.) free_if(.false.))
(6) !$omp parallel do private (ik, i, k)
(7) do ik� 1, ik_total
(8) i � (ik− 1)/(kd− 1) + 1
(9) k � mod(ik− 1, kd− 1) + 1
(10) call Fluxj_mic(mbc_n, i, k,)
(11) end do
(12) !$omp end parallel do
(13)

(14) until convergence
(15) !dec$ offload begin target(mic:n) nocopy(mbc_n:length(len) alloc_if(.false.) free_if(.false.))
(16) !dec$ end offload

LISTING 2: Memory arrangement on MIC.

Scientific Programming 5

nested loops with fluxes computing.)erefore, we merge the
two loops inside to provide larger data set for vectorization
on MIC.

4.4. Host-Device Communication Optimization. As de-
scribed in Section 4.1, our task allocation strategy is to
distribute workload by MBCs, which avoids the data ex-
change on one-to-one interfaces across MIC coprocessors
but inevitably leads to communication across MIC co-
processors because of interpolation among MBCs.

Although workloads which are located on different MIC
devices are performed in parallel, they still are dispatched one
by one when they are on the same coprocessor. As a MBC
corresponds to a specificMIC device, mesh blocks in theMBC
are calculated and updated one by one.)erefore, a mesh
block that contains CPIs does not have to wait until the
computation of other mesh blocks has completed before it
needs to copy data to the host. More specifically, when the
solution of a mesh block has been updated successfully during
a block loop (Listing 1, line 10), it can start a communication
request to copy interpolation data provided by CPIs to the
host immediately. And the overhead of copying data from a
mesh block to the host can be hidden by the flow computing
of other mesh blocks in the same device. To implement this
idea, we take advantage of the asynchronous transfer of the
offload mode. Because overlapped mesh that consists of 2
MBCs is the most common case, we address the pseudocode
of our algorithm about communication optimization in Al-
gorithm 1 by using 2 MBCs and 2 MICs.

Outside the main procedure of numerical calculations, a
loop over all MIC devices is performed. In order to make
each device responsible for a part of the whole computation,
we use OpenMP directive omp parallel do before the loop to
start a number of threads, each of which maps to a device.
According to the memory arrangement discussed in Section
4.2, memory allocation and initialization have been done on
devices before the computation starts.)erefore, by using
this thread-device mapping, each device can access its own
device memory, start computing, and use shared host
memory for necessary data exchange. At the end point of
time advancement, the clause offload_transfer is used with
the signal option to put a request of data transfer from the
device to the host, and it returns immediately and allows the

device to keep running the next MIC kernels. So, the data
transfer and the block computing can be conducted at the
same time. Once all the MIC kernels in a steady step have
finished, the CPU is required to check the signals by using
offload_wait to make sure all the transfers have been done
before executing the process of exchanging interpolation
data.)en, the CPU uses the master thread to distribute the
interpolation data from CPIs to the corresponding positions
of CRIs. Vectorization can be employed in this part because
the operations involve assignment operations only. After
that, the CPU starts data transfer requests to copy data back
to each device respectively. At the same time, the next cycle
begins, and the MIC kernel of set_boundary_condition is
expected to run on MIC overlapping with the overhead of
transferring the interpolation data back to MIC devices. In
some cases, the last mesh block residing on a MIC device
may have the largest number of CPIs, and it is difficult to
overlap the data transfer from device to the host with
computation because there are no more blocks that need to
be computed. As the overlapped region involves only a part
of mesh blocks, we sort the mesh blocks in the descending
order in accordance with the number of CPIs to avoid
transferring data with insufficient overlapped computation.

5. Experiments

5.1. Testing Environment. Our experiments were conducted
on the YUAN cluster at the Computer Network Information
Center at the Chinese Academy of Sciences.)e cluster is of
hybrid architecture that consists of both MIC and GPU
nodes.)e configuration of MIC nodes is that each node has
two Intel E5-2680 V2 (Ivy Bridge, 2.8GHz, 10 cores) CPUs
and two Intel Xeon Phi 5110P MIC coprocessors.)e
memory capacity for the host and coprocessors is 64GB and
8GB, respectively. Two environmental variables, MIC_
OMP_NUM_THREADS and MIC_KMP_AFFINITY, were
declared to investigate the performances under different
number of OpenMP threads and affinity types. Intel Fortran
compiler (version 2013_sp1.0.080) was used with the highest
optimization -O3 and -openmp options to compile the
solver.

5.2. Results. We used two ONERA M6 wings (shown in
Figure 3), each of which was configured with four 129 ×

113 × 105 subblocks.)e lower wing and its mesh system
were formed by making a translation of the upper wing
down along Y-axis by the length of the wing, and then, the
two mesh systems overlapped with each other. Figure 4
shows a closer view of the overlapped mesh system at the
symmetry plane before the mesh assembly. Figure 5 shows a
closer view of the mesh system after the mesh assembly was
performed.)e mesh assembly procedure automatically
formed an optimized region where the interpolation re-
lationship between the two mesh systems can be identified,
which is shown in the middle of the upper and lower wings.
)e initial condition for this case is as follows: Mach number
M � 0.84, angle of attack α � 3.06°, and slip angle β � 0°. As
the host node has two Intel MIC coprocessors, we made each

jk_total = (jd – 1) ∗ (kd – 1)
do jk = 1, jk_total

k = (jk – 1)/(jd – 1) + 1
j = mod(jk – 1, jd – 1) + 1

!dir$ simd
tmp(:) = w(j, k, :, n)

!dir$ ivdep
operation_1(tmp(:))

!dir$ ivdep
operation_2(tmp(:))
......

end do

(a)

do k = 1, (kd – 1)

tmp(:) = w(:, k, :, n)
!dir$ ivdep

!dir$ ivdep

!dir$ ivdep
operation_1(tmp(:))

operation_2(tmp(:))
......

end do

(b)

Figure 2: Two different vectorization implementations.

6 Scientific Programming

MIC coprocessor responsible for the workload of one mesh
system.)e results presented below start with the perfor-
mances of six kernels (three in spatial and three in temporal)
running on MIC.

Tables 1–3 show both the wall clock times for one cycle
obtained by different combinations of number of threads
and thread affinity types and that obtained by CPUs.)e
wall clock times for one cycle were evaluated by averaging
the times of first 100 cycles. And the second coding strategy
for vectorization of flux computing was employed in this
test. In each table, the first column lists the number of
threads from 4 to 118, which is horizontally followed by two
three-column blocks. Each block corresponds to a specified
MIC kernel and lists wall clock times in different thread
affinity types. A column in such a block represents the wall
clock times on MIC varying from the number of threads
under a declared thread affinity type. In order to observe the
scalability of MIC kernels as the number of threads in-
creases, we demonstrate the relative speedup as t4/tp, where
t4 is the wall clock time estimated by using 4 threads and tp is

that estimated by using p threads.)e relative speedups are
also filled in each column on the right of wall clock times.
Furthermore, to compare the performance on the MIC
architecture with that on CPUs, we also show the corre-
sponding full vectorization optimized CPU time for each
kernel at the last row of each table and calculate the absolute
speedup through dividing the CPU time by the minimum
value in all three values obtained by 118 threads under
different affinity types.)e results in all three tables show
that the wall clock times obtained by scatter and balanced
modes have an advantage over that obtained by compact
mode.)is can be explained by the fact that the compact
mode distributes adjacent threads to the same physical
processor as much as possible in order to make maximum
utilization of L2 cache when adjacent threads need to share
data with each other but this can result in load imbalance
problems among physical cores. Our implementations have
made each thread load independent data into a temporary
array and operate the array locally, which is more suitable for
both scatter and balanced modes because the local opera-
tions in each thread make better use of L1 cache on a
processor without any intervention from other threads.

As the balanced mode distributes threads to processors
in the same way as the scatter mode does when NT≤ 59, the
results obtained from these two modes are supposed to be
same. However, there exist slight differences between them
through Tables 1–3 because of time collecting errors coming
from different runs. When NT � 118, each coprocessor took
responsibility of two threads in both the balanced and scatter
modes, but they differed because the balanced mode kept
two adjacent threads on the same coprocessor whereas the
scatter mode kept them on different coprocessor. However,
the results obtained by these two modes did not show ob-
vious gap in this case.)is might be caused by the cache race
among threads on a single MIC processor when it undertook
more than one thread.

It is noticed that except Fj the wall clock times of other
five MIC kernels no longer decrease effectively when more

(1) !$omp parallel do private(idev, ib,)
(2) do idev� 0, 1
(3) repeat
(4) offload target(mic:idev): set_boundary_condition for each block
(5) if(icycle > 1) offload target(mic:idev) wait(sgr(idev)): set_CRI_to_domain
(6) offload target(mic:idev) exchange_interface_data
(7) do ib� 1, nb(idev)
(8) offload target(mic:idev): spatial_step
(9) offload target(mic:idev): temporal_step
(10) offload target(mic:idev): compute_CPI
(11) offload_transfer target(mic:idev) out(CPIib) signal(sgpidev(ib))
(12) end do
(13) master thread: offload_wait all sgpidev related to each device
(14) master thread on CPU: exchange_interpolation_data
(15) master thread: offload_transfer target(mic:idev) in(CRIimbc) signal(sgr(idev))
(16) until convergence
(17) !$omp end parallel do

ALGORITHM 1: Communication optimization algorithm.

X

Y

Z

Figure 3: Two M6 wings.

Scientific Programming 7

than 59 threads were used in both balanced and scatter
modes.)is can be explained by the fact that the OpenMP
directives in these kernels worked at the outmost loop and
the maximum number of workload pieces equals to 128 (or
112, 104); so, it was difficult for each thread to balance the
workload on it when 118 threads were launched. And for Fj,
we vectorized it along the innermost direction and manually
combined the two nested looped into one loop to increase
the parallelism by slightly modifying the codes.)erefore, it

has been showed that Fj scaled better than Fk and Fi did as
the number of threads increased, and Fk and Fi have an
advantage in wall clock time due to maximizing the use of
VPU on MIC but at the expense of scalability.

A speedup of 2.5x was obtained on the MIC coprocessor
for TAj, which is the lowest speedup among the three
kernels.)at was mainly caused by the cache misses and
poor vectorization when each thread tried to load the j− k

plane of the solution array (w(j, k, i, n)) into the temporary

Table 1: Wall clock times for Fj and Fk (in seconds).

NT
Fj Fk

Scatter Balanced Compact Scatter Balanced Compact

4 1.80 (1.0x) 1.81 (1.0x) 3.256 (1.0x) 0.680 (1.0x) 0.680 (1.0x) 1.668 (1.0x)
8 0.932 (1.93x) 0.935 (1.94x) 1.680 (1.94x) 0.352 (1.93x) 0.352 (1.93x) 0.856 (1.95x)
16 0.520 (3.46x) 0.519 (3.49x) 0.880 (3.7x) 0.192 (3.54x) 0.194 (3.51x) 0.468 (3.56x)
32 0.288 (6.25x) 0.288 (6.28x) 0.488 (6.67x) 0.160 (4.25x) 0.161 (4.22x) 0.28 (5.96x)
59 0.196 (9.18x) 0.196 (9.23x) 0.296 (11.0x) 0.144 (4.72x) 0.144 (4.72x) 0.224 (7.45x)
118 0.144 (12.5x) 0.136 (13.3x) 0.160 (20.35x) 0.148 (4.59x) 0.148 (4.59x) 0.196 (8.51x)
CPU time 0.52 (3.82x) 0.54 (3.64x)
NT : number of threads.

Figure 5: Closer view of two overlapped mesh systems after mesh assembly.

Figure 4: Closer view of two overlapped mesh systems before mesh assembly.

8 Scientific Programming

space and reshaped it along k direction.)e same reason can
explain the results shown in Figure 6, where the comparisons
between two code strategies (CS) for flux computation of Fk
and Fi by using balanced mode have been made.)e wall
clock times for the four kernels were evaluated by per-
forming the first 100 steps of the solver. CS-1 conducted 10
more discontinuous array loadings than CS-2 did, which
made vectorizations far from efficient on MIC coprocessors.
Although the discontinuous memory accesses were vec-
torized by simd clause compulsively, they turned out less

effective on MIC coprocessors. Also, we can observe clear
efficiency drops when more than 16 threads were used in
CS-1, because we have done 2D vectorization in CS-1 which
made it hard for MIC to keep balanced workload among
threads.

)en, we split each of the original block into 4 subblocks
along both i and j directions and form a mesh system of 16
blocks for each wing and report the wall clock times for 500
steps by running the case on CPU and two MIC devices,
respectively. Figure 7 shows wall clock time comparisons in

4 8 10 16 32 59 118
Number of threads

101

102

103

W
al

l c
lo

ck
 ti

m
es

 (s
ec

on
ds

)

Fk CS-1
Fi CS-1

Fk CS-2
Fi CS-2

Figure 6: Comparisons among different implementations in vectorization.

Table 2: Wall clock times for Fi and TAj (in seconds).

NT
Fi TAj

Scatter Balanced Compact Scatter Balanced Compact

4 1.22 (1.0x) 1.22 (1.0x) 2.288 (1.0x) 2.132 (1.0x) 2.132 (1.0x) 6.80 (1.0x)
8 0.636 (1.91x) 0.636 (1.91x) 1.196 (1.91x) 1.160 (1.83x) 1.161 (1.84x) 3.44 (1.98x)
16 0.352 (3.47x) 0.353 (3.46x) 0.660 (3.47x) 0.632 (3.37x) 0.630 (3.38x) 1.832 (3.71x)
32 0.268 (4.55x) 0.266 (4.59x) 0.432 (5.29x) 0.360 (5.92x) 0.362 (5.89x) 0.960 (7.08x)
59 0.232 (5.26x) 0.231 (5.28x) 0.272 (8.41x) 0.296 (7.2x) 0.296 (7.2x) 0.684 (9.94x)
118 0.216 (5.65x) 0.212 (5.75x) 0.260 (8.8x) 0.296 (7.2x) 0.288 (7.4x) 0.48 (14.17x)
CPU time 0.676 (3.19x) 0.72 (2.5x)
NT : number of threads.

Table 3: Wall clock times for TAk and TAi (in seconds).

NT
TAk TAi

Scatter Balanced Compact Scatter Balanced Compact

4 0.988 (1.0x) 0.988 (1.0x) 2.424 (1.0x) 1.404 (1.0x) 1.404 (1.0x) 2.736 (1.0x)
8 0.508 (1.94x) 0.508 (1.94x) 1.256 (1.93x) 0.716 (1.96x) 0.714 (1.97x) 1.436 (1.91x)
16 0.280 (3.53x) 0.282 (3.50x) 0.664 (3.65x) 0.408 (3.44x) 0.407 (3.45x) 0.804 (3.4x)
32 0.164 (6.02x) 0.166 (5.95x) 0.368 (6.59x) 0.260 (5.4x) 0.264 (5.32x) 0.464 (5.90x)
59 0.140 (7.06x) 0.139 (7.11x) 0.232 (10.4x) 0.200 (7.02x) 0.202 (6.95x) 0.283 (9.67x)
118 0.156 (6.33x) 0.152 (6.5x) 0.196 (12.4x) 0.200 (7.02x) 0.199 (7.06x) 0.228 (12.0x)
CPU time 0.56 (3.68x) 0.572 (2.87x)
NT : number of threads.

Scientific Programming 9

different block sizes. Solving equation (1) on 8 overlapped
mesh blocks using two Intel Xeon Phi 5110P MIC cards can
achieve 5.9x speedup compared to sequential calculations
with full optimizations, whereas solving the same problem
on 32 overlapped mesh blocks using two MIC cards only
achieves 3.6x.)is is to be expected, because threads are
unlikely to keep busy and balanced workload when the
dimensions of blocks are relatively small as stated above, and
the six core functions can achieve only about 2x speedup on
a single MIC device. Furthermore, it is observed that se-
quential calculations using 32 mesh blocks spent about 10%
more time than that using 8 mesh blocks.)is can be
explained by the fact that larger mesh block makes better use
of Intel SSE vectorization. To show the correctness and
accuracy of the parallel solver on the MIC architecture, we
plot the pressure contours at the symmetry plane in Figure 8
and compare the corresponding pressure coefficients on
the airfoils calculated by MICs with that calculated by
CPUs in Figure 9. We can see clearly from Figure 9 that our

solver running on MICs can capture each shockwave which
is expected on each airfoil for this transonic problem and
produce pressure coefficients in agreement with that cal-
culated by CPUs.

6. Summary

We have developed and optimized an overlapped mesh-
supported CFD solver on multiple MIC coprocessors. We
demonstrated and compared different code strategies for
vectorizations by using a two M6 wings case and analysed
the results in detail. An asynchronous method has been
employed in order to keep the data exchange from in-
terfering the overall efficiency. Calculations on the case
achieved 5.9x speedup using two MIC devices compared to
the case using an Intel E5-2680 processor. Our future work
includes extending this solver to cover unsteady flow

100

101

102

103

104

W
al

l c
lo

ck
 ti

m
es

 (s
ec

on
ds

)

5.9x
3.6x

CPU CPU2MICs 2MICs
8 blocks 32 blocks

Figure 7: Wall clock times for 500 steps on CPU and MIC.

P/Pinf
1.495
1.392
1.288
1.185
1.082
0.978
0.875
0.772
0.669
0.565
0.462
0.359
0.256

Figure 8: Pressure contours at the symmetry plane.

–0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
X

Cp

Upper wing, MIC
Lower wing, MIC

Upper wing, CPU
Lower wing, CPU

Figure 9: Pressure coefficients comparisons on the airfoils at the
symmetry plane.

10 Scientific Programming

calculations which involve relative motion among over-
lapped mesh blocks on multiple MIC devices.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by a grant from the National
Natural Science Foundation of China (nos. 61702438 and
11502267), the Key Research Project of Institutions of
Higher Education of Henan Province (no. 17B520034), and
the Nanhu Scholar Program of XYNU.

References

[1] NVIDIA, NVIDIA Tesla V100 GPU Architecture, NVIDIA,
Santa Clara, CA, USA, 2017.

[2] https://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-
architecture.html.

[3] A. Gorobets, F. Trias, R. Borrell, G. Oyarzun, and A. Oliva,
“Direct numerical simulation of turbulent flows with parallel
algorithms for various computing architectures,” in Pro-
ceedings of the 6th European Conference on Computational
Fluid Dynamics, Barcelona, Spain, July 2014.

[4] M. A. A. Farhan, D. K. Kaushik, and D. E. Keyes, “Un-
structured computational aerodynamics on many integrated
core architecture,” Parallel Computing, vol. 59, pp. 97–118,
2016.

[5] J. S. Graf, M. K. Gobbert, and S. Khuvis, “Long-time simu-
lations with complex code using multiple nodes of Intel Xeon
Phi knights landing,” Journal of Computational and Applied
Mathematics, vol. 337, pp. 18–36, 2018.

[6] Y. Cai, G. Li, and W. Liu, “Parallelized implementation of an
explicit finite element method in many integrated core (MIC)
architecture,” Advances in Engineering Software, vol. 116,
pp. 50–59, 2018.

[7] S. Saini, H. Jin, D. Jespersen et al., “Early multi-node per-
formance evaluation of a knights corner (KNC) based NASA
supercomputer,” in Proceedings of the IEEE International
Parallel & Distributed Processing Symposium Workshop,
Chicago, FL, USA, May 2015.

[8] Y. X. Wang, L. L. Zhang, W. Liu, X. H. Cheng, Y. Zhuang, and
A. T. Chronopoulos, “Performance optimizations for scalable
CFD applications on hybrid CPU+MIC heterogeneous
computing system with millions of cores,” Computers &
Fluids, vol. 173, pp. 226–236, 2018.

[9] K. Banaś, F. Krużel, and J. Bielański, “Finite element nu-
merical integration for first order approximations on multi-
and many-core architectures,” Computer Methods in Applied
Mechanics and Engineering, vol. 305, pp. 827–848, 2016.

[10] W. C. Schneck, E. D. Gregory, and C. A. C. Leckey, “Opti-
mization of elastodynamic finite integration technique on
Intel Xeon Phi knights landing processors,” Journal of
Computational Physics, vol. 374, pp. 550–562, 2018.

[11] J. M. Cebrián, J. M. Cecilia, M. Hernández, and J. M. Garćıa,
“Code modernization strategies to 3-D stencil-based appli-
cations on Intel Xeon Phi: KNC and KNL,” Computers &
Mathematics with Applications, vol. 74, no. 10, pp. 2557–2571,
2017.

[12] M. Lukas, Z. Jan, M. Michal et al., “Evaluation of the Intel
Xeon Phi offload runtimes for domain decomposition
solvers,” Advances in Engineering Software, vol. 125, pp. 46–
154, 2018.

[13] S. M. I. Gohari, V. Esfahanian, and H. Moqtaderi, “Coalesced
computations of the incompressible Navier–Stokes equations
over an airfoil using graphics processing units,” Computers &
Fluids, vol. 80, no. 1, pp. 102–115, 2013.

[14] L. Fu, K. Z. Gao, and F. Xu, “Amulti-block viscous flow solver
based on GPU parallel methodology,” Computers & Fluids,
vol. 95, pp. 19–39, 2014.

[15] W. Cao, C. F. Xu, Z. H.Wang, H. Y. Liu, and H. Y. Liu, “CPU/
GPU computing for a multi-block structured grid based high-
order flow solver on a large heterogeneous system,” Cluster
Computing, vol. 17, no. 2, pp. 255–270, 2014.

[16] M. Aissa, T. Verstraete, and C. Vuik, “Toward a GPU-aware
comparison of explicit and implicit CFD simulations on
structured meshes,” Computers & Mathematics with Appli-
cations, vol. 74, no. 1, pp. 201–217, 2017.

[17] C. Xu, X. Deng, L. Zhang et al., “Collaborating CPU and GPU
for large-scale high-order CFD simulations with complex
grids on the TianHe-1A supercomputer,” Journal of Com-
putational Physics, vol. 278, pp. 275–297, 2014.

[18] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin, “Running
unstructured grid-based CFD solvers on modern graphics
hardware,” International Journal for Numerical Methods in
Fluids, vol. 66, no. 2, pp. 221–229, 2011.

[19] A. Lacasta, M. Morales-Hernández, J. Murillo, and P. Garćıa-
Navarro, “An optimized GPU implementation of a 2D free
surface simulation model on unstructured meshes,” Advances
in Engineering Software, vol. 78, pp. 1–15, 2014.

[20] P. Barrio, C. Carreras, R. Robles, A. L. Juan, R. Jevtic, and
R. Sierra, “Memory optimization in FPGA-accelerated sci-
entific codes based on unstructured meshes,” Journal of
Systems Architecture, vol. 60, no. 7, pp. 579–591, 2014.

[21] Y. Xia, H. Luo, M. Frisbey, and R. Nourgaliev, “A set of
parallel, implicit methods for a reconstructed discontinuous
Galerkin method for compressible flows on 3D hybrid grids,”
in Proceedings of the 7th AIAA Georetical Fluid Mechanics
Conference, Atlanta, GA, USA, 2014.

[22] J. Langguth, N. Wu, J. Chai, and X. Cai, “Parallel performance
modeling of irregular applications in cell-centered finite
volume methods over unstructured tetrahedral meshes,”
Journal of Parallel and Distributed Computing, vol. 76,
pp. 120–131, 2015.

[23] K. Soni, D. D. J. Chandar, and J. Sitaraman, “Development of
an overset grid computational fluid dynamics solver on
graphical processing units,” Computers & Fluids, vol. 58,
pp. 1–14, 2012.

[24] D. D. J. Chandar, J. Sitaraman, and D. Mavriplis, “GPU
parallelization of an unstructured overset grid incompressible
Navier–Stokes solver for moving bodies,” in Proceedings of the
50th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, Nashville, TN,
USA, January 2012.

[25] D. Chandar, J. Sitaraman, and D.Mavriplis, “Dynamic overset
grid computations for CFD applications on graphics pro-
cessing units,” in Proceedings of the Seventh International
Conference on Computational Fluid Dynamics, Big Island,
Hawaii, July 2012.

[26] K. E. Niemeyer and C.-J. Sung, “Recent progress and chal-
lenges in exploiting graphics processors in computational
fluid dynamics,” Journal of Supercomputing, vol. 67, no. 2,
pp. 528–564, 2014.

Scientific Programming 11

https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

[27] G. Edgar, E. F. Graham, B. George et al., “Open MPI: goals,
concept, and design of a next generation MPI implementa-
tion,” in Proceedings of the 11th European PVM/MPI Users?
Group Meeting, pp. 97–104, Budapest, Hungary, September
2004, http://www.open-mpi.org.

[28] M. J. Djomehri and H. Jin, “Hybrid MPI+OpenMP pro-
gramming of an overset CFD solver and performance in-
vestigations,” NASA Technical Report, NASA Ames Research
Center, Moffett Field, CA, USA, 2002.

[29] B. Chapman, G. Jost, and R. van der Pass, Using OpenMP:
Portable Shared Memory Parallel Programming,)e MIT
Press, Cambridge, MA, USA, 2007.

[30] N. C. Prewitt, D.M. Belk, andW. Shyy, “Parallel computing of
overset grids for aerodynamic problems withmoving objects,”
Progress in Aerospace Sciences, vol. 36, no. 2, pp. 117–172,
2000.

[31] B. Roget and J. Sitaraman, “Robust and efficient overset grid
assembly for partitioned unstructured meshes,” Journal of
Computational Physics, vol. 260, pp. 1–24, 2014.

[32] G. Zagaris, M. T. Campbell, D. J. Bodony et al., “A toolkit for
parallel overset grid assembly targeting large-scale moving
body aerodynamic simulations,” in Proceedings of the 19th
International Meshing Roundtable, pp. 385–401, Springer,
Berlin, Heidelberg, October 2010.

[33] J. Cai, F. Tsai, and F. Liu, “A parallel viscous flow solver on
multi-block overset grids,”Computers & Fluids, vol. 35, no. 10,
pp. 1290–1301, 2006.

[34] B. Landmann and M. Montagnac, “A highly automated
parallel Chimera method for overset grids based on the
implicit hole cutting technique,” International Journal for
Numerical Methods in Fluids, vol. 66, no. 6, pp. 778–804, 2011.

[35] W. D. Henshaw, “Solving fluid flow problems on moving and
adaptive overlapping grids,” in Proceedings of the In-
ternational Conference on Parallel Computational Fluid
Dynamics, Washington, DC, USA, May 2005.

[36] W. Liao, J. Cai, and H. M. Tsai, “A multigrid overset grid flow
solver with implicit hole cutting method,” Computer Methods
in Applied Mechanics and Engineering, vol. 196, no. 9–12,
pp. 1701–1715, 2007.

[37] https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-
5110P-8GB-1-053-GHz-60-core-.

[38] E. Wang, Q. Zhang, B. Shen et al., High-Performance Com-
puting on the Intel® Xeon Phi™, How to Fully Exploit MIC
Architectures, Springer, Berlin, Germany, 2014.

[39] P. L. Roe, “Approximate Riemann solvers, parameter vectors,
and difference schemes,” Journal of Computational Physics,
vol. 43, no. 2, pp. 357–372, 1981.

[40] A. Jameson, W. Schmidt, and E. Trukel, “Numerical solutions
of the Euler equations by finite volume methods using
Runge–Kutta time-stepping schemes,” in Proceedings of the
14th Fluid and Plasma Dynamics Conference AIAA Paper,
Palo Alto, CA, USA, 1981.

[41] T. H. Pulliam and D. S. Chaussee, “A diagonal form of an
implicit approximate-factorization algorithm,” Journal of
Computational Physics, vol. 39, no. 2, pp. 347–363, 1981.

[42] J. Blazek, Computational Fluid Dynamics: Principles and
Applications, Elsevier, Amsterdam, Netherlands, 2nd edition,
2005.

[43] Z. Wang, N. Hariharan, and R. Chen, “Recent developments
on the conservation property of chimera,” in Proceedings of
the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NV, USA, January 1998.

[44] R. L. Meakin, “On the spatial and temporal accuracy of overset
grid methods for moving body problems,” in Proceedings of

the 12th Applied Aerodynamics Conference AIAA Paper 1994-
1925, Colorado Springs, CO, USA, June 1994.

[45] S. E. Rogers, N. E. Suhs, and W. E. Dietz, “PEGASUS 5: an
automated preprocessor for overset-grid computational
fluid dynamics,” AIAA Journal, vol. 41, no. 6, pp. 1037–
1045, 2003.

[46] W. Ma, X. Hu, and X. Liu, “Parallel multibody separation
simulation using MPI and OpenMP with communication
optimization,” Journal of Algorithms & Computational
Technology, vol. 13, pp. 1–17, 2018.

[47] Y. Wu, “Numerical simulation and Aerodynamic effect re-
search for multi-warhead projection,” Journal of System
Simulation, vol. 28, no. 7, pp. 1552–1560, 2016, in Chinese.

12 Scientific Programming

http://www.open-mpi.org
https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-
https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

